
Fix IT
See and solve the problems of digital healthcare

HAROLD THIMBLEBY

Fix IT

Fix IT
See and solve the problems

of digital healthcare

HAROLD THIMBLEBY

1

3
Great Clarendon Street, Oxford, OX2 6DP,

United Kingdom
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries
© Harold Thimbleby 2021

The moral rights of the author have been asserted
First Edition published in 2021

Impression: 1
All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above
You must not circulate this work in any other form

and you must impose this same condition on any acquirer
Published in the United States of America by Oxford University Press
198 Madison Avenue, New York, NY 10016, United States of America

British Library Cataloguing in Publication Data
Data available

Library of Congress Control Number: 2021934818
ISBN 978–0–19–886127–0

DOI: 10.1093/oso/9780198861270.001.0001
Printed and bound in the UK by

TJ Books Limited
Links to third party websites are provided by Oxford in good faith and

for information only. Oxford disclaims any responsibility for the materials
contained in any third party website referenced in this work.

The real data of safety are stories.
— James Reason

The most powerful person in the world is the
storyteller. The storyteller sets the vision,
values, and agenda of an entire generation
that is to come.

— Steve Jobs

The Corporation’s galaxy-wide success is
founded on their systems’ fundamental flaws
being completely hidden by their superficial
design flaws.

— Douglas Adams

The problems of the real world are primarily
those you are left with when you refuse to
apply their effective solutions.

— Edsger Dijkstra

… and now [1977] when the computer people
move in and the non-medical people move in,
they can hardly believe what they see. And
there is a crisis of major proportions.

— Larry Weed

Digital healthcare is much
riskier than we think, but it
can be made far more
effective and much safer. This
book splits up the action into
stories of problems, the
solutions, and then the better
future we can reach.

1

How to read this book

Healthcare has been around for thousands of years, certainly since long be-
fore the Hippocratic Oath to do no harm (figure 1.1). In comparison, digital
is very new, hardly a blink of an eye. Unsurprisingly, healthcare and digital
technology haven’t yet had the time to work out how to work well together.

Fix IT: See and solve the problems of digital healthcare is a book about
digital healthcare and how it has an impact on all of us, both patients and
healthcare professionals. The unique contribution of the book Fix IT is to
show, with lots of powerful stories, how surprisingly risky digital healthcare
is. Once we start to be shocked by its problems, it’s easy to see how dig-
ital healthcare can be made much safer for everyone’s benefit, for patients
and their families, as well as for staff. Digital technologies can certainly be
improved to make healthcare more effective, but so, too, could healthcare
change to make it easier for digital to help it. It should be a collaboration,
not a one-way street.

Fix IT is divided into three parts:

Part 1 ⋄ Diagnosis ⋄ Riskier than you think — I want you to see the
unnoticed risks of digital healthcare, and the serious problems
that arise when digital is misunderstood and misapplied.

Part 2 ⋄ Treatment ⋄ Finding solutions — I want you to see that
digital healthcare’s problems are fixable. The real solutions aren’t
just about getting newer or more exciting stuff; the solutions are
about thinking more clearly to understand what we need, and
how to innovate, design, and implement digital healthcare more
reliably.

Part 3 ⋄ Prognosis ⋄ A better future — there is a possible, much
better, safer, and far more effective digital healthcare for all of us.
The final part of the book sketches the real digital promise.

2 | CHAPTER 1

Figure 1.1. Healthcare is as old as humanity, but thinking clearly about health-
care came later. Some of the earliest “modern” writing on healthcare was by Hip-
pocrates.1 Although Hippocrates lived around 400 BC, this is the oldest surviving
Hippocratic Oath, written on a fragment of the Papyrus Oxyrhynchus dating from
around 300 AD. Thinking clearly about digital healthcare is already long overdue.

All chapters in Fix IT have stories that’ll be of interest to patients and to
healthcare professionals. All the material used in this book is either in the
public domain (and fully cited in the book’s notes) or has permission from
the people involved. This open approach is essential to the integrity of Fix
IT, and the reasoning behind this openness is discussed later in the book.a

The digital in digital healthcare cannot be avoided. There are, therefore,
a few slightly technical chapters in this book, which will be of special interest
to programmers, developers, and regulators— this bookwill become a useful
reference for them. These chapters are highlighted with a 1960s computer
chip (a modern one would be smaller and harder to see), both in the table of
contents and in the margins of the chapters themselves, drawn like this:

There’s a lot of jargon both in healthcare and in digital technology, of-
ten making things harder to understand. Sometimes it’s hard to know when
what appears to be an ordinary everyday phrase has a specialist meaning. So,
when I introduce a specialist term, it’s been highlighted in bold to avoid any
confusion.

a See Chapter 35: Healthcare openness and acknowledgments, page 553→

Contents

1 How to read this book 1
Digital healthcare is much riskier than we think, but it can be
made far more effective and much safer. This book splits up
the action into stories of problems, the solutions, and then the
better future we can reach.

Part I
Diagnosis ⋄ Riskier than you think

2 We don’t know what we don’t know 15
For thousands of years, healthcare was held back because we
couldn’t see and didn’t understand the germs making us ill.
Today, healthcare is being held back because we don’t see
computer bugs, and we don’t understand the risks caused by
them.

3 Cat Thinking 25
Cat Thinking explains our love of all things digital. Our
hormone-driven love of technology overrides objective
thinking. Thinking that computers are wonderful, we feel we
don’t need to worry about looking for rigorous evidence that
they are safe and effective.

4 Dogs dancing 33
Look carefully for them, and you’ll uncover lots of stories of
digital healthcare bugs. This chapter has lots of examples of
buggy digital health.

4 | CONTENTS

5 Fatal overdose 49
Denise Melanson died after a calculation error that led to a
drug overdose. What can we learn from the incident?

6 Swiss Cheese 61
Swiss Cheese famously has holes, which can represent the
holes and oversights that lead to harm. The Swiss Cheese
Model has become a powerful way to help think more clearly
about errors and harm.

7 Victims and second victims 69
When patients are harmed, staff often get blamed —
especially when nobody realizes how digital systems can go
wrong and create the problems.

8 Side effects and scandals 81
We accept that medical interventions like drugs and X-rays
have side effects. It makes a lot of sense to think of digital
healthcare as having side effects too, and therefore it should
be evaluated and regulated as carefully.

9 The scale of the problem 109
We don’t know how many people are dying or being harmed
from errors in healthcare, let alone those caused by digital
errors. What are the facts, and what can we do about it?

10 Medical apps and bug blocking 121
Medical apps are very popular, but they are as prone to bugs
as any other digital system. This chapter gives some typical
examples and begins to suggest solutions. Like all digital
healthcare, apps could be designed to block bugs and avoid
the harms that follow.

CONTENTS | 5

Part II
Treatment ⋄ Finding solutions

11 Cars are safer 137
The car industry has made cars much safer since the 1960s.
What can we learn from car safety and from why car safety
improved to help improve the safety of digital healthcare?

12 Safety Two 145
Focusing on the bad stuff is the traditional Safety One
approach. Safety One is unconstructive. Instead, Safety Two
means focusing on doing more good. Safety Two emphasizes
doing more good things and therefore squeezes out the bad
things.

13 Computational Thinking 151
There’s a lot more to digital health than being excited about
digital computing. We need to learn how to think compu-
tationally to take full advantage of digital. Computational
Thinking is the mature way to think about computing — and
digital healthcare.

(Don’t forget that the computer chip means that this is a
more technical chapter.)

14 Risky calculations 177
Drug doses and other forms of patient treatment require
detailed calculations. Calculation errors are one of the most
common types of error and they could be reduced in many
ways. Calculators themselves ignore errors, and they should
be fixed if they are going to be used in healthcare.

15 Who’s accountable? 193
Software warranties generally deny all liability for problems.
Manufacturers and developers should be required to be more
accountable. Everyone needs to be constantly curious about
improving systems and reporting problems.

6 | CONTENTS

16 Regulation needs fixing 201
Digital healthcare needs much better regulation — and
regulation needs to keep up with the unique issues of digital
healthcare. Better regulation is a Safety Two approach:
regulate for better processes to stop things going wrong.

17 Safe and secure 211
Cybersecurity is a serious problem for all computers and
digital systems. In healthcare, patient safety is paramount,
but in the wider world, security has a higher profile than
safety. Both have problems caused by poor programming and
all the design and development processes that precede actual
coding.

18 Who profits? 225
Who is profiting from our data? Is Artificial Intelligence (AI)
the solution to better healthcare?

19 Interoperability 245
Interoperability — or, rather, lack of interoperability — is a
besetting problem in healthcare. We need digital to work
seamlessly — to interoperate — across all specialties,
disciplines, and healthcare institutions (taking due account of
privacy, cybersecurity, and so on). It requires new thinking to
get there.

20 Human Factors 259
Understanding how humans make mistakes in predictable
ways is the first step towards making fewer mistakes. This
applies to clinicians, and most especially to programmers —
whose mistakes end up as bugs affecting thousands of users.

21 Computer Factors 277
Understanding how computers can avoid bugs and mistakes is
the first step toward programming safer and more dependable
systems. This chapter introduces some important software
engineering ideas that can help make safer digital systems.

CONTENTS | 7

22 User Centered Design 301
However good a computer system is, it still needs to do what’s
needed — not what we think is needed. User Centered
Design finds out how people really use systems, and how to
improve their experience and reliability.

23 Iterative Design 313
User Centered Design means finding out how systems are
used with their real users doing real tasks. The insights from
working with users leads to design insights and ways to
improve the systems. These ideas are formalized in the
important idea of iterative design.

24 Wedge Thinking 325
Developers and programmers need no qualifications to
develop digital healthcare systems. We need to develop a
qualification structure for digital healthcare, and do much
more research on digital safety. Both will have a huge impact
on frontline safety.

25 Attention to detail 337
Why is poor-quality software so widespread? Simple bugs
might seem trivial, but they are very common and don’t help
patient safety — they make everyone inefficient and
error-prone, if nothing else. Health would improve if we paid
attention to digital details.

26 Planes are safer 347
Aviation safety relies on getting very complex engineering
right, and it’s getting safer and safer. What can digital
healthcare learn from aviation and aviation engineering?

27 Stories for developers 367
We should program better so that digital healthcare gets
safer, which is a Safety Two approach. Formal Methods is
widely used in safety-critical industries, but not often enough
in healthcare. Here’s why Formal Methods is needed, and
how it works.

8 | CONTENTS

28 Finding bugs 383
Although it helps everything else, Formal Methods isn’t
enough on its own. Thorough testing is essential to ensure
things really work well, especially when things are going to be
used in complex environments like healthcare.

29 Choose safety 401
Let’s have a reliable way of clearly seeing how safe systems
are, so that we can make choices based on evidence and
improve safety.

Part III
Prognosis ⋄ A better future

30 Signs of life 417
We’ve emphasized problems and solutions to problems, but
of course digital can do some fantastic things too. This
chapter collects some positive stories about digital successes
and how digital can transform lives.

31 The pivotal pandemic? 437
The horrific COVID-19 pandemic has forced healthcare
systems to innovate in digital health. Some changes have
been amazing, liberating patients, and protecting healthcare
staff — but some have been rather worrying. What can we
learn?

32 Living happily ever after 455
There’s a future world where digital healthcare works, and
works well. Here’s how to get there.

33 Good reading 471
This book isn’t the end of the story about digital healthcare,
and its problems and solutions. This chapter on
recommended reading gives lots of suggestions to help take
your thinking further.

CONTENTS | 9

34 Notes 497
Supporting this book are over 500 notes and references on dig-
ital healthcare and patient safety incidents. These notes cover
media stories, peer-reviewed cutting-edge research, as well as
national and international reports.

Notes in bold are especially good sources for further reading.

35 Healthcare openness and acknowledgments 553
Traditional healthcare views of confidentiality are challenged
by digital healthcare. This chapter also includes heartfelt
thanks to all the patients and healthcare staff and others
who’ve told their stories and brought this book to life.

Harold Thimbleby 557

Fonts for cancer 559

Index 561

Boxes

Box 2.1 Malware, Trojans, Bugs, Viruses … 19
Box 2.2 Fix IT — the big picture 21

Box 3.1 Success bias 29
Box 4.1 Bugs are often obvious in manuals 45

Box 5.1 Using a calculator 51

Box 6.1 Programming with better cheese 64
Box 6.2 Design errors cause use errors 65

Box 7.1 The Blame Game 75
Box 8.1 BRAN: Benefits – Risks – Alternatives – do Nothing 84
Box 8.2 Calculating drug dosage on a Graseby syringe driver 87
Box 8.3 Design trade-offs 88
Box 8.4 Side effects and the Principle of Dual Effect 90
Box 8.5 Design awards ignore safety 96

Box 9.1 Risks of making computers “easier to use” 112
Box 9.2 WHO’s global facts on patient harm 114

Box 10.1 Always say “use error” not “user error” 123
Box 10.2 Using wild data as a workaround 134

Box 11.1 The problems of buying lemons and selling peaches 141

Box 12.1 What encourages success? 146
Box 12.2 The orange-wire test 148
Box 12.3 Never events and always conditions 149

Box 13.1 The British EDSAC computer 157
Box 13.2 Reproducibility is essential 161
Box 13.3 Medical “algorithms” aren’t digital algorithms 173

12 | BOXES

Box 14.1 Handheld devices may have real bugs 178
Box 14.2 Austerity by spreadsheet 185
Box 14.3 Solving a hindsight problem 188

Box 16.1 Drug regulation and fake drugs 206

Box 17.1 Ransomware and cyber extortion 213

Box 18.1 Simpson’s Paradox 231
Box 18.2 Problems with spelling correction 237
Box 18.3 Digital and pharmaceutical development costs 241

Box 19.1 Adding value or managing risk? 251
Box 19.2 Interoperability isn’t just a digital problem 254

Box 20.1 Magic makes digital healthcare safer 262
Box 20.2 Simplistic Human Factors backfires 268
Box 20.3 Risks of international code and poor code review 273

Box 21.1 The etymology and entomology of bugs 278
Box 21.2 Good programs have assertions 291
Box 21.3 Newer Computer Factors 298

Box 22.1 How many users is enough for safe design? 304
Box 22.2 Cloned documentation 310
Box 22.3 Externalizing User Centered Design 311

Box 23.1 How do you know when nothing happens? 314
Box 23.2 Donna Meyer’s persona 322

Box 24.1 Parallels with the German Enigma 329

Box 25.1 Digital internationalization 344

Box 26.1 The scandal of Alternative Summary Reporting 353
Box 26.2 An aviation analogy 355
Box 26.3 The Dunning-Kruger Effect 358
Box 26.4 Lego workshops 359

Box 27.1 Epic’s daylight saving and Y2K 373
Box 27.2 Never events and good programming 376

Box 28.1 Don’t use bad programming languages 385

Box 29.1 Example evaluation criteria 409

Box 30.1 Early computer diagnosis 424

Box 31.1 The 1918 Spanish Flu 444
Box 31.2 Simple ethical questions? 450

Box 32.1 Introducing the IEC 61508 standard 460

Box 33.1 Digital chaos nearly had a doctor removed by Security 493

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

For thousands of years,
healthcare was held back
because we couldn’t see and
didn’t understand the germs
making us ill. Today,
healthcare is being held back
because we don’t see
computer bugs, and we don’t
understand the risks caused
by them.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

2

We don’t know
what we don’t know

Working in Vienna General Hospital, back in the 1840s, Ignaz Semmelweis
noticed that two maternity clinics had very different death rates: one death
rate was double the other, and his, unfortunately, was the worse one.2

Semmelweis started to study everything to try andwork out what the rea-
sons were. Many mothers were dying of the horrible and usually fatal puer-
peral fever.3 He discovered that there were lower death rates in the summer.
Then he noticed the student doctors went downtown in the summer — but
in winter they preferred to stay in the warm hospital. Then he noticed that
when the students were in the hospital they attended post-mortems.

He gradually came to the conclusion that things, which he tentatively
called “cadaverous particles,” were being carried by the student doctors from
the post-mortems around the hospital. The student doctors examined dis-
eased bodies in the morgue and then walked over to see patients on the
wards. Today, we would call that process cross-infection, but Semmelweis
had no such modern concepts to understand what was going on. Neverthe-
less, he instituted handwashing to stop the particles getting around (figure
2.1). The death rate duly rate went down.

Before handwashing, the maternal death rate had averaged about 10%
(deaths per births), and was sometimes over 30% in winter months. After
instituting handwashing, Semmelweis eventually got the death rate down to
zero for a couple of months, despite having 537 births in the same period.

Unfortunately Semmelweis lost his job — his colleagues found him irri-
tating. The success did not continue, and death rates rose again. Semmel-
weis finally died in ignominy. Today, however, he is a hero, especially in
midwifery and statistics. It’s interesting that his very early use of statistics in
healthcare uncovered the cause of a problem and helped find a solution, yet
without his ever understanding the invisible microbes behind his discovery.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

16 | CHAPTER 2

Figure 2.1. A romanticized picture of Ignaz Semmelweis overseeing handwashing
in his hospital ward, some time around 1840.

All credit to him, Semmelweis’s obstetrician colleague, Bernhard Seyfert,
decided to do an experiment too. Seyfert found that when he got his staff to
wash their hands, the frequency and severity of disease did not improve.

Why?
Seyfert’s doctors were only going through the motions: they were only

dipping their fingers in the water. But, crucially, they had all been wash-
ing their hands in the same water — and after a few days of use it had be-
come opaque! We now understand Seyfert’s problem easily: as much as he
might have thought his doctors were washing their hands, they were actually
cross-infecting everyone. Even the doctors who didn’t go to post-mortems
were now getting infected, probably through hand contact with those who
did “wash” their hands, or with things that were already contaminated.

Today, we take clean water, sinks, taps, and washing hands for granted.
We take cleaning surfaces for granted. But Seyfert didn’t even have running
tap water. Seyfert’s original hygiene must have been dreadful, seeing as his
experiment apparently didn’t increase death rates.

Semmelweis had shown that there was a rigorous intervention that saved
lives, based on evidence. It was only later, with the development of Louis
Pasteur’s germ theory, that there was a good explanation for why the in-

WE DON’T KNOW WHAT WE DON’T KNOW | 17
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

tervention worked. Germs, whether bacteria or viruses, cause diseases, but
if you don’t know about bugs, then the interventions don’t make sense.

We are still making progress with more cures for bugs, and we are start-
ing to realize the problems of over-prescribing antibiotics, which cause bac-
teria to evolve and get harder to treat. Of course, nearly two hundred years
later, handwashing is one of the first lines of defense against spreading the
COVID-19 pandemic.

In this, the twenty-first century, we are starting to see that there are other
invisible bugs that also affect health. We don’t understand computer bugs,
let alone their cures, and people are being harmed and some are dying un-
necessarily.

A bit like Semmelweis’s well-meaning colleagues, we tend to hang on to
our love of the old ways rather than face up to the fact that maybe we could
be doing better. We need to recognize the fact that digital healthcare has
bugs, and these digital bugs make healthcare risky in new ways. Digital is
everywhere; digital bugs are everywhere.

Until we grasp that, and take a more mature approach to managing “dig-
ital hygiene” we are as good as washing our buggy hands in the same water
as everyone else and just making things worse.

Some people get fussy over what a computer bug is, and say programs are
only buggy when they fail to do what was specified. In this light, bugs are
programming errors—we knewwhat wewere supposed to do, but somehow
things went awry. In this book I want to take a broader view. When com-
puters do the wrong things, we call those things bugs. Strictly, the bugs are
the errors that make the computer do the wrong things. The wrong things
themselves are the symptoms of the bugs, but it’s straightforward to call them
bugs too.

Imagine a digital device, like your phone or a drug infusion pump or your
laptop computer, and it just stops working and becomes unresponsive. It
looks like it’s crashed.

This is clearly a bug. Often if you switch it on, or off and on again, it’ll
reset itself and you can carry on. Resetting it clears the device’s memory,
and hopefully removes whatever problems the bug caused or was confused
about.

Or maybe it’s stopped working because it has a flat battery. Is that a bug?
Did it warn you the battery was low so you had a chance to fix the problem?
It was a bug if it didn’t warn you, especially if you were likely to lose work
from the problem.

Let’s say you recharge the battery, but the device has still lost your work.
Yourworkwas probably stored in volatilememory, which is lostwhen there is
no power. A different engineering design choice would have had everything
stored in non-volatile memory (like a disk) so it should never disappear.

If you meet the programmers, they say they did exactly what they were

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

18 | CHAPTER 2

told to do — they say they correctly implemented the specification. So if
you’ve got a problem, it’s not with them or the program but with the specifi-
cation, and that’s not their fault. They’d argue that since they were supposed
to program it, if it works as they thought it should, then it can’t be a bug!

So although we can think of lots of different explanations, the end result
is a bug. If the user can’t tell the difference, or can’t work out the cause,
whether it’s a design fault or a software fault, let’s call it a bug. It should not
have happened, and the user is inconvenienced.

A special case of bug is not a mistake but is a deliberate deception. Like
any other bug, the manufacturer hopes nobody notices, but there is some
advantage for the manufacturer (or for someone who works there). An ex-
ample of this is Practice Fusion’s system. They have been fined $145million
because they designed in features into their system so it increased prescrip-
tions for addictive opioid drugs, even though over-prescriptions of opioids
is a well-known public-health disaster. Pop-ups that supposedly provided
objective clinical advicewere designed to nudge doctors into prescribing spe-
cific drugs: they were designed as subliminal adverts, not for giving profes-
sional clinical advice. It is estimated that the Practice Fusion system decep-
tively boosted opioid sales for one drug company by $11.3 million.4

The Practice Fusion system was used by tens of thousands of doctors.
From the doctors’ point of view, this subtle manipulation is a totally un-
wanted feature — a bug — that they had no idea about when the Practice
Fusion system was acquired. Jamie Weisman had used it for five years but
doesn’t recall noticing the manipulative alerts. She was reported as saying:

It’s evil. There’s really no other word for it. But if you want to
model electronic health records as a for-profit system and not
regulate them as such and force doctors to be on them, it’s
almost inevitable that they’re going to be manipulated.4

Then there aremalware systems, which are buggy systems designed by
criminal hackers for deliberate sabotage, to cause chaos, blackmail, or to steal
information. The hackersmaywork for themanufacturer, but more often the
hackers work far away to take advantage of the internet to hack through into
hospital systems— see box 2.1. Criminal hackers almost always get malware
into your systems by exploiting bugs, though sometimes they trick users into
taking a few steps for them, like using their password, which then allows the
malware to run. We’ll talk about some examples — like WannaCry, a huge
malware attack that affected many hospitals worldwidea — later in the book.

For this book I’m not going to be pedantic. Bugs are the bits of digital
systems doing the wrong things, and we aren’t going to worry where these
things go wrong, because wherever bugs happen in healthcare they need
fixing. This is a more relaxed definition of bug than many people might like,

a See Chapter 17: The WannaCry attack, page 211→

WE DON’T KNOW WHAT WE DON’T KNOW | 19
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Box 2.1. Malware, Trojans, Bugs, Viruses …

Bugs are unintentional problems with digital systems, butmalware are de-
liberate problems, specifically designed to cause you or others problems.

Trojans, named after the deceptive Trojan Horse of Greek story fame,
are malware that pretend to be something you want, but then cause prob-
lems. You get an apparently helpful email, respond to it, and before you
know it your computer has been taken over by something nasty. Or, worse,
the thing is so nasty you don’t realize it’s taken over your computer and it just
hijacks it to use your identity to do nasty things — like stealing your money,
blackmailing you, and so on. Anything is possible.

Like biological bugs, digital malwaremay infect your systems and lie dor-
mant, symptomless, for a while, giving you a false sense of security.

Viruses are a contagious form of bug. They are designed to spread from
one system to another. Typically, once you are infected with a virus (gener-
ally thanks to a Trojan bringing it in), it then spreads to everything in your
organization. Like biological viruses, typically computer viruses only infect
specific sorts of computer, so a good protection is to have a variety of com-
puters so it can’t infect everything.

Since the basic aim of hackers making malware is to make money, make
a political statement, or just cause disruption, they don’t have to obey any
rules. It follows that it’s a bit pointless worrying whether an attack is a virus,
Trojan or whatever, since the whole point is to circumvent your defenses.

but since it’s increasingly hard to tell the difference between hardware and
software, I think peoplewhowant different definitions ought to suggest some
different words to help us all be more precise. Meanwhile, “bug” will do for
us.

The National Health Service, the NHS, is the world’s largest healthcare
institution, and is the pride and joy of the UK, so let’s start, then, with a
major digital project in the NHS that went wrong …

We think that hospitals need newer computers. Certainly, a lot of com-
puters in hospitals are not very modern, and it would be exciting to update
them. In the UK, back in the early 2000s, the English NHS’s National Pro-
gramme for IT (NPfIT) was a huge investment in modernizing digital hos-
pital computers. It was intended to be a digital transformation into modern
healthcare, but it was an expensive flop, costing maybe £30 billion.5 That
huge sum is only counting themain costs, excluding training and lots of other
things.

I was part of a group of professors of Computer Science that publicly
offered to help, but ended up strongly criticizing NPfIT.6 NPfIT failed for
lots of reasons, but I’d highlight its emphasis on commercial confidential-
ity, which stopped it accepting help, and its techno-centric assumption that

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

20 | CHAPTER 2

technical solutions could “just” sort out the NHS, and that companies could
“just” implement things, and it’d all be fine. In my opinion, what to imple-
ment should first have been a major research project — preferably done by
several independent teams over a period of years, carefully assessing alterna-
tives. Nobody had ever done anything like NPfIT before, and unfortunately
mistakes were made in the initial planning. Then it got stuck in its own pol-
itics.

Of course, today, computers are more advanced than they were back in
2000, and surely everything has changed? So we just need to invest in
newer computers. But what have we learned from the expensive National
Programme flop? Has our attitude to digital excitement really changed, and
why would the results of rushing in with today’s new digital dreams be any
better? Everybody is more excited by apps, certainly, but I don’t think that
the quality of healthcare programming has improved much — if anything,
more unqualified programmers are doing their things — and so computer
dependability has not improved enough. In my view, much of what we need
to digitize in healthcare won’t be helped much by apps, or any other exciting
innovations, until the risks and solutions are much more well-known and
are universally acknowledged.

The reasons theNational Programme failed are still with us. For instance,
in 2020 we’ve “only just realized” that computer system log ins are a seri-
ous problem,7 even though slow and complex logging-in was a recognized
problem long before NPfIT.

The main reason for NPfIT’s failure, in my opinion, was that NPfIT was
not seen as fundamentally a hard digital-medical co-design problem which
would require a huge investment in multi-disciplinary expertise, but as a
routine, if wide-ranging, modernization problem. Digital stuff got updated,
but not fundamentally improved. Likewise, the problem with today’s log-
ins isn’t a log-in problem as such, but it’s a symptom of the chaotic and
uncoordinated systems behind the log-ins. People are starting to call out that
little was learned from the NPfIT fiasco, and we’re just carrying on wasting
more money (and more lives)8 — I hope my book will help change things,
not just by lamenting the problems but by providing insights and solutions.

A provocative analogy with digital healthcare is blood-letting.9 Blood-
letting is one of the oldest medical interventions, with a history going back
at least 3,000 years to the Ancient Egyptians. Blood-letting means draining
blood from patients to cure diseases, justified by all sorts of strange beliefs,
including that disease originates in imbalances in our four “humors”: blood,
yellow bile, black bile, and phlegm (which now has a very different mean-
ing).

Blood-letting was very popular, possibly because it made quite a drama
that doctors could play on. Many wise, sensible people believed in it. The
first US President, General George Washington (1732–1799), who had a

WE DON’T KNOW WHAT WE DON’T KNOW | 21
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Box 2.2. Fix IT — the big picture

From time to time, we all suffer IT and other digital problems. In healthcare
these problems can cause serious issues, from overwork to harming patients.
IT needs fixing.

What’s the message of this book? What should we do?

We could just carry on suffering with poor IT. Missed appointments,
slow log ins, lots of passwords, lost data, incompatible systems, old
equipment; this is how it works. This is unacceptable.

We could just update to newer, better IT. This is a very popular
choice, especially as there’s always an obvious gap between our
existing stuff, like our mobile phones and all their apps, and newer,
fancier ones. Why not just bring healthcare up-to-date?

But what if the problem is deeper than just bringing in more modern
IT? We should get better-thought-out and better-developed IT. The
case for this is argued throughout this book. The problems with IT
are preventable.

We could change and improve what healthcare is doing. Sometimes
the “problems” with IT are actually just exposing underlying
structural problems with healthcare.

We should do all of the above, but with a conscious and effective
strategy to improve. In particular, until the digital regulatory
structures are brought up-to-date — they currently permit the mess
— improvement on the ground is going to be very hard.

throat infection, was bled, losing — as it’s now estimated — between five to
nine pints of his blood in a matter of hours. Few people could survive that
even if they weren’t ill to start with. George Washington died that evening.

When blood-letting was popular, the doctors often claimed that the pa-
tient would have survived if only they had been able to take more blood from
them. Perversely, this sort of thinking reinforces the belief in the crazy idea.

Most practitioners in George Washington’s day ignored the insights of
scientists like William Harvey (of blood circulation fame) and Louis Pasteur
(of germ fame), until the visible success of blood transfusions inWorldWar I
and the arrival of antibiotics challenged the blood-letting ignorance. The
enthusiasm for blood-letting only faded when there were treatments that
clearly worked better.

Many people have the same style of “blood-letting thinking” with digital;
that is, if something digital doesn’t work well enough, well, we just need
newer digital. Going digital with the very latest tech is like blood-letting
despite persistent misunderstandings; just being more enthusiastic doesn’t
make it work better.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

22 | CHAPTER 2

“Let’s have the latest digital” brings to mind Einstein’s famous dictum:

The definition of insanity is doing the same thing over and
over again, but expecting different results.

Digital plays to this tune with its continual reinvention: what was a good
digital intervention in the 2000s is quite passé today, so nowwe need amore
modern intervention. It seems obvious, but until we understand bugs, it is
still doing the same thing over again, just with different problems. Actually,
what we now need is clear, well-informed digital thinking to work out how to
do better, not a mere modernization of something that hasn’t been working
too well. Digital means bugs; if we get new digital without ensuring we have
fewer bugs, all that we’ll achieve is having different bugs. Digital healthcare
will be unnecessarily risky until it’s fixed.

Healthcare has political problems, like how health in the US costs the
nation per person much more than it does in Iceland or in the UK, but in
principle modern healthcare is wonderful, and its failings — although always
high-profile — are rare and unusual. On balance, we are better off using
computers than not, but we could be much better off if we understood them
and started to improve them.

Going back to medicine … We now understand disease, we have elim-
inated smallpox completely, we’ve invented antibiotics, and we can look
forward to healthier futures where millions of lives are saved. The Bill &
Melinda Gates Foundation,10 has set a goal of ridding the world of malaria,
a really worthwhile thing to do, which will save hundreds of millions of lives.
With what we now know about science and medicine, this is an eminently
achievable goal: we are well beyond the days of magical thinking about dis-
ease.

We should now be setting goals of using our knowledge about computers
to rid the world of magical thinking about digital. We need to get rid of
computer bugs along with all the damage and chaos they cause. It’s really
worth doing, certainly once we realize it’s such a serious problem. That’s
what this book is all about.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Cat Thinking explains our
love of all things digital. Our
hormone-driven love of
technology overrides
objective thinking. Thinking
that computers are
wonderful, we feel we don’t
need to worry about looking
for rigorous evidence that
they are safe and effective.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

3

Cat Thinking

I’ve been wondering why we do not think clearly about digital healthcare.
I’ve developed an idea I call Cat Thinking.

Let me explain.
I have a cat called Po. He’s named after Master Po Ping, the black-and-

white Kung Fu Panda.11 Po came to us as a little kitten. Kittens haven’t been
inoculated, and until they are, they should live inside so they don’t catch
unnecessary infections — we live in a house with a garden and woods, so it
was natural to want Po to roam outside. So when Po first arrived, he had to
use an indoor litter tray.

So, one day, we’re sitting down eating a meal at the kitchen table, and
we can hear Po scrabbling around in his litter tray, scattering litter to try to
cover his poo. Then he walks into the kitchen and jumps up on our table.

Po is an infection risk! His feet have been paddling in feces, and now he
is walking around on the kitchen table. “Get off!” we shout at him!

Po rolls onto his back, and he purrs loudly. As if on command, we tickle
his tummy. Aaaaah. He’s so sweet …

In less than a second, we have gone from being sensible people, think-
ing about infection risks and healthy-eating hygiene, and have turned into
mindless people totally seduced by a furry, purring animal. We aren’t think-
ing about hygiene, he’s so cute. Our brains aren’t big enough to think “cute”
and “infection risk” at the same time. “Cute” wins hands down.

Underneath our rapid volte face is a cocktail of hormones: endorphins,
dopamine, oxytocin, norepinephrine, and prolactin are all released as we
stroke and pet the cat. Overwhelmed by hormones, we don’t have any choice
but to feel good. The world is a happy place, and Po purrs at the center of
totally uncritical appreciation.

Here’s the insight. The same effect occurs when we buy the latest tech-
nology, mobile phone, or any other attractive thing. Naturally, the same
happens with digital healthcare.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

26 | CHAPTER 3

Figure 3.1. Po the cat — rolling onto his back and purring after being told off.

To spell it out a bit more, the following chain of thought takes over:

Digital healthcare is wonderful — purrfect, in fact — and our
hormones make sure we feel good about this.

We know digital healthcare is wonderful. We have no need to
question this because our hormones are silently convincing us.

Nevertheless, bad things like errors will still eventually happen.
There are plenty of stories about digital errors later in this book.

But because we are so happy with digital technology, the errors must
be the nurses’ or the doctors’ fault, as we can’t see any fault with the
purrfect digital stuff.

In short: we’re so attracted to the excitement of digital innovation that
we’re blind to its risks. That’s Cat Thinking.

CAT THINKING | 27
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

The logic of Cat Thinking may sound trivial, even childish, but its conse-
quences can be very serious. Later in this book, we’ll see investigations into
the causes of serious patient harm and deaths often follow the faulty pat-
terns of Cat Thinking, as outlined above (the story about Lisa Norris is one
of many examplesa). A patient dies from an overdose, and the investigators
say the technology worked as designed, they may not actually say it purred,
but therefore any problems must have been caused by its users. Sack, dis-
cipline, or imprison the users (often nurses) and your problem is solved —
except it’s a misunderstood problem.

Let’s make an analogy, one we’ll explore at greater length later:b in the
1960s many people thought cars were wonderful and exciting. So when a
car accident happened, it must have been the driver’s fault because the car
worked as designed. If you are excited by cars, lulled into a gentle hormonal
haze, you are unlikely to wonder whether they could be at fault if you feel so
happy with them. As we’ll see, it took Ralph Nader’s insights to expose the
flaws in blaming the driver: in fact, many cars were intrinsically unsafe, so
their poor designs accounted for many accidents.

I am not denying the benefits of good computers, but Cat Thinking ex-
plains how we all very easily get uncritically over-enthusiastic about com-
puters. Here’s an example of this uncritical enthusiasm as it misleads health-
care:

[…] the goal should be no errors that reach the patient […]
Computerized approaches are ideal for this because reliability
can approach 100%, while methods that rely on human
inspection will always miss some errors.

This is a quote taken from a 1995 paper published in the mainstream
Journal of the American Medical Association.12 Somehow the paper’s au-
thors seem to have overlooked that computers themselves rely on human
methods for their design and programming, so they can’t be immune to er-
ror any more than humans can be.

It is, of course, cynical to point out that enthusiasm for computers is
good for digital business. It’s just good business to intentionally promote
our enthusiasm in a cycle of mutual reinforcement.13 It would be even more
cynical for me to suggest that the main people promoting digital technology,
and certainly those with any resources to advertise it and to influence us,
have, just maybe, a small conflict of interest.

Cat Thinking does not mean computers are all bad. Computers can be
wonderful. How better to show off their stunning power than with a CAT
(short for Computerized Axial Tomography) scan as in figure 3.2? In a CAT

a See Chapter 7: The Lisa Norris incident, page 69→
b See Chapter 11: Cars are safer, page 137→

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

28 | CHAPTER 3

Figure 3.2. Amazing CAT scans of a human head. Not so long ago, even in sci-
ence fiction, seeing inside a living human with this level of detail would have been
implausible.

scan, a computer cleverly combines many X-ray images taken of the head
into a solid model of it, which can then be represented and interactively ma-
nipulated on screen in various ways. CAT scans can be used for diagnosing
problems, such as cancer, as well as for guiding surgery. CAT scanners can
be made portable and small enough to be used in ambulances, where they
are particularly useful for assessing head injuries.

A twist to Cat Thinking is that becausewe all think technology is wonder-
ful, we also over-rate our own knowledge about it. If I believe my gadget is
wonderful (even if I think I know this only because of a rush of hormones)
and I believe I am rational, then I’ll have to invent a reason to rationalize
my love of my gadget. If I don’t, I’ll have to face up to the depressing fact
that I’m not rational. This rationalization is a well-known cognitive mecha-
nism called cognitive dissonance.14 Ah, I know, I am clever, and so I must
know a lot about this stuff to have such strong feelings. Then we’ve made
our hormone-driven feelings make sense.

Daniel Kahneman’s excellent book Thinking, Fast and Slow, speaks di-
rectly to this.15 When we are faced with a complicated problem — like un-
derstanding some digital technology — we do what’s called attribute sub-
stitution. Digital is too hard to understand, so we flip to “thinking fast” —
we pick up some idea or attribute we do understand, and then follow our
immediate impression rather than putting lots of effort into thinking slowly
and carefully about the issue. Thinking slowly, as Kahneman calls it, is re-
ally hard work, but quick impressions are easy. And of course, with a dose
of dopamine to encourage us, we get excited and hence very certain about
our fast thinking, certain about our first impressions even if they are wrong.

CAT THINKING | 29
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Box 3.1. Success bias

The facts seem to speak for themselves: computers make companies suc-
cessful, and some companies are astonishingly successful. Amazon, Apple,
Facebook are multi-billion5 dollar corporations that owe their existence to
computers.

Therefore, computers will make healthcare successful!
Unfortunately, there’s a fallacy with this thinking, called success bias.
There are millions of companies that use computers that have failed, and

some never even got so far as to see the light of day. Here are a few I can
remember: Acorn Computers, Ashton-Tate, Commodore, Control Data Cor-
poration (CDC), Digital Equipment Corporation (DEC), Elliott Brothers, In-
ternational Computers Limited (ICL), Wang, and many others. We could
make a similar long list of digital healthcare companies and products that
have failed.

The point is, if we think about digital systems today, necessarily the only
ones we can see are the successful ones. We can’t see the ones that have
gone bust, and we can’t see the start-ups that just failed to get going, and we
can’t see the software products that have been ditched. Success bias, then,
is our reasonable tendency to believe ideas will work because that’s the only
evidence we can see.

There are a whole range of similar problems.16 Successful companies
have huge resources; competing with them, even with better ideas, is almost
impossible. A typical medical app start-up has one or two programmers,
yet they are motivated by the success of apps that, say, Apple might be mak-
ing, with thousands of programmers and thousands of quality control people.
Another problem is that successful companies obviously survived the inno-
vator’s dilemma,17 but any start-up has to overcome it — and successful
innovation is not as easy as the successful companies seem to make out it is.

Successful digital healthcare is not as easy as success bias makes it look.

However sensible all of us are, the marketing folk have got us to believe
that new digital stuff is really exciting. The big companies would go out of
business if they were not successful at this. There’s a consulting company
calledDopamine Labs, now renamedBoundlessMind, specifically to do this:
Dopamine Labs combine using Artificial Intelligence (AI) with increasing
your desire to use systems.18

They do research to find out how best to stimulate our dopamine levels:
once hormones start flowing, we feel happy and stop thinking about details
like how much things cost or how hard they may be to learn to use, or even
whether we are adding to the tons of landfill of obsolete electronics e-waste.
If something feels so good, surely it is good? We willingly go along with this
hormonal deception. We all want new stuff, we want the latest stuff. I want
a new phone. The new one will be faster, thinner, have a better battery, and
it’ll purr.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

30 | CHAPTER 3

Digital is exciting, and the adverts give us lots of persuasive stories that
convince us we are leaders, innovative, and clever to want to buy new stuff.
The adverts and popular media images are part of a culture of adoption.

That’s when we stop thinking.
It does not follow that an exciting thing forme, like a new phone— or any

other shiny new digital idea, however exciting it seems, is good enough for
a hospital, or better than older things in the hospital. Or, much harder to get
ourminds around, it may be better, but not as better as it could have been. So
many new and exciting things just have new bugs in them, andwill need new
updates, and more support, and other new problems we didn’t anticipate. It
is easy to gloss over how risky new digital innovationsmay be and howmuch
more work needs doing on them first. We can’t help inhabiting a happy, Cat
Thinking, consumer culture of wanting the latest technical solutions before
we’ve even worked out what the problems we are trying to solve are.

That’s a clue to one of the surest defenses against Cat Thinking. Some-
body must ask for a safety case. A safety case is a reasoned document
that rigorously explores the benefits and risks and how safety is impacted.19
Don’t just buy a new digital system; first write a safety case — this engages
your slow thinking, isolates you from dopamine, and gets you to system-
atically explore issues. Safety cases encourage informed innovation; at the
other end of the timeline — say, when there is a court case about some dig-
ital system that’s gone wrong (usually the court case is about a nurse caught
up in some digital mess) — the cross-examination should ask, “Where is the
safety case?” Forwithout a safety case, there is no reason to think the system
is safe, and therefore every reason to think the nurse or doctor is innocent;
in fact, every reason to think somebody has succumbed to Cat Thinking.

Digital makes many persuasive promises, but it’s sometimes — much
more often than we care to admit — making healthcare less safe, or at least
making it a lot less safe than it needs to be. It needn’t be like that, but the
culture that has embraced digital as an automatic solution is pervasive.

I’ll explore the problems and solutionswith stories and examples through-
out this book. I hope my stories give us pause (paws?) to think, and some
powerful and effective ideas to start improving. We need to.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Look carefully for them, and
you’ll uncover lots of stories
of digital healthcare bugs.
This chapter has lots of
examples of buggy digital
health.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

4

Dogs dancing

It is amazingwhen a dog dances. It is amazing that computers do their magic.
But dogs don’t dance very well, and nobody dare say so, in case they upset
the circus.

In 2000, incorrect Down syndrome test results were given to 158 moth-
ers in England, with tragic consequences. Let’s see how this happened.

One of the best-known computer bugs is the Millennium Bug, which is
also known as the Y2K bug. Unlike most bugs, the Millennium Bug is very
easy to understand. We’ll first explore what the bug was, then show how it
caused incorrect Down syndrome test results.

When digital computers started to get popular, around the 1950s, no-
body thought about the end of the millennium: it was still a lifetime away.
Computers in those days were slow and expensive, and what programmers
worried about was saving time and money. It was natural, then, to write
dates in a cost-saving shorthand. Instead of writing years in full, like 1950,
1960, or 1967, theywere programmed in amuch tighter form using only the
last two digits, like 50, 60, or 67. The two digits of the year use only half the
space, and can be processed twice as fast. If you were storing the birth dates
of, say, thousands of patients, the savings would have been worthwhile. Ev-
erybody — and every computer — benefited from the efficiency gains.

Computers very soon became smaller, faster, and enormously popular.
They started to be used everywhere. People started to lose track of them:
they were used in lifts, in microwave cookers, ticket machines, airplanes,
nuclear power stations … they were in everything.

I was born in 1955, so in 1956 I had my first birthday. If a computer
treated my date of birth as 55, and treated the year 1956 as 56, then it would
have done the quick calculation “56 minus 55” and, of course, got the right
age: I’d have been one year old in 1956.20

I grew up through the 60s, 70s, and 80s, and I didn’t see the problem
coming. Nor did a lot of other people.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

34 | CHAPTER 4

A computer could work out my age whenever it was needed. So, over
the last few years of the millennium — 1995 to 1999 — my age would of
course have been 40, 41, 42, 43, 44 in each successive year. In each year,
the computer would have done the sum 95 − 55 = 40, or 96 − 55 = 41,
and so on. But in 2000 the computer would calculate my age not as 45, but
as minus 55! My age would have been calculated by doing the sum 00−55,
getting the nonsense negative age of minus 55. That’s the Y2K bug in a
nutshell.

The Y2K bug potentially affected every computer in theworld and almost
everything they did. When people realized the scale of the Y2K problem an
international effort rapidly got underway to fix it. The huge amount of work,
and the very short time left to do it in before 2000, created enormous pres-
sure. In the UK, even prisoners helped out as they ran out of programmers.

Fortunately, most of the bugs were fixed in time, but unfortunately some
were missed.21

Here’s a tragic story of a missed and misunderstood Y2K bug.
The chances of giving birth to a Down syndrome baby increase with age,

and many mothers opt to have a Down syndrome test. In 2000, incorrect
Down test results were given to 158 women in England, thanks to a missed
Y2K bug that had been overlooked. Tragically, some terminations were car-
ried out as a result, and some Down syndrome babies were born to mothers
who had been told their tests put them at low risk.

TheDown syndrome test relies on lots ofmeasurements, including blood
tests, number ofweeks into pregnancy (based on ultrasoundmeasurements),
and the mother’s age and weight. The test mixes these measurements in a
complex formula to estimate the risk of Down syndrome. Thanks to the Y2K
bug in the program, any pregnant mother tested in 2000would have seemed
to have a negative age, which would inevitably mess up the calculations.

The incident has now had an inquiry, and there is a long report on it.22
The report presents a catalog of chaos, under-staffing, under-resourcing,
lack of digital skills, and lack of awareness of the need for digital compe-
tence.

It’s curious that the report’s authors and consultants had no digital qual-
ifications themselves. The report did not explicitly see the test’s Y2K prob-
lems as a symptom of digital incompetence — lack of training, skills, and
supervision — and therefore it contributed no useful learning to improve
digital healthcare after the experience. They saw it as a one-off problem.23

The Down testing service had been running successfully for ten years,
and the hospitals using it had become over-confident; what could possibly
go wrong with such a reliable service? When midwives first noticed that
some test results looked strange, the hospitals thought they were just differ-
ent women. Not a bug, let alone a systematic bug. Midwives started to raise
the alarm, and the bug was finally identified as such in May 2000.

Responsibility for the program had ended up with a single, self-taught

DOGS DANCING | 35
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

hospital IT specialist, an anonymized “MrW,”whowas unsupported and out
of their depth. The entire line management was clearly out of its depth, too,
as this critical role was not properly supported or supervised.24 The NHS,
rightly, ended up with a huge compensation bill.25

This easily avoidable bug,a combined with a failure to regulate digital
healthcare to avoid bugs, and develop and manage digital systems profes-
sionally, turned into a disaster for mothers and babies.

The story is typical.
First, everyone thinks developing a digital healthcare system is easy. Ini-

tially, using the system seems absolutely fine, but then something happens
that the system can’t cope with. Things go wrong, and patients are harmed.
Unfortunately, it is very hard to notice when things go wrong like this; you
need a level of suspicion, critical thinking, and technical knowledge of how
digital systems can fail. With theDownY2Kbug, somepatientswere harmed
before the midwives had noticed there was a systematic problem.

There must be competent external oversight, because you can’t know
what you don’t know — somebody else needs to look. Of course, there’s no
reason why healthcare professionals should be expected to have the highly
technical skills to spot, let alone avoid, the problems that arise; healthcare
needs more competent digital experts. Indeed, even the investigation team
for the Down Y2K bug had inadequate computing expertise to interpret the
digital evidence so there could be useful, wider learning.23

The Down tragedy shows the importance of routinely monitoring every-
thing for unusual activity — ironically, this is one thing computers are very
good at. Many people, though, think the important lesson to learn from this
story is that healthcare has a skills problem: there should be more formally
qualified IT staff.26 Given the poor quality of digital systems, better qualified
staff would certainly help, but, really, the true cause of the problem is the
low quality of digital systems in the first place.

In 2002, a car knockedmy student Nick Fine off his motorbike. Nick was
taken to hospital, and he was hooked up to various drugs to help him recover.
Being a hemophiliac, he was given a clotting factor through a syringe driver.

Syringe drivers have amotor in them that pushes a syringe, which squeezes
the drug down a tubewhich is usually inserted into a vein in the patient’s arm.
The syringe driver has a little computer in it to control the motor and how
fast it runs. It also does important things like sensing whether the syringe is
jammed, as might happen if the tube is kinked and blocked.

Nick’s syringe driver had a large paper notice stuck on it, warning staff
not to touch any of its buttons.

If you need to stick such notices on hospital equipment, there’s probably
something wrong with the design.

a See Chapter 21: Avoiding the Down test bug, page 286→

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

36 | CHAPTER 4

Figure 4.1. My computer simulation of the Graseby 3400 syringe driver. In my
simulation, as you press the buttons (or click on them with a mouse) the lights and
screen change exactly as on a real, working Graseby syringe driver.

Why didn’t the manufacturers of the syringe driver, Graseby, find out
how their product would be used, and build in features so that it was easier
and safer to use? Why does anyone need to rely on labels that may fall off?

So, sensing a story, I bought myself a Graseby syringe driver like Nick’s
to see how it worked.

To help me really understand the Graseby syringe driver, I built a com-
puter simulation of it and made some videos that you can watch.27

It was while building this simulation that I discovered a timeout issue —
I was spending too long trying to understand it, and it went and timed out
on me. I was trying to understand how entering drug doses worked, and as I
tried to enter 0.5 mL per hour, I paused just after pressing the decimal point
(so I could make sure my simulation worked exactly the same way), and the
thing got boredwaiting forme and timed out. It also zeroed the number I was
entering. I’d found out that if you entered a number slowly for any reason,
the number you actually entered could change — sometimes in surprisingly
complicated ways. For example, if you enter 0. (that is, zero followed by a
decimal point) it might get changed to 0 (with no decimal point), so entering
0.5 mL per hour slowly could end up as 5 mL per hour, which is ten times
higher than you intended. If you are doing a complex job — like paying
attention to a patient — you may never notice.

A ten-times overdose could be very serious, so I wondered why the sy-
ringe driver had been designed the way it had. Was the timeout there be-
cause it somehow helped how the thing was used in hospitals? I realized
I didn’t know enough. At this stage, I didn’t know whether this “problem”
was my lack of understanding of how the device was supposed to work, or

DOGS DANCING | 37
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

whether it was some genuine problem in the design that might trip up users
of it. I would soon find out.

So I met up with an anesthesiologist, and scrubbed up to join in some
operations. I took a low profile, did what I was told, and generally kept out
of the way. I just watched what happened.

A patient was wheeled up for our first operation. He had been in a fight
and had had his jaw broken. The anesthesiologist set up the equipment so
that the patient could be anesthetized.

The anesthesiologist started talking with the patient to find out things
like howmuch he drank, as that would affect howmuch anesthetic he might
need. The anesthesiologist entered the patient’s weight and then the right
dose rate of the drug (fentanyl in this case) into the syringe driver. Several
times the anesthesiologist got a bit flustered and, as he was also talking to
me, he said he didn’t really understand the syringe driver. He got it sorted out
eventually, and the patient went under, and we took him into the operating
room.

While the surgeon was putting wires in the patient’s jaw, I asked the
anesthesiologist about the Graseby syringe driver he’d been using, so I could
try to figure out what had caused all his problems with it. What we worked
out was because the patient had come to theater with a broken jaw, he was
having difficulty talking, so the anesthesiologist had taken “too long” to en-
ter the drug dose. The syringe driver had silently timed out, making a mess
of things. So the anesthesiologist had to try again and again as the problem
kept repeating.

Fortunately, anesthesiologists pay close attention to what’s happening to
the patient, and nothing went wrong for them — this time. I was interested
that the anesthesiologist blamed himself for not properly understanding the
syringe driver, when the reality was that it didn’t understand how to be safe
in a real, demanding operating room. More to the point, its designers hadn’t
understood.

This is just one examplewhere the digital system—here a syringe driver —
is critical in achieving the clinical effectiveness of a drug. The drug itself has
to pass very stringent regulations, to ensure it’s safe and effective, but the
syringe driver has very little regulation, beyond having to be electrically and
mechanically safe.

The next operation I attended, the ventilator crashed.
When you are anesthetized and given a muscle relaxant (so your body

does not twitch when it is operated on) you can’t breathe unaided, so the
ventilator is programmed to pump gases into your lungs at the appropriate
rate, taking so many breaths per minute. So when the ventilator screen an-
nounced that the ventilator’s computer had crashed, the error message it dis-
played proved it had not been designed for safe use in healthcare (figure 4.2).
That is, the error message came from the operating system; the ventilator it-
self had crashed without it being prepared for the bug that crashed it.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

38 | CHAPTER 4

Abort, Retry, Fail?

Figure 4.2. A ventilator has crashed, but there is no explanation of the problem,
and the choices “Abort” and “Fail” don’t help get the ventilator working, and the
choice “Retry” is futile unless the program has sorted out the bug that caused the
failure. The only sensible option — which is not stated — is to switch the ventilator
off and on again, so it reboots and hopefully sorts itself out in the process. This error
message appearing on a ventilator proves the system was not designed for safe use
in healthcare.

The anesthesiologist quickly got up and rebooted the ventilator, and then
had to re-enter all the patient data (lung capacity, and so on) and restart it,
which took a while. “You’ll report it?” I said. The anesthesiologist said
nothing had happened to the patient, so no, he wouldn’t report it. I said if
the surgeon had stood on one of your lines or there had been another problem
at the same time, would that have been OK? Probably not.

I and the anesthesiologist may have had a slight misunderstanding. Since
nothing happened to the patient, there was no adverse event that required re-
porting as a clinical problem, but there was a device malfunction that should
have been reported as a device problem. By not reporting the device crash-
ing, nobody will learn that the ventilator has a bug, and nobody will look into
it and fix it. One day it may happen again at a more critical moment.

In an ideal world, medical devices — and especially digital medical de-
vices — support the needs of the doctors and nurses, and ultimately support
the needs of the patients and their treatment. But go into many hospitals,
and sticky notes and other workarounds are visible everywhere (figure 4.3).
You can argue that this is staff breaking standard operating procedures
(SOPs), and they should be reported, or that this is an indication that the
digital devices are inadequately designed and that the local staff are trying
to improve patient safety — in which case, the device designs should be im-
proved. Sometimes both.

Are they notes from one nurse to the next to help make handover more
reliable? If a sticky note is saying, “Don’t give more than 10 mLs,” why
doesn’t the device keep track of that and make sure no such error happens?
If a note is saying, “This is insulin,” why doesn’t the device itself help keep
track of that and make sure it really is insulin? If a note is saying, “Refill at
10 pm,” why doesn’t the device keep track of that andmake sure it is refilled?

DOGS DANCING | 39
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Figure 4.3. A poorly baby in a US hospital bed. Sticky notes attached to digital de-
vices are workarounds showing that the devices (in the picture, syringe drivers and
infusion pumps) are not adequately designed to support the needs of the health-
care professionals using them. What happens if any sticky note falls off? Or, worse,
if any sticky note is put on the wrong device?

If a note falls off and something terrible happens, will the nurse go to
prison? Did the sticky note postpone things going wrong earlier or did it
contribute to the problem? Isn’t it time to design more safely?

There is similar practice in low-income countries, too (figure 4.4): in
these places, there is no alternative to post-it or other notes to help manage
patients lying spread out on the floor along hospital corridors.

Yet, in all countries, why don’t digital devices themselves help keep track
of the details that nurses so clearly need? Why aren’t manufacturers making
devices that support the needs of patient care; for instance, nurses’ notes
could be saved and shown on each device, managed by computer and (in
principle) made much more helpful — and there need be no possibility of
the notes for one device being mixed up with another device’s notes.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

40 | CHAPTER 4

Figure 4.4. Patients lying along a corridor in a Mexico City hospital. Sticky notes
are being used to keep track of vital information on drips. There are no digital
devices, unlike in figure 4.3 — though even there sticky notes were still needed.

TheChildren’s Hospital, Pittsburgh, USA, brought in a new system called
PowerOrders, and got it installed in just six days. PowerOrders is for organiz-
ing orders, such as admitting patients and ordering treatments; PowerOrders
was developed by Cerner as part of their PowerChart system.

The hospital wanted to know how the implementation of the new system
affected deaths among children who were transferred (e.g., in ambulances)
between hospitals into their specialized care.

I’ve drawn a bar chart (figure 4.5) based on their paper.28
What the chart shows, and what the paper argues at greater length, is that

death ratesmore than doubled after their new computer systemwas installed.
Each bar in the graph shows the children’s mortality over each quarter, cov-
ering the 18-month period of their survey. The stepped line running across
the graph shows the average mortality before and after the new system was
implemented. So in the first year, the average mortality was 2.8%, as 39
out of 1,394 children admitted over that year died — remember that these
are sick children, and, as a specialized facility, the Children’s Hospital would

DOGS DANCING | 41
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Quarter 4
2001

Quarter 1
2002

Quarter 2
2002

Quarter 3
2002

Quarter 4
2002

Quarter 1
2003

18 month survey

0

1

2

3

4

5

6

7

Average

mortality before

implementation

Average

mortality after

implementation

System implemented

M
o
rt

a
li
ty

%

Figure 4.5. Death rates of transfered children on a pediatric ward in a US hospital,
before and after a new computer system was installed.28

expect to get very sick children that other hospitals had transferred to them
for better treatment, including better end-of-life treatment.

The hospital ran Cerner Millennium, and this new PowerOrders system
was installed as an “add-in”module toMillennium towards the end ofmonth
13 of their survey. You can see the jump in mortality rate occurs at the same
time, sometime during the fifth quarter in the bar chart. The average more
than doubles.

Naturally the Cerner Millennium paper is controversial as many people
want to disagree with its findings. It’s not only an old survey, but maybe
the doubling of the death rate happened because of something else? The
trouble with powerful stories is that you do not know how representative
they are of the rest of the world. You can’t tell if the lessons from the story
are about this ward, this hospital, this new computer system as implemented
in this hospital, or are about something more general and we should all take
notice. A stronger criticism liked by traditionalists is that the study wasn’t
a Randomized Controlled Trial — an experimental method designed to
address such concerns, which I’ll discuss later.b

Despite the age of the paper, the Cerner Millenium type of problems are
still around. When an Epic system— like Cerner Millennium, another well-
established digital healthcare system — was implemented at a leading UK
hospital, Addenbrooke’s Hospital, in 2014, they had a large drop in Accident
and Emergency performance, among other problems, and Epic became un-
stable. A “major incident” was declared, and ambulances had to be re-routed
to other hospitals.29 The details may change but the big picture hasn’t.30

But if you want to dismiss the paper, you should worry that doing and
publishing this sort of research work is heavily constrained by gag clauses,
whereby the manufacturers and vendors of systems systematically under-

b See Chapter 28: Randomized Controlled Trials, page 393→

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

42 | CHAPTER 4

mine good research.31 For example, hospitals have to sign contracts with
suppliers — to be permitted to use the systems—which then stop them shar-
ing anything about them, particularly pictures such as screenshots, even if
there are incidents causing patient harm. This means that other hospitals
will be unable to learn from problems, and the research community will not
be able to find solutions. On the other hand, it means the manufacturer’s
reputation is protected.

The gag clause problem, combined with hospitals’ reasonable
concerns about patient confidentiality, is why this book doesn’t
discuss hospital systems as much as medical devices. Fortunately,
small devices like apps and infusion pumps are also much easier to
access and are much easier to describe in detail without getting too
boring. You can also acquire them easily (you can easily buy all of
those discussed in this book), and check my claims if you want to; in
contrast, confidentiality and gag clauses would severely restrict your
access to hospital systems.

Whatever the Pittsburgh study’s shortcomings, it’s surprising that an es-
tablished computer system such as the one they installed — not a brand new,
experimental one — had such problems. I don’t know details of the con-
tracts, but perhaps there should have been precautions; maybe the hospi-
tal should have contracted that the manufacturers must ensure the systems
work reliably, and that until it’s shown to be an actual improvement, they
wouldn’t be paid in full. After all, that’s what happens with new buildings:
there is a period of “snagging” when the architect and client go round the
building pointing out and getting the builders to fix the remaining problems.

Manufacturers might argue that this idea isn’t workable. For too long,
digital businesses have got used to rapid and easy turnaround — and by Cat
Thinking,c so has everyone else — but this is not how to develop safe and
reliable digital solutions for complex systems like healthcare.

The Pittsburgh paper28 discusses some of the reasons for the jump in the
fatality rate. One was that before the system was installed, when a child was
picked up by ambulance, the paramedics at the scene could call the hospital
by radio and ask them to get ready for the patient. The hospital would prepare
the necessary medications.

Now, with the newly installed PowerOrders system, the hospital can’t get
things ready until the child is fully registered with the system, so there is a
delay because they have towait until the child arrives at the hospital. Another
reason was that, although the new system promised increased productivity,
in practice it required someone to actually use the computer. That, in itself,
took those clinicians away from directly looking after patients — the paper
says that, previously, a paper formmight be filled out in a “few seconds,” but

c See Chapter 3: Cat Thinking, page 25←

DOGS DANCING | 43
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

the computer form takes ten clicks and several minutes.
The computer system delayed treatment and reduced the effective num-

ber of staff available for patient contact. Sometimes the computer required
the full attention of a doctor for 15 minutes to an hour, as other clinicians
tried to stabilize the patient.

Other times, theWi-Fi system got overloaded and the computer systems
would freeze during heavy periods, and then nothing could be done. If a
pharmacist accessed the system to prepare some drugs, the nurses in the
ward were locked out of the system, because the system could not cope with
two people looking at the same information. Why isn’t it obvious that to
be of benefit, a new system must be an improvement over and beyond any
inefficiencies or problems it introduces.

No doubt the hospital has started to sort out these problems, but it’s im-
portant to remember that this was not a totally new system where any of
these problems could have been excused as a surprise. It had been used
elsewhere, and the manufacturer, Cerner, had years of experience behind it.
Yet the death rate doubled.

Six years after the Pittsburgh Children’s Hospital paper was published,
Dr Hadiza Bawa-Garba, together with nurses Isabel Amaro and Theresa Tay-
lor, was working in the Leicester Royal Infirmary in an under-staffed ward
when Jack Adcock, a poorly six-year-old child with Down syndrome, was
admitted. Bawa-Garba ordered blood tests, but the computer system, iLab,
was down. A junior doctor spent most of the day on the phone trying to
get the results — the IT failure exacerbated the staff shortage, and increased
everyone’s workload:

A failure in the hospital’s electronic computer system that day
meant that although she had ordered blood tests at about
10.45am, Bawa-Garba did not receive them until about
4.15pm. It also meant her senior house office was
unavailable.32

Provision of care was dogged by the break down in IT facilities
for the whole hospital, meaning that the team were constantly
phoning to try to get results. Even when back on line, the flag
system for abnormal results was down. The nursing staff were
hard pressed, with staffing and equipment shortages logged.
[…] Due to hospital IT failure the Senior House Officer was
delegated to phone for results from noon until 4pm. […]
Therefore on this day Dr Bawa-Garba did the work of three
doctors including her own duties all day and in the afternoon
the work of four doctors.33

At the end of the day, sadly Jack died of sepsis.
The clinicians were indicted for gross negligence manslaughter. Theresa

Taylorwas cleared, but bothHadiza Bawa-Garba and Isabel Amarowere con-

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

44 | CHAPTER 4

victed, and struck off the General Medical Council (GMC) register and the
Nursing & Midwifery Council register, respectively.

Thousands of Bawa-Garba’s colleagues signed a letter of support, stating
the case would “lessen our chances of preventing a similar death.”34 So far as
I know, no comparable campaign has been made on Isabel’s behalf, though
the case made against her would have been different.

A tribunal of judges at the Court of Appeal said in August 2018 that
Bawa-Garba’s actions were neither deliberate nor reckless, and that she does
not pose a continuing risk to patients. But she remained suspended for a
year.

In the mass of discussion about this controversial case, I haven’t found
any mention of improving the hospital IT systems35 — yet everybody in the
hospital depends on reliable digital systems, and when they fail so badly that
they contribute to manslaughter, one would expect some public acknowl-
edgment and serious effort to improve them.

I wonder why such unreliable digital systems are used, and why hospi-
tals put up with them, and why criminal investigations pay so little attention
to the system failures. Perhaps it’s because blaming the doctors and nurses
seems to solve the problem. If nothing else, the problem becomes a whole
lot simpler: you don’t have to understand any complicated systems, you just
focus your sense of betrayal against a person who, you’re saying, let the pa-
tient down. Telling somebody off, retraining them, disciplining them, or
sacking them, is cheaper and will appear to be doing something; hospitals
even have standard processes that can swing seamlessly into action to start
formal procedures to do this.

Once there is a scapegoat, everybody feels getting rid of the scapegoat
takes away the problem — but the systems are left unchanged. To change
the systems would mean admitting that the hospital and, in their turn, the
IT developers and suppliers, had made mistakes, which is a harder problem
to admit, let alone understand. It’s also far more costly to fix.

So, unfortunately, the next doctor or nurse will face the same problems.
Ultimately, this will create a climate of fear where clinicians do not want to
speak up. It then gets worse: if there is a culture where nobody is speak-
ing up, certainly nobody wants to be the first person to confess to an error,
which itself further reinforces the culture. The system will then believe “ev-
erything is fine” and “errors don’t happen here,” and the culture of denial
gets entrenched right across the organization.

Healthcare is supposed to have a just culture,36 which includes the
idea of the substitution rule. The idea of the rule is that if anybody else
(with similar role and qualifications) would have been caught up in a similar
incident under the same circumstances, then the individual should not be
blamed because the problem is the system. The system has failed.

Blaming Bawa-Garba and the nurses is unjust by this rule, a point taken
up by Rachel Clarke, blogging in the British Medical Journal: as she put it,

DOGS DANCING | 45
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Box 4.1. Bugs are often obvious in manuals

Often training material and documentation helps users understand de-
sign problems with systems. For example, the manual notes for Cerner
PowerOrders says (with my italic emphasis):37

Large PowerPlans may take a few seconds longer to process,
and if the As Of button is clicked before the plan has
completed processing it will cause the plan to revert back to
the Planned Pending stage and could potentially create
duplicate orders outside of the plan.

This is not only useful advice to help users avoid problems, but it also
shows clear descriptions of unnecessary bugs that should be fixed. Nobody
wants duplicate orders. By putting this comment in the manual, Cerner has
turned the bug into the user’s problem. I’m also surprised that large plans
may “take a few seconds longer to process”: that’s something else that needs
fixing. It all begs questions about how PowerOrders is implemented.

Instead, such descriptions in user manuals should be seen, not as bugs
to explain, but as bugs to fix. Then the manuals can be revised and become
simpler. Fixing most bugs would be quicker than explaining them and how
to manage the problems they cause!

Hadiza Bawa-Garba could have been any member of frontline staff.38 More-
over, blaming Bawa-Garba and the nurses does not help improve the system,
nor does it help anyone else — not even patients. In fact, the hospital lost
several people in the fallout from the incident.

Ten years later, Dr Hadiza Bawa-Garba returned to medical practice —
after having to crowd-fund around £350,000 for her legal case.

As Jenny Vaughan, chair of the Doctors’ Association UK and lead for the
Learn Not Blame campaign, says,

Healthcare desperately needs an open, transparent, learning
culture, where harm is minimised by learning from error and
failings. Scandals such as Mid-Staffordshire,39 Gosport,d and
Morecambe Baye repeatedly demonstrate how a culture of
defensiveness and denial can escalate into widespread
cover-up, leaving families fighting for answers.
The climate of fear among the medical profession created by
the GMC’s actions over Bawa-Garba only makes it more likely
that this will happen again. Jack Adcock should have received
better care, and his tragic death was the result of
systems failure.40

d See Chapter 8: Gosport War Memorial Hospital tragedy, page 84→
e See Chapter 33: Morcambe Bay NHS Trust and Joshua’s Story, page 476→

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

46 | CHAPTER 4

Dr Marie Moe is a well-known international medical cybersecurity re-
searcher.41 She has a heart pacemaker.

Visiting London in 2011, Marie traveled on the London Underground
(metro) to Covent Garden, where she climbed up the stairs from the depths
of the station. She lost her breath and was struggling. She didn’t know there
were 177 steps! But something was wrong.

She’d been living perfectly well for a few weeks since having had the
pacemaker, but climbing the stairs at Covent Garden was the first time she’d
done any real exercise since the surgery when it had been fitted.

As Marie climbed the staircase at Covent Garden, her heart rate climbed.
Her heart rate soon reached 160 beats per minute maximum, as fixed by
her pacemaker. Her pacemaker then hit a problem, and went into a “2:1
atrioventricular block (AV block),” a sort of “safe” mode, which means your
heart gets forced down to half the pulse rate,42 so she went from 160 to
80; it’s a really horrible feeling, as you need a higher rate and you aren’t
getting enough oxygen. This rate was hardly enough for the demands she
was putting on her body! She collapsed and, fortunately, slowly recovered.

Each patient’s pacemaker is programmed specially for that patient. Most
patients with pacemakers are old, so the default setting for the maximum
heart rate for Marie’s type of pacemaker is only 160 beats per minute. But
Marie is fit and young, and quite able to exercise and put higher demands on
her heart. She should have had a much higher rate preset. The default rate
had not been corrected when her pacemaker was first programmed.

The sort of pacemaker programming deviceMarie needs looks like a large
laptop computer (figure 4.6). Marie is a computer scientist, so she tracked
down the problems. The user interface of Marie’s pacemaker programming
device got the numbers wrong, and the nurse setting up her pacemaker did
not know she was making a mistake because the user interface design had
a bug that misled her. It was a bug that led to the wrong maximum being
set. (It’s also strange that the pacemaker programming device does not alert
the user to confirm all settings have actually been correctly set for a new
patient.) In other words, a bug in the pacemaker programming device caused
the incorrect maximum heart rate setting.

The good news is that Marie persevered and got her pacemaker’s prob-
lems fixed. She is still alive and well. Another patient, less technically savvy,
might have been forced to live a quiet life at a reduced speed just to avoid the
problems. We’ll meet Marie a few more times again in this book, with a few
more of her stories.f,g

To put the examples of this chapter into perspective, the US Food and
f See Chapter 19: Marie Moe’s pacemaker and cosmic rays, page 248→
g See Chapter 30: Marie Moe runs New York Marathon, page 427→

DOGS DANCING | 47
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Figure 4.6. Checking and reprogramming a patient’s pacemaker. The circle on
the patient’s chest uses Wi-Fi (or similar) to connect to the implanted pacemaker,
letting the nurse look at the pacemaker’s settings on her laptop-like pacemaker pro-
gramming device. The good news is that the pacemaker can be configured wire-
lessly without needing an operation to open up the patient’s chest; the bad news is
the pacemaker programming device and the pacemaker itself may have bugs.

Drug Administration, the FDA, formally records over 140medical device re-
calls per year due to user interface software problems— and they know there
is a lot of under-reporting.43 The true figures are higher. Those are medi-
cal devices recalled within the US, and, as I’ve shown above, there are many
faulty devices that nobody is realizing are inadequate. If nurses, doctors, and
patients were more safety-conscious, more aware of the value of reporting
digital problems, the recall figures would be higher, probably much higher.

When a nurse or doctor gets caught up in an error, they are probably
stressed and focused on the patient’s needs, so carefully diagnosing and ac-
curately reporting technical details of any problems will be the last thing on
their mind. The patient in front of them is, rightly, far more important. This
means there is little drive to improve the systems, yet future patients will rely
on the systems being safer to avoid or block the same errors occurring again.

It’s amazing what computers can do. It’s amazing when a dog dances;
but dogs don’t dance very well, and nobody dare say so in case they upset
the circus.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Denise Melanson died after a
calculation error that led to a
drug overdose. What can we
learn from the incident?

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

5

Fatal overdose

Denise Melanson was being treated at the Cross Cancer Institute in Alberta,
Canada. She had throat cancer and was being treated with chemotherapy.
The dose in chemo is critical: too little and the cancer is not treated, or too
much and other organs and tissues get damaged by the chemo. Even with
a correct dose, chemo usually has side effects like losing your hair, but an
overdose is dangerous. Many chemo drugs don’t have antidotes if there is
an overdose.

Denise was on a regular dose of fluorouracil, one of the most commonly
used drugs to treat cancer. She was getting her fluorouracil from an Abbott
AIM44 Plus infusion pump that, very conveniently, she was able to carry
around with her.

When her bag of fluorouracil ran out, Denisewould go back to the Alberta
Cancer Care Centre and get some more. Her bag would be replaced, and
nurses would press buttons on her infusion pump to set the rate of the new
drug infusion correctly.

Normally two nurses are involved in the calculation. The idea is that if
one of them makes a mistake, the other nurse will notice. Unfortunately, on
one day in 2006, the two nurses bothmade the samemistake. Together they
agreed to program the infusion pumpwith a dose that they didn’t realize was
24 times too high.45 There are 24 hours in a day, and the correct calculation
involves 24 hours. Unfortunately, both nurses, by chance, omitted to divide
by 24 in their calculations. They agreed their answers, but they were wrong.

Denise Melanson later died from the overdose.
The two nurses had to do a calculation. The picture (figure 5.1) is taken

from the official report,46 hence the doctor’s names and a few other details
have been anonymized, as in the report itself.

The drug bag is filled and labeled by the pharmacy in the hospital. The
nurses’ job is to read the prescriptions, check the labels, connect the drug
supplies to the infusion pump, check or connect the lines to the patient, work

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

50 | CHAPTER 5

Figure 5.1. Original fluorouracil drug bag label for Denise Melanson. Black pen
marks anonymize names, as in the original report.46

out what dose is required, prime the infusion pump, and then program45 it
to deliver the required dose. It’s a lot of work, and, in particular, the drug
dose calculation is rarely easy.

Curiously, the pharmacy had already done the correct calculation (which
is 1.2mL per hour), but they— or, rather, their digital printing system—had
buried it in themass of other numbers on the drug bag, as can be seen (figure
5.1). It seems strange that nurses are asked to do the calculation again. It
risks making errors. Years ago, before computers, it might have made sense
for the nurses to check the calculation, but now that computers are better
than people at doing calculations, it’s counter-productive.

Another curious feature of this sad story is it begs the question why can’t
nurses easily tell an infusion pump to deliver the same rate as it was doing
a moment ago? In the cases here, the infusion pump “knows” that 1.2 mL
per hour has already kept a patient alive up until this moment in time, so
why not let the nurse just carry on with the same rate? If a different rate is
entered (as happened here), the infusion pump should check if the nurse is
sure and prompt them to confirm the change to the new dose rate.

Here’s another critical problem: calculators have no idea what you are
trying to do. So if you make any mistakes, you just get the wrong answer
with no warning. If, for instance, a nursemisses out keying in the ÷ 24 bit,
the calculator will be perfectly happy. If both nurses miss it out — remember
that part of the calculation was especially tricky to follow— then both nurses
will agree what the answer is, but they’ll both be mistaken, though in exactly
the same way. They’ll both get 28.8 mL per hour, and as the drug bag also
has that figure on it, it seems to confirm they’re both right: 28.8 is the first

FATAL OVERDOSE | 51
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Box 5.1. Using a calculator

Denise Melanson’s two nurses used a calculator and mental calculation, but
let’s see how calculators would work out her chemotherapy dose.

The drug bag’s label gives us about 15 numbers, depending on what you
want to count as a number. The nurses have to select the right ones to do their
calculation. To cut the story short, here is the correct calculation. The dose
is given as “5250 mg/4days (1312.5mg/24h)” on the label, but to program
the infusion pump we need a dose per hour, so 5,250 needs dividing by
4×24 (or 1,312.5 needs dividing by 24). We also need the dose rate to be in
milliliters per hour, sowemust divide themilligram rate by the concentration,
which is given as “45.57 mg/mL.” In all, the nurses need to do this:(

5,250
4× 24

)
÷ 45.57, which will be in mL per hour

We need to translate this into calculator-speak. Here’s how it has to be
done on the popular Casio HS-8V calculator:

AC 5250 ÷ 4 ÷ 24 ÷ 45.57 =

It’s difficult to check this going to do exactly what youwant. For example,
I used the fact that dividing by dividing is the same as dividing bymultiplying
— that is, a ÷ b ÷ c = a ÷ (b × c) — a fact that isn’t very obvious, and
you cannot be sure will work on your calculator until you test it.47 Indeed,
as many “arithmetic laws” do not work on calculators you may be better off
using paper, or at least using it to help check your results, because you can’t
rely on any laws until you’ve checked your calculator obeys them.

General-purpose calculators (almost all handheld calculators, mobile
phone calculators, desktop calculators, and more) are a mess, and should
never be allowed in hospitals to do critical calculations.

number on the line. It’s prominent and not in brackets; it’s a contrast to the
correct rate (“1.2mL/h”), which is shown just after it in brackets — which
seems to make it less important.

In fact, the bag confusingly says “28.8mL/24h,” which is the rate per
day, that is per 24 hours, not per hour. We don’t know whether the nurses
thought the 28.8 was a rate per hour or that they accidentally missed out the
division by 24.48

The drug was given 24 times too fast. Denise Melanson got a 24-times
overdose, and died as a result.

Why is a drug bag printed with a numerical dose 24 times too high? Did
it act as confirmation bias, a widely understood problem affecting every-
body,a and encourage the nurses to think the wrong dose was correct? Why

a See Chapter 20: Confirmation bias, page 269→

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

52 | CHAPTER 5

Figure 5.2. A typical screenshot from my app for calculating drug doses; as shown,
the screen is green and it’s displaying the result of its calculation. (Notice the large
decimal point and using smaller decimal digits to make the value easier to read
correctly.) The app beeps and the screen will go red and explain errors if there
is any problem with the calculation, such as the user omitting details of the drug
concentration — tapping the tabs at the bottom allows the user to revise any input.
What you can’t see is that the code was formally developed and tested.

isn’t the pharmacy, which prints the drug details, better informed about the
actual infusion pumps in use? They should only have printed the correct
dose for the pump in use.

It would be a bit of extra effort for the developers to improve drug bag
labels, and make them easier to read. Given that millions of labels are used
worldwide every day, improving them even a little bit would save lives.

I was so alarmed by discovering so many problems with these drug dose
calculations and with calculators more generally that I programmed my own
app to do them more safely (figure 5.2). My app can still be downloaded if
you want to try it.49

It’s hard to remove the possibility of error, but it is easy to design systems
to detect error, and hence reduce the chances of patient harm. My calculator

FATAL OVERDOSE | 53
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

can report 35 different error messages to the user to block and help them
recover from mistakes, compared to a standard calculator that can only say
“Error,” and only does so when there is a major problem (such as dividing
by zero). Unnoticed errors are the critical thing here. If you or the calculator
notices any errors, you can correct them (or try to correct them), but unno-
ticed errors by definition don’t get noticed and therefore don’t get corrected.
In the worst case after an error, harm happens to the patient, and when the
harm is noticed, it will be far too late to correct the calculation error.

I used Formal Methodsb to design the calculator, and I paid close atten-
tion to good screen design — for instance, notice the easily visible large dec-
imal point shown in the screenshot.50 My calculator also explains how long
different volumes of drugs will last at this rate, which is redundancy (addi-
tional information presented in a different way) that helps users themselves
notice and manage errors. It would be worth doing longitudinal experi-
ments — experiments over the long term — because it’s likely that detect-
ing more errors, as my calculator does (in fact, as any well-designed digital
healthcare system could), will help make users aware of their errors, and
in the long run you’d expect them to improve, as the calculator gives them
helpful feedback on their performance that no other calculators do.

Reducing the number of errors is important, but more important is re-
ducing the impact of errors on the results. To reduce patient harm, the mag-
nitude of the errors in the final result needs to be reduced, not just how often
errors occur. Research suggests that the error-blocking techniques used by
my calculator can halve the number of significant drug dose errors that will
reach the patient.51

Even better, of course, would be to get the pharmacy computer to print a
drug bag label that had already done the calculation, and so save the nurses
all the work and risk of error. It’s easy to improve the design for a drug bag
label (figure 5.3). Or, rather, it’s easy to think you’ve improved something;
after all, we’ve got rid of lots of problems. But we don’t actually know how
this drug label will work in practice. We are thinking about the design while
sitting in a nice calm office, and that’s a very different environment from
where it will be used. We must do some experiments and evaluation be-
fore adopting any new design. We won’t know until the design is tested,
and tested it must be (it’s called User Centered Design or UCD,c which
includes Human Factors and other ideas I’ll cover later in this book).

Put positively, once you start thinking aboutmaking hospitals safer, com-
ing up with ideas like simplified drug bag labels is very easy. But you’d want
to trial your ideas to see if they really make things safer. For example, I think
the QR code in my label design would help — it means nurses can easily
scan it, rather than read it, and have to write something down by hand. That
sounds easier, but perhaps it would only confuse, or perhaps the wrong QR

b See Chapter 27: Formal Methods, page 379→
c See Chapter 22: User Centered Design, page 301→

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

54 | CHAPTER 5

C
H
E
M
O
T
H
E
R
A
P
Y

D
I
S
P
O
S
E

O
F

P
R
O
P
E
R
L
Y

FLUOROURACIL 50 mg/mL
Patient XXX X

Dose description:
5,250 mg over 4 days (1,312 mg/day)

This 130 mL bag will last 4 days
at 1.2 mL per hour
with a 12 hour reserve.

Bag final Concentration: 45.57 mg/mL

1•2
mL per hr

Dr. XXX XX
Prepared July 31 2006 @ 9:05 am
Expiry: 7 days
Pharmacy XX XX
Ave. XX XXX

Figure 5.3. My proposal for an improved drug bag label. The idea still needs some
further development and testing in real environments to improve it further. (The
black blobs in this picture anonymize names not disclosed in the original report.46)

code might get scanned. Or perhaps by the time we try a new design, RFID
tags would be a better idea than QR codes, or, seeing as technology is con-
tinually improving, there will be other ideas to try that I haven’t thought of.

When the new design is trialed, we can find out lots of other improve-
ments, such as deciding exactly what information on the drug bag helps peo-
ple. Too much will certainly confuse, but presumably a lot of the detail was
necessary — but we don’t know whether it really is necessary. We may also
find out other problems in the trials; for instance, the pharmacy has no idea
what infusion pumps are being used, which would sort-of excuse their un-
certainty of whether to say milliliters per hour or per day. So our trial starts
to have a wider impact, helping improve things across the hospital.

Then why do the nurses have to do anything? Why can’t all infusion
pumps be developed to read QR codes (or RFID tags) that link through to
unique codes that identify the device (they’ve already been invented: they’re
called UDIs, or unique device indicators)?d Why doesn’t the prescribing
doctor record the drug dose on the hospital computer system, and then the
computer itself tell the infusion pump directly? Why involve people and
introduce more sources of error when the whole thing can be automated?

Let’s return to the specifics of Denise Melanson’s case. Not only did the
nurses have to calculate the drug dose, they had to programDenise’s infusion
pump to deliver that rate over the next few days. The drug should have lasted
4 days, but because the drug dose was wrong, the entire dose was delivered
24 times too fast, over just 4 hours.

Denise was using an Abbott AIM Plus infusion pump, which is an am-
d See Chapter 29: Unique device identifiers, page 404→

FATAL OVERDOSE | 55
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Figure 5.4. Denise Melanson was treated with an Abbott AIM Plus infusion pump.
The drawing above shows the Hospira-branded AIM Plus infusion pump I bought
from eBay to explore its behavior (Abbott split off Hospira in 2004). In some modes,
there are more than three options. The extra options are accessed directly by en-
tering the numbers 4, 5, 6, … — which means the user will not know what features
they are selecting.52

bulatory pump, meaning she could walk around using it. This is very conve-
nient and improves your quality of life enormously: you can have continual
drug treatment without being stuck in one place.

In the drawing (figure 5.4), you can see the AIM Plus pump is offering
three options. If you press 1, 2, or 3, you select one of those options. You
can also press 4, 5, 6 … and you will select other options, but you can’t see
what they will do or even whether they exist.

You can also see option 2 is to choose µg/mL, meaning micrograms per
milliliter.

Canada’s Institute for SafeMedication Practices (ISMP) warns not to use
µ because doing so can cause serious errors. The ISMP has an important list
of rules covering similar avoidable problems:53

The Greek letter µ (pronounced “mu”) means micro or one millionth;
so µg means a microgram, that is, a millionth of a gram. The problem
is that a handwritten µ can easily look like anm (figure 5.5), and

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

56 | CHAPTER 5

Figure 5.5. Can computers help eliminate wobbly writing? At the far left, the
handwritten unit is clearly µg: the Greek letter µ followed by g — a millionth of a
gram. At the far right, the unit is clearly mg: the letter m then g — a thousandth of
a gram. In the middle, how people often write less carefully, it could be either: is it
µg or mg? If misread, it would lead to a dose error out by a factor of 1,000. The
recommended solution is never to use µ, whether in handwriting or in digital dis-
plays, which may be copied and written down. Instead, always write mcg. Certainly
low-resolution digital displays must never be used, as they have the same legibility
problems as handwriting.

then an intended µg may be misread as a mg, which means a
milligram — a thousand times larger. Equally, of course, a
handwrittenm can be mistaken for a µ, thus causing a number to be
misread as a thousand times smaller.

ISMP is clear you should write mcg if you mean microgram: instead
of writing µg, you should always write mcg. Equally, all systems
should use mcg to be consistent, and not tempt anyone into ever
using µg, for instance when they remember or write down what a
screen has shown them. Sadly there are plenty of examples of death
from µ/milli confusions and other handwriting misreading errors.54

ISMP has similar safety rules for other abbreviations, such as never
using IU for international units. It is too easy to misread IU as 1 U or
even as 10 if the U is written badly. Imagine writing — or the
computer displaying — 2IU in a prescription; it would be easy to
misread this as 21U, which means 21 units. IU can also be misread
as IV, which is an abbreviation for intravenous. Instead, always write
IU out in full as “unit.” It takes a little extra time to write it in full,
sure, but if doing this ever saves an error it will more than recoup the
time! Also, of course, all digital systems should write it out in full too.

These rules are very easy to implement if you are a programmer:
using mcg, putting spaces after numbers, writing out IU as unit, and
so on — in a computer program this only needs doing once, and then
every time the system is used, everyone benefits from the improved
safety, with the busy clinicians doing no extra work.

The Abbott pump does not conform to ISMP’s standard advice; it uses
the Greek letter µ. It may seem to be sophisticated that the display can cope
with Greek letters, but it would be better to prioritize patient safety. The

FATAL OVERDOSE | 57
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Figure 5.6. The Abbott “up” button (enlarged from figure 5.4) confusingly also
serves as a decimal point.

developers had years to get the design right and safe,e and presumably they
were experienced, and they should have known what they were doing.

Another quirky feature is the Abbott infusion pump’s keyboard. Look at
the up-arrow button one row up from the bottom of the keyboard (redrawn
larger in figure 5.6). Putting the decimal point and up-arrow together saves
a bit of space and saves the cost of another button — but it’s at the risk of
inducing use errors, as the user may press the button expecting it to do one
thing and find it does the other.

The Abbott pump has lots of other odd features I think are unwise. Many
of its buggy features are common to almost every bit of digital healthcare,
particularly its poor handling of interactive numerals.55 Rather than me
going over a list of its design problems, a more direct approach is to see the
effect the problems have on nurses.

The Canadian ISMP did a root cause analysis (RCA) of the Denise
Melanson incident. Just as it sounds, an RCA seeks to find out the original
cause of an incident. Unfortunately, it is rather hard to decide how to stop
looking for causes, and it seems to me to be suspicious that RCA tries to find
“the” cause — see box 7.1. We’ll return to this problem in the next chapter.f

The ISMP took five nurses from an oncology clinic in Ontario who were
familiar with the Abbott pump to go through the scenario that had led up to
the drug overdose. This exercise took them just two hours. This is what the
ISMP discovered:

All of the nurses were confused by setup or selection of the mL per
hour drug dose rate.

All pressed the “Start” button incorrectly.

Three nurses needed hints to use it.

Three were confused by the decimal point button, which doubles as
an up-arrow.

Three of the nurses entered incorrect data, and didn’t notice.
e See Chapter 24: Sharp-end of the wedge, page 325→
f See Chapter 6: Swiss Cheese Model, page 61→

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

58 | CHAPTER 5

Two nurses were confused by the user interface but made no
negative comments about the design. The ISMP report says,

This lack of insight into design issues is very common
given that the healthcare world is filled with these issues
and healthcare personnel are rewarded for working
around them with little complaint.

One nurse entered 28.8 mL per hour and didn’t notice the incorrect
rate. This is the same erroneous rate that was entered in Denise
Melanson’s fatal treatment.

The nurses obviously need retraining if this is the equipment that they
must use. But, you might ask, why didn’t Abbott hire some nurses (ide-
ally selected randomly from a range of hospitals), spend a few hours, and
find out these problems and fix them before they started selling the infusion
pumps? Lives could have been saved. Why didn’t they participate in the
investigation?

Why doesn’t everyone do this sort of User Centered Design (UCDg) ex-
periment routinely for every product — both during its design to improve it,
and after it’s on the market, to assess how safe it is? Why wait until some-
body dies? Indeed, why isn’t it a legal or regulatory requirement that digital
systems pass rigorous safety tests before they are put on the market?

Why didn’t the hospital do a quick and simple experiment like this while
they were deciding which infusion pumps to buy? Maybe they would not
have bought this infusion pump.

ISMP says (with my emphasis):

The provincial cancer board where the event happened took
an exceptional step and made the RCA [root cause analysis]
report available on the Internet to promote learning across the
country.56

Why was it an “exceptional step” to make the investigation public, even
though, as ISMP says, the “Application of Lessons LearnedWill Save Lives”
in the title of their news report on the incident? Why are insights into drug
bag label design, drug calculation processes, and digital infusion pump de-
sign routinely hidden? Why are recommendations for improving safe prac-
tice normally kept out of sight? It’s as if, most of the time, healthcare insti-
tutionally doesn’t want to improve.

If only somebodywas curious and did experiments like the ISMP’s inves-
tigation before an incident, and reported the results publicly, manufacturers
would soon make better systems, and everybody would soon know how to

g See Chapter 22: User Centered Design, page 301→

FATAL OVERDOSE | 59
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

choose safer systems: a double benefit. Lives would be saved. I suppose,
though, that while most people don’t think digital healthcare, including dig-
ital infusion pumps, digital pharmacy systems, and so on, are risky, there
will seem to be little point in doing the work. While it remains an “excep-
tional step” to make investigations public, the world will remain ignorant of
the risks, and nothing will happen.

If we did a “root cause analysis” of this chapter, the underlying thing that
made it possible was the generosity of Denise Melanson’s family in allowing
the investigation of her death to go public, supported by the Cross Cancer In-
stitute and ISMP Canada in making the investigation and its lessons learned
freely available.

If we make more incident investigations public, especially ones under-
taken so thoroughly, everyone will be able to benefit. Furthermore, it’d be
helpful if manufacturers also participated — as they do in the airline indus-
tryh —as only they are able to improve their systems. It would help everyone
if they did.

h See Chapter 26: Planes are safer, page 347→

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Swiss Cheese famously has
holes, which can represent
the holes and oversights that
lead to harm. The Swiss
Cheese Model has become a
powerful way to help think
more clearly about errors and
harm.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

6

Swiss Cheese

James Reason has a fantastic way of reminding us that when bad things hap-
pen, everything has gone wrong. It is never just one person’s or one thing’s
fault.

Reason’s idea is the Swiss Cheese Model. Swiss Cheese is famous for
its holes. Now imagine a block of Swiss Cheese cut up into thin slices. In
the Swiss Cheese Model, each slice represents a defense against failure, but
each slice is an imperfect defense because of its holes.

The Swiss CheeseModel, with its slices of cheese, is easy andmemorable
to visualize (figure 6.1).

The slices of cheese in the model shown (figure 6.1), called “Doctor,”
“Pharmacy,” “Nurse 1,” “Infusion pump,” and so on, are names for the slices
of cheese taken from the story of Denise Melanson, already covered in the
last chapter.a

It is worth noting that some slices of cheese are more strategic than oth-
ers. If the standard operating procedures (SOPs) are improved or if the
pharmacy computer is improved, many things will improve to everyone’s
benefit. If instead an investigation focuses on the people at the sharp-end
(here, it might be tempting to think that Nurse 2 “should have stopped it”),
then nothing will be improved for future generations.

Some people take the Swiss Cheese Model as a literal, rigorous model,
but that is being too literalist. For example, the diagram I’ve drawn, if taken
literally, seems to suggest that the pharmacy allows something erroneous,
such as an error in the drug or the prescription, through to the nurses who
possibly allow something, through to the infusion pump allowing something.
But the nurse has also got a lot more going on. They have their training, their
experience, their knowledge of the patient from the patient records system,
they may well have distractions, they’ve had a long shift, and lots more. The
Swiss Cheese diagram doesn’t show any of that complexity.

a See Chapter 5: Denise Melanson’s fatal overdose, page 49←

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

62 | CHAPTER 6

Example

hazards

Standard

operating

procedures

Doctor

Pharmacist

Pharmacy

computer

Labeled

drug bag

Nurse 1

Nurse 1’s

calculator

Nurse 2’s

checks

Infusion

pump

Patient

Undefended

hazards

Figure 6.1. Most illustrations of Swiss Cheese Models don’t go into details or show
enough slices, but here’s a worked example based on the previous chapter’s case
of Denise Melanson’s fatal overdose. Each slice of cheese schematically defends
against some errors, but no slice is perfect. If any holes in the slices coincidentally
line up, then harm can and will eventually happen. Clearly, there is no one cause
for the harm; every defense failed. (The drug bag label could be repeated as part
of Nurse 2’s defenses, but, logically, having the same slice in two places makes no
difference to the outcome.)

The real value of the Swiss Cheese Model is how it starts conversations
and stimulates thinking. In particular, it makes very clear that no failure, no
patient harm, is ever the fault of any one thing or any one person. Several
defenses have failed.57

For the various holes in the defenses to combine into a disaster, all the
holes have to “line up.” There has to be a problem in the first place (illustrated
by the big ball on the left), and every defense has to fail. It isn’t just the nurse
or doctor closest to the patient. Fortunately, most of the time, one or other
defense — another slice of cheese — blocks the problems and prevents them
from escalating.

An interesting point is that addingmore slices of cheese won’t helpmuch
if their holes are in the same place as existing slices of cheese. For instance,
more nurses adding checks probably makes little difference, because all peo-

SWISS CHEESE | 63
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

ple tend to make the same sorts of error under the same circumstances (as
we’ll discuss in the Human Factors chapterb). Indeed, research on double
checking is ambivalent.58 Perhaps one nurse acting alone would be more
cautious? Perhaps the second nurse’s check is not very thorough? It seems
obvious to me that a computer being part of the checks would be better —
computers don’t work like people, so would tend to pick up errors humans
don’t notice; checking algorithms can be improved with data about experi-
ence; digital systems can be integratedwith other systems so that some errors
don’t occur at all; and so on. Yet this is just me thinking it’s obvious. There
are lots of obvious things that aren’t so, and almost certainly more research
would uncover even better ways of making healthcare safer. More research
is needed.

The idea is that accidents happen all the time, but occasionally every
protection goes wrong and a catastrophe happens. Normally, at least one
defense — another person, a digital device, even something as simple as a
checklist — spots the problem, avoids it, or blocks it from escalating.

In reality, there are farmore slices of cheese than I showed inmydiagram,
but the point of the diagram is to prompt discussion, not to be a rigorous and
final statement of the causes of an incident. For example: how can we have
more slices of cheese? How can we have smaller holes? How can we have
fewer holes? How can we ensure holes don’t line up?

In the Swiss Cheese diagram (figure 6.1), a doctor and a pharmacist are
shown as each intercepting one error, and no patient harm occurred from
those errors. I’ve also shown the patient as part of the defense system. En-
couraging the patient to be part of their treatment, including questioning it,
can reduce errors. The analysis of the Denise Melanson case doesn’t men-
tion Denise taking any part in her infusion or the calculations;46 she had
had treatment before. If she had been actively involved, perhaps she would
have been surprised at being given a dose 24 times higher than last time, and
queried it.

If you Google “pharmacy error” you are bound to find numerous lawyers
telling you about how they can help get compensation. Here’s my retelling of
one tragic story of a child’s death in hospital, taken fromMedicalMalpractice
Lawyers, www.medicalmalpracticelawyers.com.59

In this story, lots of holes in many slices of cheese sadly lined up to-
gether. None of them on their own would have caused the death, but all the
errors together were overwhelming. In the end, the hospital settled amedical
malpractice lawsuit, costing it $8.25 million.

Using a digital system, a pharmacy technician entered incorrect data,
which resulted in an overdose of sodium chloride, which caused Genesis
Burkett’s death. A hospital spokesman said,

b See Chapter 20: Human Factors, page 259→

http://www.medicalmalpracticelawyers.com

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

64 | CHAPTER 6

Box 6.1. Programming with better cheese

As this book shows, digital systems are often slices of Swiss Cheese with big
holes in them. Computer programs are often very relaxed about errors.

Computers can be programmed in hundreds of languages (we’ll meet
some in this book).60 JavaScript is popular, but is incredibly sloppy (as we’ll
see). In contrast, SPARK Ada is much safer. We’ll talk about it later, but here
are some key reasons to prefer SPARK Ada …

Often people write programs and just hope they work. If they make ty-
pos, as they do, the programs will have bugs. In SPARK Ada programs have a
lot of rigorous mathematics in them, and the programs must be proved cor-
rect before they are used. The proof process eliminates holes, and certainly
finds numerous typos; it makes a tough form of cheese.

When you don’t really trust somebody to do something, you get lawyers
to write a contract, and all parties sign it to promise to do things properly.
Likewise, SPARK Ada (like a few high integrity programming languages) has
contracts built into it. People who want SPARK Ada programs to do things
literally have contracts with their programs — and the programs have con-
tracts with each other. These contracts are mathematical, and much more
rigorous than contracts written by human lawyers! In fact, it’s possible to
tell automatically whether a program can fulfill its contracts. Contracts elim-
inate holes in the cheese.

With SPARK Ada many holes (bugs) can never exist in the first place.
There are enormous advantages. The Millennium Buga would have been
impossible (unless everyone, for some reason, wanted the bug). Interop-
erability problemsb can be avoided at the design stage rather than only be
noticed too late, after the systems are in use in healthcare, causing chaos.

In short, SPARK Ada (and a few other modern programming languages)
is much safer and can avoid a lot of harms and wasted time in healthcare.

a See Chapter 4: Millennium Bug (Y2K problem), page 33←
b See Chapter 19: Interoperability, page 245→

It was determined that a data entry error was made in the
formulation of the IV [intravenous] solution. The dosage of
sodium for an IV bag from an order had been incorrectly
entered into the machine that mixes IV solutions.

The investigation says the death may have been avoided had automated
alerts in the pharmacy compounding machine been turned on. The court
case also argued the hospital staff then covered up the sticker on the IV bag,
which correctly described the amount of sodium,with a sticker that displayed
the doctor’s original prescribed amount.

Identification of the mistake was delayed when a lab technician reading
blood test results believed that abnormally high sodium levels were inaccu-
rate test results.

SWISS CHEESE | 65
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Box 6.2. Design errors cause use errors

We think technology is extremely reliable, so when things go wrong it must
be the user’s fault. This lie bedevils investigations, and stops improvement
— if it’s the user’s fault, then the system needn’t change, and then things
can carry on as before. The Swiss Cheese Model shows that when anything
has gone wrong, everything has gone wrong. But Swiss Cheese is silent on
where we should apportion blame (if at all).

After World War II, the US Airforce wanted to find out why its Boeing
B-17 Flying Fortress bomber pilots kept makingmistakes. The prevailing as-
sumption was pilot error— during the war there were lots of pilots rushed
into flying to meet demand, so many of them must have been incompetent.
But when Paul Fitts and Alphonse Chapanis interviewed pilots and exam-
ined the thousands of reports about plane crashes, they noticed there were
patterns: the crashes were related to the aircraft and didn’t have the variation
you’d expect from “incompetent” pilots.61 Instead of pilot error, what they
saw was different: designer error. The planes were so badly designed they
were too hard for even good pilots to fly safely.

Today we can easily collect huge amounts of data from digital systems,
and find out whether incidents are caused by doctors and nurses, or whether
they are caused by the digital systems themselves.

A large study, easily done digitally, covering 2,575,411 prescriptions
for three critical drugs, found that GPs (doctors) breached NHS guidance
in 12.3% of them.62 But when the data was analyzed, the variations in er-
rors were explained by the different digital systems the GPs were using.
There were consistently more errors in one GP system, EMIS. Indeed, EMIS
breaches NHS safety guidance: errors for prescribing the drug diltiazemwere
four times higher with it than with another system, SystmOne. Clearly this
is a design error.

Now we know — having collected the data — we can do two things. We
can improve EMIS and other systems, and we can stop knee-jerk blaming
healthcare staff for problems caused by bugs and poor design.

The lab technician’s checks were slices of cheese; but, like Swiss Cheese,
the technician’s checks had some holes.

The slices of cheese are there — automated alerts, stickers, input vali-
dation, blood tests — but they had significant holes. Why didn’t the digital
system block the error, or ask for the erroneous data to be double-checked?

After the investigation, the hospital thought of new ways to block holes
in some of its slices of cheese. The hospital implemented changes, including
activating alerts in the pharmacy drug-mixingmachines as well as improving
checks before medications leave the pharmacy.

I wonderwhether the learning here—making digital systems detectmore
errors, and not disabling their ability to help block errors turning into harm
— has been passed on to other hospitals. Has the learning been passed on to

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

66 | CHAPTER 6

device manufacturers —why not make it harder, if not impossible, to turn off
safety features? The overdose has been reported as being 60 times too high,
which was fatal. If the hospital needed to implement changes, it must have
recognized that other errors were also being made (you don’t need to change
processes to stop a unique error), so why wasn’t there a reporting system to
pick up smaller, indicative, errors before a fatal error occurred?

How many near misses, where things would have gone wrong but for
one slice of cheese stopping it? If a slice of cheese, thankfully, stopped a
catastrophe, most people would think there was nothing to report. If the
hospital had had more monitoring in place or a requirement to report “near
misses,” it might have discovered much sooner that its pharmacy machines
had their error checking turned off. Thenwe should ask: why arewe focusing
on that hospital — surely some other hospitals are learning how to be safer,
and why isn’t the knowledge passed on?

I wonder why turned-off safety features don’t automatically report prob-
lems that are passing right through their holes? If the hospital (or manufac-
turer over the internet) had been monitoring errors slipping through holes,
surely somebody would have fixed the holes before the hospital ran out of
cheese? If the manufacturer improved their pharmacy system, every hospi-
tal would benefit, and every patient, and every technician, and every nurse,
and … I don’t know, but I doubt the manufacturer thought to improve their
system because if they did they would have effectively admitted contributory
liability, and they would have to have had contributed to the $8.25 million
payout.

The only way to make something positive out of a tragedy is to make sure
everyone learns the right lessons and puts them into practice. One tragedy
of the story is that it focuses on one hospital, and neither emphasizes that
learning should be spread around, nor emphasizes that learning elsewhere
might have avoided the tragedy if only it had been spread around. Another
tragedy is that the court case and compensation, however justified, make
everyone else wary of being open about problems— note howmany guesses
I had to make in describing the case above. On the one hand, if the hospital
or the manufacturers publicly disclosed more, they might be sued for more;
yet on the other hand, surely, we want a safer healthcare system, and that
will rely on learning as much as possible and not keeping anything hidden. I
hope themanufacturers tried to learn asmuch as possible, for if they improve
their systems with more cheese, then everybody benefits easily.

When investigations are undertaken, the Swiss Cheese Model can do
some real magic.

The Swiss Cheese model’s slices of cheese do something very clever.
They turn the absence of something, which allowed some harm to occur,
into a concrete, very easily grasped, metaphor — that is, a slice of cheese
and some holes.

SWISS CHEESE | 67
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

It’s helpful, then, to start any investigation by listing all the things, sys-
tems, procedures, and people that were relevant to the incident. Thinking
about the obvious failures isn’t enough, as it’s too easy to miss some failures
because they “don’t exist.” But slices of cheese do. The concrete stuff in an
incident is much easier to list than the intangible, unseen— and perhaps still
unknown — failures.

Everything corresponds to a slice of cheese, as they could and perhaps
should have helped stop the incident happening. However, some of these
things must have had holes that were relevant, which the investigationmight
otherwise have overlooked.

In particular, all the digital stuff is very relevant to any incident, but as
digital is usually hidden from sight many investigations overlook it. Digital is
in infusion pumps, drug dispensingmachines, MRI scanners, implants, ven-
tilators, even beds … and it affects everything — hopefully blocking errors,
but all too often letting the error trajectory just take its course unhindered.
It’s the job of an incident investigation to find out more. In turn, where were
the slices of cheese to stop the manufacturers or developers making design
errors in the digital systems themselves? Where were the slices of cheese
that were in the training and Standard Operating Procedures (SOPs), so that
everybody knew how the systems actually worked and knew what to do?

The Swiss Cheese Model has another advantage: the investigators will
find it easy to explain to everyone involved, so they too can constructively
help with the investigation.

What the Swiss Cheese Model makes clear is that when the holes all line
up, some catastrophe will eventually happen, and every defense will have
failed. Just because the person at the sharp-end, the “last” slice of cheese, is
a nurse who pressed the button or a car driver who didn’t press the brake or
a lab technician who didn’t believe a test result does not mean they are the
only person that missed stopping the error. Most often, “the system” — the
design of the system — failed them.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

When patients are harmed,
staff often get blamed —
especially when nobody
realizes how digital systems
can go wrong and create the
problems.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

7

Victims and second victims

Teenager Lisa Norris was being treated for brain cancer at The BeatsonWest
of Scotland Cancer Centre, in Glasgow. She was being treated with radio-
therapy.63 Tragically, she died after a radiation overdose.

Radiation therapy has to be precisely controlled. Too little radiation, and
the cancer is not killed; toomuch radiation and other parts of the bodywill be
affected, and more tissues than the cancer will likely be damaged. Working
out how much radiation to give is a tricky calculation, especially as the radi-
ation doses are spread over weeks to try to minimize damaging other parts of
the body. In addition, the beam of radiation has to be shaped to shine on just
the cancerous tissues and as little of the surrounding tissues as possible. The
shape and intensity of the beam, combined with aiming it into the body from
different angles, makes the radiation dose calculation very complicated.

Computers can help enormously with complex calculations.
Unfortunately, each time Lisa was treated, she was given a radiation dose

that was 65% too high. Her body went red, broke out in sores, and her in-
ternal organs were affected. Understandably, her treatment was stopped,
but her cancer continued to spread. Arguably, it isn’t clear whether she died
from the cancer spreading or from the error that meant that the cancer was
not properly treated in the first place.

The official story is the radiotherapists were blamed for the error, and
that Lisa died of cancer. However, as we’ll see, if we want to improve, we
cannot blame either cancer or the radiotherapists. We need to acknowledge
that digital healthcare is risky, and that it needs improving.

There is a place to argue about the cause and the proportion of blame, if
any, for each incident, but, like a car crash,a we should sort out these issues
(and whether the crash is criminal …) as a separate process from learning
about what happened, and finding out how to stop it or anything like it hap-
pening again.

a See Chapter 11: Isaac Thimbleby’s car crash, page 137→

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

70 | CHAPTER 7

Lisa’s treatment was complex, and I don’t want to oversimplify andmake
things more clear-cut than they are. But there was a computer problem and
it contributed to the mess.

Put briefly, the computer system was supposed to help calculate the ra-
diation dose. The software was upgraded and changed the way it calculated
radiation doses; in particular, it now performed a “normalization.” Unfortu-
nately, the radiotherapists were, for some reason, unaware of this change and
continued to calculate doses the old way. So both the radiotherapists and the
computer performed the normalization. As the official report summarizes it:

Changing to the new Varis 7 system introduced a specific
feature that, if selected by the treatment planner, changed the
nature of the data in the Eclipse Treatment Plan Report
relative to that in similar reports prior to the May 2005
upgrade. This feature was selected but the critical error was
that the treatment planner who transcribed the resulting data
from the Treatment Plan Report to the paper form (the
planning form) was unaware of this difference and therefore
failed to take the action necessary to accommodate the
changed data.

The official analysis of the incident blames the radiotherapist (treatment
planner), as they should have known better. (But how could they know bet-
ter if nobody told them?) Secondly, and much more worryingly, at least to
me, is the official report’s statement:

It is important to note that the error described above was
procedural and was not associated in any way with faults or
deficiencies in the Varis 7 computer system.
[…]
Particular reference is made to Varis 7, Eclipse, and to
RTChart (registered trade marks). In this regard, it should be
noted that at no point in the investigation was it deemed
necessary to discuss the incident with the suppliers of this
equipment since there was no suggestion that these products
contributed to the error.

So far as I can see, the incompatibility between the Varis system andwhat
the radiotherapists were doing was the cause of the calculation error. Why
does the official report argue that the error was the radiotherapist’s fault,
when— equally — the change to the software was the other side of the prob-
lem? Indeed, the manufacturers knew about the improvements to the Varis
system that led to the upgrade, so why didn’t they make sure the operators
knew the consequences? The official analysis makes no mention of this, as,

VICTIMS AND SECOND VICTIMS | 71
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

from its point of view, the blame centers on the local operating procedures
and on the local people thought responsible.

The Beatson Oncology Centre investigation was undertaken by the in-
spector appointed by the Scottish Ministers, and its finding was essentially
to blame the staff, and solve the problem by retraining them. It thus absolved
itself — the Beatson Centre — and the manufacturers of any problems. A re-
port on the report is worth quoting:64

The decision to ignore machines and their interactions with
humans is typical of novice inquiries into accidents that
involve human operators. The resulting narrowness is
characteristic of stakeholder investigations and the Scottish
Executive is an important stakeholder. The findings of the
report are little more than the usual “blame-and-train”
response that is a staple of medical accident investigations …
The report lodges failure in a few individuals while keeping
the expensive and complicated machinery and procedures out
of view.

The original investigation, and its blame game, focused on the sharp-end
(where treatment happened),b explicitly ignoring the system failures — for
instance, as I quoted above, it ignored any design or management issues to
do with the digital system. It missed the opportunity to help improve the
Varis system to make every radiation center using it safer. The investiga-
tion should have explored the digital healthcare failure, not scapegoat the
radiotherapists.

Lisa Sparrowwas a nurse caught up in an incident that left a patient dead.
Here’s how the Daily Mail newspaper headlined it:65

Mother-of-four dies after blundering nurse administers TEN
times drug overdose

The patient, Arsula Samson, had been prescribed potassium chloride for
her low potassium levels. Here, the patient died after a ten-times overdose
of the prescribed level.c

The Daily Mail story carries on:

Instead of pressing the 10ml per hour button, the nurse
admitted tapping in 100ml per hour on the drug infusion
pump.

Did the nurse “blunder,” or was it a design blunder?
b See Chapter 24: Sharp-end of the wedge, page 325→
c See Chapter 12: Never events and always conditions, page 149→

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

72 | CHAPTER 7

The pump may have had a numeric keypad, and the nurse could have
used it to enter any dose, like entering a number on a calculator — in this
case, the nurse may have pressed 0 once too often, and got the intended
10 mL entered as 100 mL. Throughout this book, we’re seeing just how
error-prone digital things are and how they encourage unnecessary errors.

The nurse, Lisa Sparrow, may have correctly entered 10 milliliters per
hour, but the pump then incorrectly delivered 100 milliliters per hour and
recorded that dose of 100 mL per hour on its log — again, we’ll see just how
easily this can happen because of bad design later in this book.d

When the nurse was confronted with the “infallible” log that she had
delivered 100 milliliters per hour, she would have known it was pointless
arguing and shemay as well plead guilty — our legal system penalizes people
who plead not guilty but who are later found guilty. If this explanation is
right, the pump has set the nurse up.

Apparently,

No error was found with the infusion pump and investigators
ruled the death was due to ‘individual, human error.’

But then,

A Trust action plan after the death saw new infusion pumps
and software that reduce the risk of error brought into all
wards, medical staff retrained and warned over the dangers of
potassium chloride and advice on the importance of a second
nurse witnessing medication being given.

That admits the hospital recognizes that the bad design of the infusion
pump as well as poor staff training contributed to the death. It doesn’t admit
it in so many words, but replacing infusion pumps is costly — they can cost
thousands of pounds each. This is money that would not have been spent
without good reason. It seems, then, that it wasn’t simply a “blundering
nurse” so much as a nurse caught up in a blundering system that did not
train staff adequately and which had inadequate equipment.

Why didn’t the infusion pump itself make it much harder to give the
patient an overdose of potassium chloride, a drug that’s well known to be
dangerous?

Perhaps this was not the first time Arsula Samson had been treated with
this infusion pump. If so, why did the infusion pump allow the nurse to give
a dose ten times higher than the last time without warning? Why didn’t the
infusion pump use speech to say “100” so that the nurse (and the patient)
could hear the actual dose— this would have helped stop an error if the nurse
had slipped and simply pressed the wrong button in error.

d See Chapter 14: B-Braun infusion pump, page 187→

VICTIMS AND SECOND VICTIMS | 73
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

There are lots of ways the infusion pump might be improved. Since in-
fusion pumps have been made for many years, one wonders why they aren’t
getting any safer. They could, as we’ll see later.e

Unfortunately, describing the inadequate equipment and training rapidly
becomes a complex story. It is much easier to ignore it and focus exclusively
on the “blundering nurse.” We understand “blundering nurse.” We’d feel
betrayed by one, so it makes a good headline story. But it makes amisleading
story, and misdirects attention away from the whole, complex system that
failed. If we fix the system, every nurse and every patient benefits; if we
scapegoat and witch-hunt a “blundering nurse,” we’ll feel very satisfied, but
we’ll miss the opportunity to improve. We’ve even got rid of the one person
who was probably most motivated about improving.

Scapegoating results in an interesting effect called impossible error. If
somebody is blamed and sent off as the “bad apple” into the wilderness, the
classic fate of the scapegoat, then the ward or hospital has nobody left in it
who has evermade the error. If you now go into theward and ask, peoplewill
say, “Nobody here does that; it’s impossible for that error to happen here.”

In a wood workshop, everybody has two hands. No woodworker ever
cuts off their hands on the table saw: it’s an impossible error. Actually,
of course, sometimes, woodworkers do lose their fingers or hands, but then
they stop being woodworkers. So the error disappears from sight and soon it
seems impossible. There is never anybody working in a workshop who has
cut their hands off. Cutting your hand off seems to be impossible!

What impossible errors do is to create a cover story to help stop thinking:
the error “doesn’t happen here” (phew!) and clearly can’t happen here now
the woodworkers-with-no-hands no longer work here, so we don’t need to
do anything at all to make the saws safer.

Whether the woodworkers made a mistake or not, it’s clear that the sys-
tem as a whole also failed to stop the incident. For instance, maybe the saws
did not have working guards to protect the woodworkers’ hands? The sys-
tem is therefore almost certainly part of the problem. The flawed systems
still need fixing.

Impossible errors are the flip side of success bias.f Success bias is that
we see success everywhere because failures disappear. Impossible
errors happen because disappearing failures mean that the errors that
caused the failures also disappear. Thus if we want to learn how to be
successful (to have fewer errors and less harm), we have to dig deep
to uncover the full stories of the errors.

e See Chapter 29: Safety ratings will improve healthcare, page 401→
f See Chapter 3: Success bias, page 29←

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

74 | CHAPTER 7

Olivia SaldañaGonzález and AlveoGonzález worked at theNational Can-
cer Institute of Panama. They were radiotherapists who treated patients with
radiation, mainly to treat cancers. Both went to prison, on 12 counts of mur-
der.66

If the patient is the first victim, the staffwho get burdenedwith the horror
are the second victims.67 There is some debate about calling the clinicians
the second victim, when it seems that the relatives and friends are being
demoted by this ranking, but there is something deep about using the word
victim.

We think we are good (I think most of us do) and if we thought that bad
things could happen to good people, then it would follow that bad things
could happen to us. That’s not a nice thought. So it’s far more comfortable
to believe bad things happen to bad people — phew, so we are safe. Hence
there is this strong urge to blame staff who get caught up in problems; they
must be bad if bad things happened to them.

Now add to that complex mix that most people think that computers are
good (why would we buy bad computers?), and we have a very powerful
recipe for blaming staff.

The key problem in Olivia and Alveo’s case is that they used radiation
treatment planning software, manufactured by Multidata Systems.68

I’ll describe what happened.
Here, in picture 1 below, is the shape of the basic square beam going

straight through the machine. If this was used, the patient would be irradi-
ated with a square beam, but a square is very unlikely to be the shape of their
cancer that needs treatment. Certainly, you do not want to irradiate healthy
tissue around a cancer, so the radiation beam must be restricted, tightened
down from the basic square to become the best shape to treat the cancer. In
short, picture 1, a simple square, isn’t likely to be the right shape to treat any
real cancer.

1.

Cancers come in all sorts of shapes and sizes, somovable blocks of metal,
usually lead or a special metal called Lipowitz’s alloy (made out of lead, cad-
mium, and bismuth), are moved into the square to adjust the shape of the
beam.

VICTIMS AND SECOND VICTIMS | 75
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Box 7.1. The Blame Game

When things go wrong, we like to blame somebody, preferably somebody
else.

The Blame Game thrives on four fallacies:

▶ The professional staff fallacy. If only people were professional or tried
harder, nothing would go wrong. Therefore, if something has gone wrong,
somebody was not professional. They have failed.

▶ The punishment fallacy. If bad people are punished, they will behave better
in the future, and then make fewer errors. Therefore we should punish
wrong-doers. Even better, if we sack them, then no more errors will happen
because they don’t work here anymore.

▶ The perfect system fallacy. The management, the hospital standard
operating procedures (SOPs) and the computer systems are all perfect.
So if anything ever goes wrong, it must be something else, like the clinician
in the room.

▶ The stopping fallacy. An investigation, often called a root cause analysis
(RCA), has to stop somewhere. So once we find somebody to blame, we
stop investigating. This is a fallacy, as the “root cause” always has further
underlying causes: it’s a symptom, not a cause. There are always lots of
reasons why things go wrong — see my longer discussion of Swiss Cheese.a

Playing the Blame Game makes everyone much less likely to report or
investigate errors, so nobody learns how to avoid errors. Worse, when errors
do get reported, they seem to be worse, because most of the time it seems
— because nobody is reporting them — that errors are not happening. If you
are the first person to report an error this year, that seems much worse than
if errors are regularly being reported. Of course, many errors do not lead to
patient harm, so these are great opportunities to learn that are being wasted.

a See Chapter 6: Swiss Cheese Model, page 61←

By way of example, picture 2 shows a slightly more realistic shape, with
four blocks cutting into the corners:

2.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

76 | CHAPTER 7

In this example, the four differently shaped metal blocks in the corners
of the square make the beam a sort-of octagonal shape. I know this isn’t a
very realistic shape, but it shows clearly how it works in principle.

The beam is now smaller than the original square shape was, and the
blocks will also cause some reflections and losses when the cobalt 60 gamma
radiation hits them. The blocks of metal change the radiation dose to the
patient in a very complicated way. Allowing for the shapes and sizes of the
various metal blocks that are needed so the patient gets the right radiation
dose to treat their cancer means the radiotherapist has to do a complicated
calculation.

Doing complicated calculations is a perfect job for computers, right?
The Multidata system allows the operator to draw the required blocks on

a computer screen, a bit like in picture 3, below. I’ve drawn the four blocks,
one in each corner of the square, and arrows that the user would follow to
define each block’s shape and position. The patient will now be irradiated
by gamma rays in the shape that passes through the smaller hole.

3.

The Multidata system then calculates the right dose, given the new size
and shape for the treatment.

Sometimes, however, the beam needs to be a more complicated shape,
perhaps as shown in picture 4, below. Remember that the treatment beam
is the white shape not interrupted by the gray metal blocks pushed in from
the edges.

4.

VICTIMS AND SECOND VICTIMS | 77
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

As it happens, this treatment shape in picture 4 needs to be created using
at least five metal blocks — using a triangular block in three corners, a rect-
angular block in the top right corner, and a fifth rectangular block dropped
in from the top. In reality, the blocks would be more interesting shapes, but
for our explanation the actual shapes of the blocks doesn’t really matter.

Unfortunately, the Multidata system handles at most four blocks, so this
beam shape cannot be drawn on the computer.

However, the radiotherapists discovered that the system would be happy
doing the calculation when the blocks were drawn as a single piece.

Anyone familiar with drawing shapes on a computer can see how to end
up with the right shape. For instance it could be drawn like I’ve shown in
picture 5, next. Just follow the arrows, and you end up drawing the five
blocks as one shape.

5.

The final shape looks perfectly alright and, indeed, it is accepted by the
Multidata system.

Unfortunately, although the picture is right, Multidata’s calculation goes
wrong. The patient’s radiation dose will be double what it should be.

The manufacturers say the radiotherapists should have checked its re-
sults, but then I am not sure why you would bother using a computer if it is
so unreliable it needs checking every time it is used — and if you have to do
the check, the computer is creating more work, not saving work. The picture
it lets you draw looks fine, and the computer accepts it without complaining.
If the Multidata can’t do a correct calculation because the user has drawn
blocks in a novel way, it should tell the user it can’t accept the drawings.

Certainly, radiotherapists should check what they are doing is correct,
perhaps getting a colleague to double check their work. But I thinkMultidata
are using this normal precaution to deflect from their responsibility for their
part in the calculation. One wonders whether the Multidata program checks
its own calculations? If it does, its checks were not adequate to spot this
bug.

I’d say the software was buggy. The software happily allowed the radio-
therapists to use it to do the calculation, but it made mistakes. Apparently, if
the inside and outside lines are drawn in opposite directions, the Multidata

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

78 | CHAPTER 7

calculation is almost correct — which makes the bugs even more bizarre and
much harder for users to spot. Why should the radiation depend on which
way a user draws blocks? It’s a bug.

Like many computer programs we’ve seen in digital health, there were
no internal checks that worked. The radiation overdose went unnoticed by
the computer. Only after people started to worry about the deaths was the
problem tracked down. Unfortunately, investigators decided that “the prob-
lem” was that the radiotherapists were incompetent. Not that the computer,
the training, equipment maintenance, or regulatory oversight — or perhaps
some combination of all these things — was to blame.

The investigators’ hands were twisted by the manufacturer’s instructions
which say, along with their original capitals …

it is the responsibility of the user to validate any RESULTS
obtained with the system and CAREFULLY check if data,
algorithms and settings are meaningful, correct or applicable,
PRIOR to using the results as a part of the decision making
process to develop, define or document a course or treatment.
In particular, a USER SHOULD VERIFY THE RESULTS
OBTAINED THROUGH INDEPENDENT MEANS AND
EVALUATE ANY DISCREPANCIES CAREFULLY until the
USER’S PROFESSIONAL CRITERIA HAS BEEN SATISFIED.

Yet the software gave no warning on the computer when blocks were
drawn in a manner different from the one described in the instructions. This
is an elementary oversight in the software.

I’d suggest that when instructions say “USER SHOULD VERIFY THE
RESULTS OBTAINEDTHROUGH INDEPENDENT MEANS,” themanufac-
turers are admitting they are worried theymay not have done a very thorough
job. Like, why doesn’t the software itself use some independent means?
What’s the benefit of a computer if it isn’t helping you do your job more
reliably? At the very least, the software should prompt the user to do any
necessary checks, if, as the instructions make clear, those steps are an im-
portant part of the process the computer is supposed to be supporting.

We’ve known for a long time that unprofessional programming is dan-
gerous. The Therac-25 is a classic story of at least six radiotherapy overdose
deaths in the late 1980s, using a computer-controlled radiotherapy system a
bit like theMultidata system. The Therac-25 incident happened two decades
before theMultidata deaths, and it makes it look likeMultidata learned noth-
ing from the Therac-25 story.

The Therac-25 problems were described at the time as the worst acci-
dents in the history of radiotherapy. At least one patient ran out of the ther-
apy room screaming. They later died.

VICTIMS AND SECOND VICTIMS | 79
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

The manufacturers, Atomic Energy of Canada Limited (AECL) did not
believe the complaints from hospitals.

Later investigations showed that AECL had not had their programming
checked by anyone else. They thought it all worked just fine. The trouble
with being incompetent is that, generally, you don’t know it. Programmers
must work in teams, preferably including external and independent experts.

The Therac-25 story is taught to Computer Science students, so there is
no excuse for industrial programmers not to know about it.69 It will also give
patients food for thought — more so, in that the problems keep happening.

Thirty years later, after the Therac-25 catastrophe, Nancy Leveson pub-
lished a retrospective article about it.70 Her article has lots of excellent ad-
vice for people who want to think about risky digital systems (and health-
care systems in particular). As she makes very clear, digital healthcare is still
risky stuff. She makes the powerful point that the FDA (the US regulator)
spendsmore timeworrying about reporting incidents than on about prevent-
ing them in the first place. She also criticizes standards, because they may
give manufacturers the impression that their obligations are fulfilled if they
merely follow the standards. I think that’s more a problem with the inade-
quate standards and regulations, but seeing as they are unlikely to be fixed
any time soon, we need to think up some more effective alternatives to use
as well.

I’ll suggest many solutions later, but here’s a suggestion for now: uni-
versities could step up and offer safety-critical software qualifications. Stu-
dents who graduated from these courses would command better salaries, and
companies that employed them would have reduced liabilities. It would be
a win-win, and wouldn’t need to wait for the slow wheels of regulators to
catch up with the state of the art. Then purchasers — generally the hospi-
tals — would ask how many qualified programmers the manufacturers used
to oversee product development; this number would be then be compared
with the procurement criteria.

Another approach would be to make the quality of healthcare systems
visible to the people who purchase and use it, which would help hospitals
and others buy safer systems— I’ll come back to this very effective idea later.g

g See Chapter 29: Safety ratings will improve healthcare, page 401→

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

We accept that medical
interventions like drugs and
X-rays have side effects. It
makes a lot of sense to think
of digital healthcare as having
side effects too, and therefore
it should be evaluated and
regulated as carefully.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

8

Side effects and scandals

X-rays were discovered byWilhelm Röntgen in 1895. The first X-ray clearly
showed the bones on his wife’s, Anna Bertha’s, hand as well as the wedding
ring she was wearing (figure 8.1).

X-rays were so obviously useful that the world’s first radiology depart-
ment was set up the very next year, in 1896 at Glasgow’s Royal Infirmary.
X-rays were very useful for examining broken bones, and almost immedi-
ately they were invaluable for locating bullets in soldiers’ bodies in the Sec-
ond BoerWar (1899–1902) and then inWorldWar I (1914–1918). By the
1920s, X-rays were being used in shoe shops to help fit shoes.

Thomas Edison quickly got into the promising new X-ray technology,
but his assistant Clarence Dally did the hard slog of regular experiments, as
shown in a contemporary newspaper picture (figure 8.2).

Clarence Dally died from cancer caused by X-rays in 1904, just nine
years after they had been discovered by Röntgen. Very gradually, the medi-
cal establishment learned that the apparently obvious benefits of X-rays had
to be balanced against their not-so-obvious invisible dangers.

Today, X-rays are used very carefully tominimize their unwanted side ef-
fects, and to balance those side effects against the clinical benefits of doing
each X-ray. Today, one would certainly not countenance a medically un-
trained shoe-shop assistant exposing children’s feet to X-rays just to check
if shoes fitted.

Thalidomide was a triumph of marketing in the 1950s. Thalidomide was
marketed as a “wonder drug,” a sedative with no side effects and no possibil-
ity of overdosing. It was good for anxiety, insomnia, gastritis, and tension,
and soon it was used against nausea and to alleviate morning sickness. It
was a lucrative drug sold over the counter with no need for a prescription.

Then the horrible side effects of thalidomide damaging the unborn baby
were discovered.71 By all accounts, its original manufacturer, the German

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

82 | CHAPTER 8

Figure 8.1. You can see Anna Bertha Röntgen’s wedding ring in one of the first
X-rays taken.

company Chemie Grünenthal was negligent with their research, and they
dismissedmany clear warnings of thalidomide’s unraveling problems. It was
a disaster for pregnant women, their children, and for families. Worldwide,
it is estimated that about 24,000 children were born with thalidomide prob-
lems (perhaps another 123,000 were still-born or miscarried).72

There is something worse than those stark numbers: they’re estimates,
because we just don’t know. The first problems were not recognized as
thalidomide side effects, and then nobody was concerned enough or able
at the time to count or do any systematic research to find out. There was no
birth defects register.

The Thalidomide Society says the numbers do not include babies born
alive but who were victims of State infanticide. Every country that was using
thalidomide did things differently — thalidomide even has different names
around the world: Asmaval, Distaval, Forte, Tensival, Valgis, and Valgraine.
In Spain it was called Softenon, and Spain only recognized thalidomide as a
problem 50 years after it was first used: 286 surviving victims finally man-
aged to takeGrünenthal to court in 2013, but Grünenthal successfully argued
that there was no proof the deformities were caused by their drug.73

SIDE EFFECTS AND SCANDALS | 83
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Figure 8.2. A newspaper sketch of Clarence Dally, Edison’s assistant, routinely
taking an X-ray of his hand, just five years after X-rays were invented. Clarence
died of cancer in 1904.

Frances Kelsey was a reviewer for the US Food and Drug Administra-
tion (FDA) and she courageously refused to authorize thalidomide for the
American market because she had concerns about its safety. Her concerns
proved to be justified, and she became a heroine.74 Thalidomide’s horrific
side effects thankfully stimulated a radical overhaul of drug regulation, so
that drugs cannot now be released onto the market without thorough checks
of their safety.

We now take drug side effects for granted, and know that finding the facts
out about the side effects is hard work — it may take years for problems to
become apparent well after a drug is in use. We have invented a new word
for this: pharmacovigilance, which covers the entire life of a drug, from
initial tests and authorizations, to long-term monitoring; the word is used so
much it’s often abbreviated as PV.

TheWorld Health Organization defines pharmacovigilance as “the sci-
ence and activities relating to the detection, assessment, understanding, and
prevention of adverse effects or any other drug-related problem.” However,
side effects are not limited to drugs or to medical interventions like X-rays.
Side effects affect everything in healthcare — nothing is perfect, and every
treatment represents a trade-off.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

84 | CHAPTER 8

Box 8.1. BRAN: Benefits – Risks – Alternatives – do Nothing

When the doctor recommends a treatment for you, it is very easy for both
of you to focus on the cure. Unfortunately, things don’t always work out
positively — there may be side effects, it may be costly, whatever.

BRAN is an acronym designed to help both of you think more clearly.
What are the benefits of the suggested treatment? What are the risks? What
are the alternatives? What would happen if you did nothing? BRAN puts
some fiber into your thinking.

Our culture emphasizes the easy benefits of digital, and Cat Thinking
means we are pre-disposed to be positive toward exciting digital ideas. I want
a new iPhone, and I focus on my wanting and all the wonderful things it’ll
do, and I feel sure it’ll help my work in hospital. But we should also ask, as
well as the benefits that we tend to focus on:

What are the risks? It will probably cost a lot of money. It will
become obsolete. It may not work with other stuff, so will have
knock-on effects. People will need training. There may be new types
of error. It may get hacked.

What are the alternatives? Paper is pretty reliable. Can we collect
the information we want from some other source? Have you really
understood the problem properly? Is there a better solution?

What if we do nothing? If nothing else, if we wait, digital will
become faster and cheaper. Somebody else may work out how to
solve this problem, and we can then adopt some digital that works
well. And anyway, your old digital system may last a while longer. (A
nice bit of word play is: instead of solving your problem can you
dissolve it?)

Some people add an S, as in BRANS. Get a second opinion!

I propose the word digivigilance (DVig?), analogous to pharmacovigi-
lance for the science of digitally related effects. We need a new word to keep
the risks of digital healthcare at the forefront of our thinking; we need to
up our game — we need to get science and activities focused on detection,
assessment, understanding, and prevention of the adverse effects of digital
healthcare.

Gosport War Memorial Hospital is a small community hospital, which
had just 52 beds in 2019.75 Over the period 1989 to 2000, Dr Jane Barton
worked as a clinical assistant and oversaw the deaths of at least 456 patients,
many of whom had overdoses of opiate painkillers.

The Gosport War Memorial Hospital tragedy is of massive proportions,
and many were caught up in the scandal.76 The official report — taking four
years and costing £14 million — makes it clear that there were system fail-

SIDE EFFECTS AND SCANDALS | 85
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Figure 8.3. Two very similar Graseby syringe drivers: one is calibrated in the drug
dose per hour (“hourly rate” model MS 16A, top) and the other in the drug dose
per day (“daily rate” model MS 26, bottom).

ings. One wonders how much blame can be put on individuals at the sharp-
end when the failings are institutionalized and go all the way up to manage-
ment.77 The substitution rule comes to mind.a

One nurse at Gosport, Anne Grigg-Booth, committed suicide when she
was accused of murdering three of her patients.78 She had been told to use
Graseby MS 26 and Graseby MS 16A syringe drivers to deliver opiates to
patients. We’ll focus our discussion on the design of these things.

The two Graseby syringe drivers are very similar in appearance (figure
8.3). They are small, literally handy, and can be carried around by the pa-
tient, so they are very convenient to use. They are used for giving drugs
intravenously (into a vein) continuously over a period of time.

These Graseby syringe drivers must be one of the world’s simplest digital
healthcare devices. There’s just one button. On the MS 16A all it does is

a See Chapter 4: Just Culture, page 44←

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

86 | CHAPTER 8

Figure 8.4. The Graseby MS 16A syringe driver is a very simple device, easily vi-
sualized as a finite state machine (abbreviated as FSM). A FSM has states, what
it is doing, and actions, which change the current state to the next state. That’s
basically it. The MS 16A needs three states (though you can add more, depending
on the detail you want, say to account for whether the syringe is installed or not, or
whether the driver is locked inside its box). The advantages of FSMs include that
they are very easy to program, they can do anything (if they are big enough), and
they are easy to analyze to ensure they are implemented correctly.79 It’s surprising
that FSMs aren’t used a lot more in digital health.

switch the driver on; on the MS 26 it can also provide a bolus while it is held
down to deliver a few extramilliliters of fluid (a bolus is used to initially fill up
the tube from the syringe to the patient). It’s surprising that two such similar-
looking syringe drivers behave differently, potentially causing confusion. In
addition, there are also two screws, which you need a screwdriver to turn to
adjust the rate. Needing a screwdriver is quirky, but ensures that the rate is
difficult to change accidentally.

You put the battery in, and the syringe driver will switch on straight away
— you can’t switch them off without removing the battery. Graseby make a
transparent plastic box to put them in that can be locked shut so the patient
(or a visitor) can’t press the buttons or turn screws and overdose the drugs.
It is easy to visualize how the syringe drivers work using a finite state ma-
chine (FSM) — figure 8.4 shows the MS 16A version.

Simplicity itself. What could possibly go wrong?
Unfortunately, several things.

SIDE EFFECTS AND SCANDALS | 87
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Box 8.2. Calculating drug dosage on a Graseby syringe driver

Because theMS 16A andMS 26 syringe drivers are calibrated in millimeters,
but patient drug doses are in milliliters, both syringe drivers require the user
to do a calculation to convert milliliters into millimeters.

Here’s how. Suppose a syringe is filled with 8 mL of drug, which is to be
given to the patient over a period of 12 hours, a rate of 0.67mLper hour. Fill-
ing the syringe, the plunger will have traveled around 48mm. The nurse will
need tomeasure that distance. Then, calculating 48mmdivided by 12 hours,
the duration of the treatment, will find a travel rate of 4 mm per 1 hour.

The nurse will then use a screwdriver to set theMS 16A’s left-hand screw
to 0 and the right-hand screw to 4. The nurse should check the panel shows
04, the number calculated from the prescription.

The nurse, or preferably an independent colleague, must also check that
the syringe driver is theMS 16A and not theMS 26. If theMS 26 is used, the
patient’s dosewill be 24 times faster, at a rate of 16mL per hour, a potentially
serious overdose.

The MS 16A Graseby syringe driver is calibrated in millimeters per hour
and the other, the MS 26, is calibrated in millimeters per day. So if you use
the wrong syringe driver, the patient could get an opiate dose 24 times too
fast, which could easily be fatal, or a dose 24 times too slow, which wouldn’t
be very effective as a painkiller for the patient.

Another serious problem with the Graseby syringe driver designs is that
they work in milli..........meters (distance in mm), but patients are treated with
drugs that are prescribed by volume, usually in milliliters (mL), usually over
a period of time.

You can see what a mess this is. I had to write milli..........meters and milliliters,
using contrasting styles of underlining, because the normal way of writing
— plain millimeters and milliliters, without any distinctive underlining —
makes it far too easy to miss the potentially fatal difference.

The Grasebys, being calibrated in milli..........meters per hour or per day, mea-
sure how fast the syringe plunger moves, but the nurse or patient doesn’t
care how fast a plunger moves. They need to know how fast they get the
drugs. Patients need a certain volume of drug per hour (or per day), and
that’s measured in milliliters per hour, not in milli..........meters per hour (or day).
The fact that it’s so hard to write clearly about the design just shows what a
poor design it is.

If a syringe driver is calibrated in milli..........meters, as the Grasebys are, that
means its correct use to get so-many milliliters depends on the exact type of
the syringe it’s being using with. Wider syringes will deliver more milliliters
per milli.........meter than thinner syringes, and hence they will overdose a patient.

If a different type or make of syringe is used, it might well turn out to
be the wrong diameter. The Graseby will deliver higher or lower doses, as it

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

88 | CHAPTER 8

Box 8.3. Design trade-offs

Any company, like Graseby, need to make cost-effective products, and they
have to make design trade-offs between very safe but very expensive devices
and devices that are less safe but are cheaper to make, and therefore can
sell more at a lower price point. The Gosport hospital is complicit in this:
they need to buy lots of syringe drivers, and they have to balance the cost of
treatment with the likely outcomes for enough patients.

At the time when the products were first purchased, probably nobody
was aware of the potential problems: the tragedies had not yet happened.
So, clearly, we cannot over-simplify and blame manufacturers for making
unsafe products, nor blame hospitals for not being more careful.

Different medical device regulations would shift the balance in the trade-
offs, and different procurement — prioritizing safety — would have helped.
The most serious criticism, though, is how slow healthcare and healthcare
regulation are to learn and how slowly they improve. Inspired by Cat Think-
ing, the trap is: because we think digital is wonderful, why bother to collect
good data? You don’t need data if you already know the answer is it’s good.

The hospital was not recording relevant data, and the syringe drivers be-
ing used couldn’t record any data anyway. This, of course, made everything
cheaper, but in the long-run ignoring learning was probably the most serious
oversight in the original trade-offs made by both the manufacturers and the
hospitals that bought the products.

We’ll see trade-offs discussed throughout this book.a,b,c

a See Chapter 9: Trade-offs in ease of use and safety, page 112→
b See Chapter 29: Trade-offs with numbers, page 409→
c See Chapter 29: Trade-offs with abbreviations, page 412→

cannot check or make any allowance whatsoever for the actual diameter of
the syringe installed in it. Surprisingly, there is no warning on the Graseby
syringe drivers to use any particular size or make of syringe.

Twenty years after the Gosport problems came to light, the UK’s National
Patient Safety Agency was still needing to warn everyone:80

The use of millimetres rather than millilitres (ml)81 as a basis
for medication calculation is unique to ambulatory syringe
drivers. This is not intuitive for many users and not easy to
check. Errors include the wrong rate of infusion caused by
inaccurate measurement of fluid length or miscalculation or
incorrect rate setting of the device. Errors can also be made
through confusion between models calibrated for mm per
hour or mm per 24 hours. Syringes in some of these devices
can become dislodged in use. Some have inadequate alarms
and no internal memory (which makes establishing the
reason for any over or under-infusion difficult). Because

SIDE EFFECTS AND SCANDALS | 89
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

ambulatory syringe drivers are often used to deliver opioids
and other palliative care medication, over-infusion can cause
death through respiratory depression while under-infusion
can cause pain and distress.

Hospital harms need to be carefullymonitored, and thatmonitoringmust
be a national exercise. If we had the data from a lot of hospitals and could
compare them, some of them would have been using Grasebys and some
would not have been. The data would have quickly raised concerns that the
Grasebys could be a factor in the raised death rate. The Graseby syringe
drivers do not record anything, so they wouldn’t have been much help here.

To be charitable to the manufacturer Graseby, it is of course possible
that clinicians made errors or maybe deliberately killed everyone (and dif-
ferent clinicians will likely have behaved differently) so the Grasesby equip-
ment was merely an unwitting bystander to a tragedy. However, as the Swiss
Cheese Model makes clear,b the Graseby was a slice of cheese whoever or
whatever else contributed to the tragedy. And it had big holes.

Although it took 25 years from the start of the Gosport tragedy, the NHS
did eventually rule that the Graseby syringe drivers were unsafe and should
be banned, following earlierNewZealand andAustralia bans.82 Andwhat did
we do? We donated the banned syringe drivers to other countries, includ-
ing Bangladesh, India, South Africa, and Nepal.83 We ought to distinguish
between surplus and banned equipment when donating.

Rather than donating the obsolete devices to other countries, we might
have tried returning them to the manufacturers to recycle them. The user
manual for the Graseby syringe drivers has a web link for compliance to
the EuropeanWEEE (Waste Electrical and Electronic Equipment) directive:
www.smiths-medical.com/recycle, but the page says “Sorry – the page you
are looking for cannot be found!” Searching for WEEE, recycle, and other
similar terms gets “No record found.” So it isn’t that easy to recycle them —
though if only few people try to recycle, it’ll carry on being hard to recycle,
because the manufacturers won’t bother to help when there’s little demand.

It’s interesting to compare the status of these medical devices with pop-
ular consumer devices. Apple, for instance, has a helpful scheme that works
like this:

Apple GiveBack
Turn the device you have into the one you want. Trade in your
eligible device for an Apple Store Gift Card. If it’s not eligible
for credit, we’ll recycle it for free. No matter the model or
condition, we can turn it into something good for you and
good for the planet.84

b See Chapter 6: Swiss Cheese Model, page 61←

http://www.smiths-medical.com/recycle

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

90 | CHAPTER 8

Box 8.4. Side effects and the Principle of Dual Effect

Drugs often have side effects: curing one health problem often skirts around
causing or exacerbating some other problem, the side effect. Aspirin, for
instance, helps reduce the risk of stroke, but also unavoidably increases the
risk of bleeding, a particular problem for people with stomach ulcers. Amore
dramatic dilemma is giving painkillers that, as a side effect, accelerate death.
Clearly, giving a painkiller to cause death is wrong; giving a painkiller to re-
duce pain is good; but giving so much that death is inevitable walks into an
ethical minefield.

It’s tempting to think of side effects as being an impersonal property of
drugs, but anyone prescribing a drug makes an ethical decision: do its ben-
efits for the patient (at this dose, under these circumstances) out-weigh its
risks? The Principle of Dual Effect asserts that giving a drug with the
intention of curing, while recognizing the risk but not intending it, is ethi-
cally acceptable. The Principle, though, has further criteria: the good effects
must out-weigh the bad, and there must be diligence to minimize the poten-
tial harms (plus a few other details I won’t consider here).85

With digital healthcare, the Principle of Dual Effect looms large — or it
should do. A developer writes a program intended to help staff or patients,
but any program may have bugs, which could be counter-productive. The
Principle of Dual Effect says that it is ethical to develop digital healthcare
provided that the risks — primarily of bugs, cybersecurity problems, design
faults and their effects — are properly managed. Developing software with-
out considering the trade-offs is unethical. Developing life-critical software
without exercising due diligence in exploring and managing the risks of bugs
and other unintended side effects is unethical.

Meanwhile, the Grasebys are still for general sale in the UK. Here’s a
typical advert that I copied from eBay in 2019:

GRASEBY MS-16A HOURLY RATE 1HR SYRINGE DRIVER &
CASE. It is the most cost-effective syringe pump for this
procedure using inexpensive syringes and subcutaneous
infusion sets. Easy to use — load syringe, set rate and push
start.86

The Gosport tragedy took years to even get to a national inquiry. One
wonders, then, what might we be missing today if, for so long, we could
miss such massive, growing catastrophes? How could we get better data on
patient harm and error, and take monitoring more seriously? We must learn
from Gosport that there is more to what is going on in error than blaming
doctors and nurses.

Today, with the internet and more sophisticated digital medical devices,
it’s very easy to get data, along with the device identities and where they are
used. If anybody wanted to get the data, that is.

SIDE EFFECTS AND SCANDALS | 91
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Before Ralph Nader’s landmark book, Unsafe at Any Speed published in
1965,c car manufacturers pretty much ignored accidents and safety: they
“weren’t the manufacturers’ fault.” Thankfully the culture has changed:

Old culture
{ Car drivers have accidents

It’s not the manufacturers’ fault

New culture
{ Car drivers have accidents

Manufacturers must make safer cars

In words, it seems a subtle difference; in culture, it’s a radical change.
We have all benefitted because car manufacturers have made cars safer. In
contrast, at least so far as I can see, Graseby as well as the NHS for years
ignored the known problems with their syringe drivers. This “conspiracy of
silence” would have reinforced the hospital’s view that they were safe.

Since the thalidomide scandal, we have tightened up drug regulations,
tightening up both the approval processes and themonitoring processes after
drugs are in use (called post-market surveillance). Never again do we
want a drug that has such appalling effects as thalidomide did. Therefore our
regulations today require drugs to be very carefully tested and certified, and
there is a long, complex process that all manufacturers and their employees
must follow. Employees even have a duty if they learn of problems with a
drug they are not directly involved with.

The Graseby syringe drivers deliver drugs to patients, and can acciden-
tally deliver fatal doses. Surely they should have been tested as carefully as
the drugs they deliver? A drug is not safe if it is handled by a device that can
deliver 24 times what it should and kill a patient. There is really no reason
to assume an infusion pump or syringe driver is safe without rigorous test-
ing to prove that they are safe. Devices and digital systems need to be tested
as rigorously and as thoroughly as drugs are tested (though obviously they
would be tested in rigorous digital ways rather than in pharmaceutical ways).

Rigorous testingmust be done in realistic situations. The Graseby drivers
used alone and with only the right type of syringe would probably be rela-
tively safe, but used on a real ward with both 1-hour and 24-hour variants,
with different syringes, with different drugs, with busy nurses, and no doubt
lively patients and visitors, things can clearly get tricky. In real life, you’d
have problems like the batteries going flat, drivers being dropped or knocked,
or the syringe being dislodged.

Laboratory tests help, but they are not good enough, other than as pre-
liminary checks. It’s a bit as if laboratory tests check one or two slices of
cheese but, by their nature, they cannot explore how all of the slices inter-
act with each other.d Indeed, this issue is widely recognized with a special

c See Chapter 11: Unsafe at Any Speed, page 140→
d See Chapter 6: Swiss Cheese Model, page 61←

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

92 | CHAPTER 8

Figure 8.5. The Abbott XceedPro blood glucometer fits nicely into your hand.

word: ecological studies (or ecological experiments) are studies done “in
the wild” to see how stuff really works. So when you buy things, don’t be
fobbed off with claims that it is safe or “easy to use” (a common, vacuous
claim) — ask exactly what ecological experiments did you do, and what did
you find?

We need an inquiry into the digital healthcare law and regulations as a
whole, to cover medical devices and medical apps and software inside sys-
tems like MRI scanners, and how to make the laws and regulations fit for
purpose in the twenty-first century with the added complexity of digital.

The next story came to court in 2015. The investigations started at the
Princess ofWales Hospital inWales, and focused on allegedmisuse of blood
glucometers, which are devices used tomeasure and record the blood glucose
levels of patients. They are familiar to diabetics.

Nurses were taking blood glucose readings because their patients were
diabetic. They were using Abbott XceedPro blood glucometers (figure 8.5)
and writing down the test results on paper notes.

Seventy-three nurses allegedly omitted to record patient data properly,
or made false or incorrect recordings of patient blood glucose levels. For
diabetic patients this could have had serious consequences.

SIDE EFFECTS AND SCANDALS | 93
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

The paper records made by the nurses working on the wards and the
computer records of what they were doing were different.

The Abbott XceedPro blood glucometers, which the nurses used, auto-
matically upload tests to a computer system. Therewere no computer records
of some tests the nurses had written on paper, so it appeared that the nurses
had written down tests they hadn’t done. It was therefore alleged that the
nurses must have made up fake results, and written them down on the pa-
per notes but without actually performing any tests on the patients, perhaps
because they were lazy.

Since some of the patients lacked mental capacity, some of the nurses
were charged with “wilful neglect” contrary to the Mental Capacity Act.87
The allegations were that the nurses had made fraudulent patient records,
and 16 nurses, who had apparently made more than five errors, were sus-
pended and referred to the Nursing & Midwifery Council (NMC). Of these
suspended nurses, five were charged with criminal offenses. Once the police
criminal investigation started, the hospital halted its internal investigation.

Some nurses pleaded guilty, so it seemed straightforward. The case pro-
gressed to court.

An Abbott representative was the first person in the court to be cross-
examined. Their opening comment was that the XceedPro glucometer was
CE-marked, meaning that the device was certified for use across Europe, and
therefore any problems would have to be the fault of the nurses using it.

I was an expert witness in the case, and I was present throughout the
trial.88 My first suggestion was that you might have one bad nurse, but to
have 73 was implausible. Perhaps there had been a computer failure that
affected all of their records? Perhaps some technician with access to the
computer databases inadvertently deleted data? Perhaps someone had a
grudge, maybe against the nurses, and messed up the data deliberately?
Swiss Cheesee suggests several thingsmust have gonewrong— sowhat were
they?

The prosecution ignored all of these possibilities, and just thought the
ward had a bad culture and that all the nurses were “in it together.”

I analyzed the computer records, which had been managed in an Abbott
database called PrecisionWeb. The data was very strange; a lot appeared
to be missing — but because the database was so poorly implemented,89 it
was impossible to be certain what was missing or how data might have been
corrupted, if it had. Although I had lots of ideas, I could not be certain why
the data was so strange.

When a nurse takes a blood glucose reading, they first have to tell the
glucometer who they are, which they do by scanning their staff ID card. They
then have to scan the patient’s barcode. Now the glucometer knows who is
using it, and it knows whose blood results are going to be recorded.

e See Chapter 6: Swiss Cheese Model, page 61←

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

94 | CHAPTER 8

0

100

200

300

400
T
e
st

s
p
e
r
d
a
y

Jan Apr Jul Oct Jan Apr

August dip

Christmas dip

Anomalous dip

May weekend
UK national holiday

Figure 8.6. Blood glucose tests per day taken just over a year by 938 nurses work-
ing in 60 wards and clinics. The data is very “noisy,” meaning that there is a lot
of variation from day to day. The anomalous, big dip on 17 November might be
random noise, some nurses may have been away, or it could suggest a problem with
the data that day, such as an unusually large number of rejected tests (figure 8.7).
Since correct blood glucose measurements are a patient safety issue, this sort of
data should be routinely scrutinized for anomalies like this.

Sometimes, nurses don’t scan the patient barcode for some reason (per-
haps because it’s inaccessible or it’s wet), and as a shortcut they scan their
own staff code again. The glucometer accepts this, but of course it now
doesn’t know who the patient is. The glucometer displays the test results on
its screen, and the nurse can write them down in the paper patient records.
However, the glucose reading, instead of being recorded in the database, is
automatically rejected and stored separately from the normal digital patient
records. The idea is that later the nurse (or somebody else) will sort out
whose test data it is.

I drew a graph from the data taken from over a whole year (figure 8.6).
The numbers of test readings tally very closely with the numbers of patients
on the ward — you can prove this statistically, but it’s pretty easy to see
there’s a dip on Christmas Day (25 December), when you’d expect there
to be fewer patients on the ward, and there’s a broad dip in August when
wards are less busy with people taking summer holidays. You’d expect that,
and when there are more tests, you’d expect there’d also be proportionately
more rejected tests too. But most — but not all — of the graph (figure 8.7)
of reject readings seems to be completely unrelated to the successful tests. I
haven’t shown the analysis here, but it seemed that something very strange
was happening that wasn’t anything to do with the patients.

SIDE EFFECTS AND SCANDALS | 95
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

0

100

200

300

400

500

600

R
e
je

ct
s
p
e
r
d
a
y

Jan Apr Jul Oct Jan Apr

Figure 8.7. The number of rejected tests per day, from the hospital data we later
found had been “tidied up.” Some days have hundreds of rejected tests, and there
are implausibly long runs of absolutely no rejects. Perhaps data has been deleted?

I couldn’t see any useful pattern in this, and I couldn’t see any general,
consistent connection between the two graphs. For instance, there are long
runs of zero rejects but a few days when there are huge numbers of rejected
tests. No rejects at all for long periods of time seems very improbable to
me. It made me get suspicious about the quality of the data. I plotted lots of
graphs and did statistical analysis; I saw the same problems all over the data.
It made me think of cyberattacks.

The data I had included the number of nurses taking tests, the ward tem-
perature, the devices’ battery voltages … you name it. It had got the names
of nurses and everything they’d done, but no nurses stood out as notably
“bad” nurses with consistently high reject rates. None of the data correlated
with the rejections. In other words, it looked to me like something was going
on, or had gone on, that was not connected to anything (such as the nurses,
wards, or numbers of patients) that had been recorded. Was it a bug, was it
malicious intervention, was it a strange configuration problem perhaps being
affected by some other issue somewhere in the hospital? In the thousands
of pages of evidence, there was an admission that a server often crashed, but
“often” wasn’t often enough to explain the missing data, and crashes would
probably have affected everything equally.

After three weeks in court, an Abbott support specialist was called to tes-
tify. While being cross-examined, he happened to mention he’d visited the
hospital. I got a barrister to ask when, and what he’d been doing.

He had “tidied up” the data.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

96 | CHAPTER 8

Box 8.5. Design awards ignore safety

The XceedPro was awarded the Japanese Good Design Award in 2010.90

I admit the XceedPro is a certainly nice-looking device, but there’s surely
more to design than what the device looks like? Especially devices used in
hospitals to care for patients? Things have to be designed well and have to
work safely in the complex hospital environment. The XceedPro failed the
nurses who used it because the system was not programmed by Abbott to
detect errors in its database.

The Good Design Award
HUMANITY the creativity that guides the making of things
HONESTY the ability to clearly see the nature of modern

society
INNOVATION the vision to open up the future
ESTHETICS the imagination to evoke a rich life and culture
ETHICS the thoughtfulness to shape society

and the environment

The Good Design Award criteria are very positive and worthwhile, but
they aren’t complete. They are certainly of limited value in healthcare. The
Abbott XceedPro’s case shows that the criteria ignore the critical design is-
sues in digital technologies. They say nothing about whether things work
dependably in healthcare. I think “safety” and “reliability” need adding to
design awards as explicit criteria.

At this point, the whole case started to unravel.
The Abbott support specialist had been called in by the hospital because

the police were going to seize the data, and I guess the hospital wanted the
data to be nice and ready for the police. Unfortunately the engineer sorted
out the data and deleted lots of it. He took no notes of what he had done (he
hadn’t been told there was a criminal investigation going on).91

The judge then ruled the computer evidence had no value to the case and
he excluded it, so the case collapsed. Two nurses who had been behind bars
in court for three weeks were freed.

The case took three weeks to unravel in court. There were some further
interesting points:

The prosecution referred to published peer-reviewed papers on the
quality of the XceedPro glucometers, claiming they were accurate and
effective devices. I pointed out when I was being cross-examined
that these papers evaluated how accurate the XceedPros were at
measuring blood glucose levels; although it made them sound good,
how accurate they were wasn’t an issue for the case. The case
centered on the reliability of the whole XceedPro system — whether

SIDE EFFECTS AND SCANDALS | 97
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

and how glucometer readings, however accurate they were, actually
end up in the database. The court was not interested in the
measurement values; it was interested in whether measurements
actually took place.
In contrast to the many papers on measurement accuracy, there were
no papers assessing the system reliability that I could find — which,
when you think about it, is a serious oversight of the research work
being done in the area. What use is a glucometer or glucometer
database if it is not reliable? It might measure reliably, but if the
results aren’t recorded reliably, what use are its measurements? Why
wasn’t reliability being tested? Why don’t the medical device
regulations require tests to prove it is working reliably “end to end”?
Recording blood glucose levels, however accurate they are when they
are taken, will lead to confusion if the computer systems then don’t
correctly record some of the test results. (And that is what had
happened.)

The prosecution argued that, as nobody had reported problems with
XceedPros to the US or to the UK reporting systems,92 then there
could be no problems with the device. Of course, this argument
assumes that people are aware of risky digital healthcare and also
report faulty devices. In fact, the research literature — had the
prosecution looked — has papers discussing similar problems in other
hospitals. The Baystate Health System found they had 61 patient
identifier errors per month, matching one of the problems at the
Princess of Wales Hospital.93 So there are recognized problems with
the XceedPro encountered at other hospitals but these problems are
not being reported to regulators. As usual, the prosecution didn’t look
for (or didn’t admit to finding) evidence not supporting its case.

Even if you do notice problems, they are hard to explain (because
such problems tend to be technical) and therefore they are very
tedious to report.94 Many bugs are hard to reproduce to get the details
for a useful report, and unfortunately many clinicians don’t know
how to report technical problems. Much better would be for
backoffice technicians to be routinely checking data for anomalies;
they have the time and skills to report technical problems. Many
anomalies become obvious when the data is visualized — figure 8.7
being a simple example.

There is a lot of excitement about healthcare going paperless,95 but if
the Princess of Wales Hospital had gone paperless there would have
been no contradictory evidence at all, and none of the problems
would ever have been exposed. If we are going paperless, digital
needs to be a lot more reliable — and where is the research on that?

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

98 | CHAPTER 8

And “digital being more reliable” means not just digital technologies
alone, but also the management of them, staff awareness of
cybersecurity issues, and vulnerabilities. Digital is tightly integrated
with the delivery and management of healthcare, and reliability is a
whole-system issue; it is a mistake to think of it as a “just get the best
technology” problem.

There’s a lot more interesting stuff to this story at the Princess of Wales
Hospital.87 For instance, the police seized the wrong glucometers for their
prosecution evidence. They went into the ward and seized the glucometers
that happened to be there on the day they visited, not realizing that glucome-
ters wander around the hospital, as they are borrowed from other wards, re-
paired, and replaced. Seizing all the glucometers from one ward probably
did more harm than everything the nurses had been accused of — indeed, it
had been admitted in court that no patient had been harmed by the alleged
“fraudulent” recordings.

I did find lots of problems that the court never needed to explore; the case
collapsed as soon as one serious problem was found with the prosecution
evidence, and once the case had collapsed, none of the other problems were
of interest to the court.

I was fascinated that the prosecution (that is, the police) emphasized that
they had used forensic methods to handle the data. They had encrypted the
Abbott data after they had copied the data from the hospital. In fact, they had
to do this manually. They had only used “forensic software” to store it after it
had been exported from the database onto a USB stick and transported to the
police offices. Yet the data they were analyzing was originally from CSV files
edited in the hospital — these are text files, often made from spreadsheets,
made up of comma separated values (hence CSV).

A well-known problem with CSV files is that they can easily be edited,
corrupted or tampered with, whether accidentally or deliberately, leaving ab-
solutely no trace at all: nobody will be any the wiser. The police might have
used forensic methods after they’d collected the data, but forensic methods
were worthless as the evidence wasn’t forensic to start with, nor did the Ab-
bott system itself work to forensic standards anyway. It was obvious to me
that the police had no way of knowing what the data meant; their discussion
of their forensic methods just emphasized how digitally illiterate they were.

The Abbott PrecisionWeb database operator’s manual — which provided
the main prosecution evidence — itself says:

This product is not for diagnostic use; all patient diagnostics
should be based on results reported by the point of care
instrument.96

It’s understandable that glucometers require monitoring and manage-
ment, for instance to detect dud batteries, so PrecisionWeb could be use-
ful without being relied on for diagnostic use. But why did Abbott design a

SIDE EFFECTS AND SCANDALS | 99
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

system for monitoring blood glucose meters in a hospital that was, as it ad-
mitted in its manual, fundamentally unreliable? Why weren’t there, at least,
end-to-end checks that data successfully gets from the glucometers to the
database? These are simple bugs that could — and should — have been au-
tomatically detected and avoided. PrecisionWeb could have been designed
for clinical use, but it wasn’t. Finally, why did the police and prosecution rely
for their evidence on data that the manufacturers said was not even good
enough for clinical use, questions of which were what the whole case was
about?

Why didn’t the hospital ITmanagement notice that huge amounts of data
had been deleted? Deleting data is practically a cybersecurity attack — but
it wasn’t noticed. Worse, a malicious attack by a nasty hacker could easily
change data, not just delete stuff. If your blood typewas changed in a hack, or
your drugswere changed, it could be lethal, not just a “disciplinary problem.”

The Princess of Wales Hospital blood glucometer case, with 73 nurses
disciplined, some taken to court and some pleading guilty, has striking paral-
lels with a UK Post Office case, where hundreds of employees across the UK
were prosecuted after computer records showed discrepancies in Post Of-
fice accounts. The Post Office story is salutary because financial accounting
is far, far simpler than digital healthcare records, yet it can still go horribly
wrong — and still be denied.

In 2003, Lee Castleton became a subpostmaster — that is, he bought a
franchise to run a post office as his own business. He invested his life savings
in setting up his new business; and on their part, the Post Office provided
the computer system, called Horizon, that he’d use to run the business.

Soon, the Post Office found Lee had a shortfall in his financial accounts
of £25,858.95. They took him to court.

Lee’s horrendous story is told in full by PaulMarshall, a barrister who has
been helping him.97 Lee was not only found to be liable to the Post Office,
but the court also awarded the Post Office’s legal costs against him, so he
was burdened by a further £321,000 to pay to the Post Office. It remains
extraordinary that the Post Office was willing to spend £321,000 to pursue
an alleged debt of just £25,858.95.

Lee was one of over 900 subpostmaters that the Post Office brought civil
claims or criminal prosecutions against; the majority of the subpostmasters
were found liable (in civil courts) or convicted (in criminal courts). Many
accused subpostmasters were shunned by their communities — in the UK,
Post Offices are often centers of the community, especially in villages. Many
went to prison; many went bankrupt; and some committed suicide.

Between 2000 and 2014, the Post Office was prosecuting its subpost-
masters at the rate of about one a week. The subpostmasters were in no
position to be able to prove that the Post Office’s Horizon system they were
using had bugs, and therefore that the errors and alleged shortfalls in their fi-

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

100 | CHAPTER 8

nancial accounts were due not their fault, but to those bugs. The defendants
were hamstrung partly by the Post Office’s arrogance, but also by the UK le-
gal framework that takes it for granted that computer evidence is reliable.98
It’s extraordinarily hard to argue in your defense, especially if nobody dis-
closes the details about computer unreliability, known bugs and errors, and
their effects on your day-to-day work.

In 2019, the Court of Appeal quashed an unprecedented number of con-
victions of the subpostmasters. There will be more to come. The scandal hit
the news again in 2021, when judges called it “an affront to the conscience
of the court.” It’s exposed one the largest miscarriages of justice in the UK
ever, possibly the largest miscarriage of justice ever. Lee Castleton ultimately
received in his hands less than £20,000 compensation—most of which will
have been used to pay his costs. I hope that this inadequate compensation
for all the consequences of a serious miscarriage of justice will be increased
as the case continues.

As Paul Marshall wrote,

It is now known that well-over 900 subpostmasters were
prosecuted. The vast majority were convicted. Those
convictions were secured by unreliable evidence of an
unreliable computer system that judges, juries, and lawyers
failed to properly understand — and the failure by the Post
Office to give proper disclosure. […] I would add that the
thesis of Electronic Evidence,99 namely, that electronic
evidence is poorly understood by judges and lawyers has been
all too plainly validated.97

Even the many subpostmasters who pleaded guilty to criminal charges
have now been completely exonerated.100

It’s possible to think, at least for the first few cases brought by the
Post Office, that the legal teams believed they were in the right. But
as the cases mounted, this charitable interpretation becomes
implausible. There’s now clear evidence that the Post Office and the
manufacturers of Horizon knew about the bugs for many years.
Indeed, Horizon’s manufacturer, Fujitsu,101 was able to remotely edit
Post Office accounts without the local subpostmasters knowing
anything. Naïvety (if, initially, that’s what it was) drifted into
institutional corruption.

Some of the defendants pleaded guilty, for instance to fraud, as they
tried to manage their overwhelming debts as reported by the buggy
Horizon. The vast majority of those who appealed had their
convictions completely quashed, even though in many instances
they’d pleaded guilty: the prosecution was unfair, and in addition an

SIDE EFFECTS AND SCANDALS | 101
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

affront to justice. In effect, this was a finding that they should never
have been prosecuted — it was a total exoneration. The Court of
Appeal signalled that the conduct of the Post Office as prosecuting
authority was such as to undermine the integrity of the criminal
justice system and public confidence in it. Such a finding against a
prosecuting authority is unheard of. If we are charitable to the Post
Office, perhaps this blindness to computer bugs started with Cat
Thinking:f if computers are wonderful, then any problems must be
caused by the users. The first conviction didn’t need much thought,
but it seemed to confirm the criminal
In UK law, pleading guilty saves the court a lot of work, and someone
pleading guilty almost always gets a lighter sentence. The defendants
had no effective evidence to support their case that they were
innocent (because the Post Office failed to disclose that material), so
the prosecutions would very likely succeed with the weight of
computer evidence seemingly on their side. In these circumstances,
it would’ve seemed a good trade to concede guilt, typically to a lesser
charge such as false accounting instead of theft. Indeed, the legal
system supported the prosecutions with the structural assumption
that computer evidence is reliable.98

The Post Office situation was comparable to the Princess of Wales Hos-
pital being unaware that Abbott, the XceedPro glucometermanufacturer, had
changed patient data.

The nurses who pleaded guilty in the Princess of Wales Hospital case
would’ve been presented with lots of data and discrepancies going
back years previously — could any nurse accurately remember what
they had done so long ago, and could they prove it better than a
computer? Of course not. The computer evidence would’ve seemed
unassailable at the time of prosecution.

Again, the legal system supported the Princess of Wales Hospital’s
prosecutions with the structural assumption that computer evidence
is reliable.98

The Princess of Wales Hospital and the Post Office are both respected
organizations; they are both effectively State institutions. Yet they clearly
didn’t have adequate processes in place to check whether their computer
systems were working reliably — though, really, that’s the manufacturers’
responsibility. The simplicity of blaming individuals for computer problems
clouded their judgment, as well as their humanity. Both lost sight of, and
failed to take account of, basic concepts of just culture. The NHS has an

f See Chapter 3: Cat Thinking, page 25←

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

102 | CHAPTER 8

official policy for Just Culture, and it’s surprising this wasn’t raised in the
disciplinary process before the issues reached the courts.g

It’s baffling that Abbott, Fujitsu, and other manufacturers don’t routinely
build in safeguards to detect computer problems. Furthermore, such safe-
guards have to be easy to use — a hospital should not need to call in the
manufacturer’s expert to sort out a database of routine patient records.102

In both the Princess of Wales Hospital and Post Office cases, there was a
huge asymmetry between the people affected and the organizations owning
the computers, who held all the information and refused to properly disclose
the information and knowledge they had, even as they brought the cases to
court.

People assume that digital systems are reliable. Cat Thinking is built into
our culture. Indeed, as the Post Office has already paid millions in compen-
sation and it is having financial difficulties itself, the costs of Cat Thinking,
and the harms they can do, are unlimited.

I wonder, then, how many other misdiagnosed computer bugs continue
to cause problems that are mistakenly blamed on staff? How many systems
have unnoticed bugs that harm patients or staff? Meanwhile, customers —
such as hospitals — buying computer systems should demand safeguards,
such as: “If data is moved from A to B, or any other operation is performed
that is not intended to change data (including doing nothing), we contractu-
ally require that the system check that the data is unchanged. […] We also
require that the system keep accurate logs that are of sufficient quality to be
used in evidence, should the need arise.”

The claim that something must be true is called an assertion. For ex-
ample, to say that data at A and at B will be the same is an assertion. Un-
surprisingly, assertions are standard good programming practice. The fact
that many programs don’t bother to make adequate safety assertions (or, too
often, don’t even make any) is why front line workers get blamed rather than
buggy digital systems—because nobody knows the digital systems have bugs
and have failed to work correctly. The Princess of Wales Hospital and the
Post Office stories illustrate this, and we will see many more cases through-
out this book.

It’s very important that hospitals (and other healthcare practices, like
dentists and GPs) continually check patient data and ensure it is not tam-
peredwith. The Princess ofWalesHospital clearlywasn’tmonitoring its data
closely enough. I don’t think there’s anything unusual about the Princess of
Wales Hospital; this problem could’ve happened anywhere. What was spe-
cial about the Princess of Wales Hospital, though, was that the police came
in and seized data and started collecting evidence to support a criminal case.
I wonder what would happen at any other hospital if the police came in and

g See Chapter 4: Just Culture, page 44←

SIDE EFFECTS AND SCANDALS | 103
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

seized patient and staff data? What would they discover? How much of
what they uncover would be true, and how much would be as misleading as
the Princess of Wales Hospital data?

This is not idle speculation: cybersecurity and hacking are serious prob-
lems.h To give an idea of the scale of the problem, a recent survey of just
medical images found 400million images and other patient details had been
hacked andmade freely accessible.103 Serious problemswere identified in 52
countries around the world. This huge treasure trove of patient data was un-
covered with no effort, but when you take account of how highly motivated
criminals are to access patient data for financial and personal data, for black-
mail, for repurposing for fraudulent billing, or for just the thrill of hacking,
the realistic potential for disaster from poor cybersecurity is astronomical.104

If we believe digital healthcare is infallible, as many do, we’ll end up
taking doctors and nurses to court, as in this Princess ofWales Hospital story.

It’s a great shame that the Abbott XceedPro by design does not ensure
that data it records is reliably and securely recorded on the Abbott database
(“handshaking” is one standard method that was missing). In my first report
to the court, I had pointed out this uncertainty that was built into the design
of the Abbott systems. Without auditing based on a reliable system, you
can’t really be sure of anything. In the Princess of Wales Hospital case, this
really mattered. Without auditing (let alone reliable auditing) the hospital
had no idea things were going wrong with their computer databases. The
nurses became scapegoats for digital shortcomings.

This chapter openedwith the horrifying problems of themisuse ofX-rays
and thalidomide, and the devastating impact these innovations had on peo-
ple. Those historic stories provide a background to the Gosport War Memo-
rial Hospital, the Princess of Wales Hospital, and the Post Office Horizon
cases.

In every story, individuals were at a huge disadvantage in disputes with
large organizations that held more information, and which controlled what
informationwas used. It’s charitable to think that these organizations “didn’t
know” but this begs serious questions about the quality of the systems they
were using: if they didn’t know the systems were buggy or encouraged use
errors, why didn’t they know?

Patients and staff harmed have no way of knowing whether digital fail-
ures are a contributing factor, and, if so — without a lot of inside knowledge
— it’s impossible to find the evidence and the informed expertise to interpret
it. If they fight in court, they are at a huge disadvantage. In the UK, even the
law is set against them: computers are assumed to be infallible unless you
can prove otherwise.98 And how can ordinary people do that?

h See Chapter 17: Cybersecurity, page 211→

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

104 | CHAPTER 8

It’s instructive, now, to think about Swiss Cheese again.i So, in hindsight,
which slices might have been better at stopping problems? What new slices
could there be to stop problems happening elsewheree?

The Princess of Wales Hospital court case typified all of the problems.
The case assumed the nurses’ slices of cheese had the big holes; in fact, the
nurses were alleged to be criminal. This misconception was so deep it drove
the investigation and prosecution for several years. The ultimate collapse of
the court case hinged on discovering that an Abbott employee had exploited
different holes — holes in the digital systems. Those holes were there be-
cause neither the hospital nor the police understood how the digital systems
worked, nor what precautions should be taken to properly manage patient
data. Ultimately, those holes were there because the Abbott implementa-
tion had bugs that allowed unauthorized deletion of data to go completely
unnoticed.

Possibilities include: the nurses could have been better trained; Abbott
could have programmed the system more reliably; the hospital could have
procured a more reliable system for their needs; the regulations could have
been tighter to avoid unreliable digital systems being used in hospitals.

All of these groups might enjoy reading this book, of course, but where
should we best focus attention?

There are several priority areas where the holes could have been avoided:

Manufacturers should develop systems to be more reliable and to be
able to demonstrate they are reliable. In turn, those of us teaching
Computer Science need to be more effective so that manufacturers
can get better programmers to make these more reliable systems.

Given that cybersecurity is a huge problem (which I discuss laterj),
we all need better ways of avoiding, and, when they happen,
detecting and recovering from, cyberattacks. Improving defenses
against cyberattacks would have avoided the Princess of Wales
problem: simply, the actions of the Abbott employee would have
been detected as soon they happened. They could then have been
repaired before any serious damage was done. Improving
cybersecurity should be done now; it’s an urgent problem.

The regulators should tighten medical device and other IT regulations
and regulatory processes so that systems in healthcare improve. The
regulatory problems need fixing now, because improving them will,
inevitably, take years to take effect in the world (which, again, I’ll
discuss laterk).

i See Chapter 6: Swiss Cheese Model, page 61←
j See Chapter 17: Cybersecurity, page 211→
k See Chapter 16: Regulation needs fixing, page 201→

SIDE EFFECTS AND SCANDALS | 105
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

In seeking blame for the problems, the big holes were the failures to
think clearly. Nobody thought that if tens of nurses or hundreds of
employees are all being investigated for the same problems very
likely there’s a common factor. Maybe the computer systems they all
use are unreliable? Unless you can show that all these people
colluded to do the same wrong things, the presence of bugs is a far
more reasonable explanation that should have been carefully checked
first. It’s important to note that this hole is, at least in principle, the
easiest one to tackle.

The digitally-illiterate culture goes all the way to the top. In the UK,
Common Law has a presumption that what it quaintly calls a
“mechanical device” (which includes a digital device) has been
properly set or calibrated. This is carried over into the Criminal
Justice Act 2003,99 so — if you end up in court as a defendant — the
presumption in law is that the digital healthcare device is correct and
its log is correct. If you don’t want to be convicted, you will need a
knowledgeable and persuasive expert witness who can survive the
cross-examination’s attack on their credibility to persuade the court
against them. To make progress, we have to recognize that digital
healthcare is risky, and hence the Criminal Justice Act, and the
“justice” flowing from it, is flawed if it’s applied to cases involving
digital healthcare.

I’d add that if manufacturers cannot prove their systems are reliable
at the time in question, then investigatory, disciplinary, and legal
processes must assume that the systems are not reliable. Try
reframing any failure like this: “The alleged failure has been blamed
on a nurse [or other person], but it could’ve been concocted by the
system; can anyone provide evidence — at least to the same standard
you’d demand of a nurse — that the computer couldn’t have done
it?” Surely, if the computer, or infusion pump …, is in the room (or
networked into the room) for every murder, as it usually is, then it
must be a prime suspect until proven otherwise?

AI and ML systems are becoming more sophisticated than humans.
There is no reason for AI systems to be thought more reliable than
any other sort of digital system. They should not be treated more
leniently than any other sort of digital healthcare, and certainly not
more leniently than humans would be doing the same job.

Meanwhile, bad things happen, and sadly bad things will always happen
from time to time. Somemay be missed, somemay be covered up, but in the
best case we’ll want to learn from them so things improve. What’s the best
way to do that? Usemulti-disciplinary teams; deliberately seek different
views and different areas of expertise.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

106 | CHAPTER 8

User Centered
Design

Human
Factors

Safety

Pædiatrics

Cybersecurity
and Regulation

Software

engineering

User Centered
Design

Human
Factors

Safety

Pædiatrics

Cybersecurity
and Regulation

Software

engineering

User Centered
Design

Human
Factors

Safety

Pædiatrics

Cybersecurity
and Regulation

Software

engineering

User Centered

Design

Human
Factors

Safety

Pædiatrics

Cybersecurity

and Regulation

Software

engineering

User Centered

Design

Human
Factors

Safety

Pædiatrics

Cybersecurity

and Regulation

Software

engineering

User Centered

Design

Human
Factors

Safety

Pædiatrics

Cybersecurity

and Regulation

Software

engineering

Figure 8.8. Skill mapping105 a team to develop a system. For illustrative purposes,
six skill areas have been identified as critical to success. Three individual teammem-
bers’ skill sets are mapped out on the top row — the values along each axis represent
the competency of each person in the specified skills. The lower skill map shows
the team’s combined skill set. Given the requirement for these particular skills, it’s
clear from the skillmap that this small team needs to recruit more expertise in User
Centered Design.

In all the cases I cover in this book, involving appropriate experts sooner
would undoubtedly have helped head off problems. The problem is that we
(on our own, without the right experts) don’t know what we don’t know.
To get around this chicken-and-egg problem teams should be made multi-
disciplinary and diverse; we should do this even before we know what dis-
ciplines may be needed. That’s easily solved by starting with as many eyes
involved as possible to review the problem, and only then specializing to
the critical areas. Digital, for the time being, is an area where problems are
too often out of sight, so in my view we should prioritize involving digital
expertise in investigations and learning processes.

Here’s an important note to end this chapter on: many “multi-disciplinary
teams” are fiction. A software engineer, a cybersecurity expert and a medic
with some safety experience sounds multi-disciplinary, but it may miss crit-
ical areas of expertise, such as User Centered Design (figure 8.8). The skill
maps105 shown in figure 8.8 were based on six skills picked to illustrate the
idea: in a real project, you would work out which skills are needed, what
is needed for each phase of the work, and what competencies each team
member has — also including diversity, deliberately seeking different types

SIDE EFFECTS AND SCANDALS | 107
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

and backgrounds of people for the team. Skill maps let teams think and talk
about multi-disciplinarity, rather than just assume it happens automatically.
You have to takemulti-disciplinarity seriously, and not just pay it lip-service.
Note that in my example, I included Human Factors. I meant not just Hu-
man Factors for the problem the team is working on, as Human Factors also
applies to how the team itself is working — for instance, how can the team
best work, so the different disciplinary contributions are properly heard?

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

We don’t know how many
people are dying or being
harmed from errors in
healthcare, let alone those
caused by digital errors.
What are the facts, and what
can we do about it?

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

9

The scale of the problem

As the famous statistician and founder of modern nursing, Florence Nightin-
gale, said,

The very first requirement in a hospital [is] that it should do
the sick no harm.106

Nightingale worked in the hospitals at Scutari (now called Üsküdar, in
Turkey) during the CrimeanWar in the 1840s. She soon become famous for
her shocking analysis of the hospitals caught up in the conflict: she showed
that poor hospital conditions were killing more soldiers than the fighting it-
self.

Today, we are killing more people because we do not understand error.
We don’t understand how bad computers contribute to error, and we don’t
take full advantage of how professionally programmed computers could pro-
tect us from error and its consequences. We don’t even take full advantage
of computers to collect data so we can reliably analyze what’s going on and
work out how to improve.

My father, Peter Thimbleby, died from a preventable error in hospital. I
know this because the doctor told me just after I’d seen my Dad’s body in the
morgue. I’d got to the hospital too late to see Dad alive for the last time. The
doctor told me an infusion had been left to free-flow, so that Dad had got too
much fluid, which filled his lungs, so he drowned (pulmonary edema).

I talked to the doctor about reporting the incident, but he did not want to
report it. I had to explain I was not blaming him, but a report wouldmean the
hospital might learn something useful. Maybe there aren’t enough nurses?
Maybe the infusion pump had bugs? Maybe… I don’t knowwhat, but please
report it. How will we ever learn anything if you don’t report it?

When the doctor reported the error officially, he selected standard text
from the formal Datix computer reporting system,

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

110 | CHAPTER 9

Avoidable short-term, non-permanent harm or impairment of
health — full recovery in up to 1 month.

Yet Dad was already dead when this was entered into the Datix reporting
system. The “description of the incident” details on the Datix reporto goes
on to say,

The patient got better but later that day he went into acute
LVF [Left Ventricular Failure] again and died. The underlying
diagnosis is likely to be ACS [Acute Coronary Syndrome] and
that his death was unavoidable […]

In fact, the unnoticed free-flowing over-infusion of fluid caused pul-
monary edema (lungs filling up with fluid, making breathing difficult or im-
possible), which caused the LVF heart failure — not the other way round.
The written Datix report contradicts what the doctor himself told me.

The Datix report makes out that nobody was responsible: the patient was
ill and died, as they do. Nobody wanted to know why the error happened
that caused the heart failure, because, as officially reported, no error had
occurred. The doctor went on in his report:

Family informed in [sic] details (they are happy not to take
this matter further)

That’s not true either. I’d been very clear at the time the doctor spoke to
me that I wanted the incident investigated to see what might be learned. In
fact, the misleading errors in the report led us to take the matter further.

When nobody is aware an error has been made, nobody is going to know
there are problems that can be fixed. In Dad’s case, nobody is going to realize
that improving drips and making them safer would save lives. More impor-
tantly, if all issues are reported, the national data can be used very effectively
— without the national data, nobody knows whether my Dad’s death was a
one-off story or representative of a trend. Unfortunately, what my Dad’s
story shows is that national data is unreliable.

According to the Duty of Candour, there should have been a written
record, but none was made. To make such a record would have been an
admission that a “notifiable event” had happened. Clearly, trying to cre-
ate a rigorous legal framework around errors creates barriers to honesty and
learning; if the doctor can instead make it appear it isn’t sufficiently seri-
ous, then nothing need happen, and the doctor is off the hook. Learning
from not-serious-enough-to-be-reported errors would make a huge impact
simply because of their large numbers.

Manufacturers, not just doctors, try very hard not to be in a position of
being accountable, let alone being blamed. They dare not , because that
would be an admission they might be liable. As a result, digital healthcare

THE SCALE OF THE PROBLEM | 111
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

isn’t improving. It may be getting more exciting but it isn’t getting safer.
This abrogation has been picked up and “legalized” in digital technology’s so-
called warranties; so far as the warranty is concerned, the developers aren’t
accountable either.a

The World Health Organization (WHO) maintains a huge and compre-
hensive classification system to manage data, called the International Clas-
sification of Diseases (ICD)107 to categorize any disease and to help collect
useful statistics. The WHO has no useful classification for medical errors,
let alone digitally related errors.

The WHO ICD classification is used worldwide, including on death cer-
tificates. Death certificates register the causes of death, but don’t collect
statistics on errors because “error” isn’t a disease. Yet, curiously, there are
codes for things that have obviously got through the committees, like being
struck by blunt object with undetermined intent (code PH00) and uninten-
tional land transport traffic event injuring an occupant of an animal-drawn
vehicle (code PA0F), so WHO could have handled errors if they wanted to.

Among other inevitable oversights, there is no classification for any error
that does not cause harm, so it is not easy to learn from near misses, nor
from problems specific to digital systems that don’t directly lead to a harm.
They can’t be categorized in the WHO system. I’ll discuss how useful it
would be to record and learn from near misses and other “non-events” later,
when I discuss the concept of Safety Two.b

It gets worse. The ICD documents themselves admit that many coding
errors arise when ICD codes are used. The IDC coding is concise, but on the
other hand it has no redundancy to help detect or correct errors. For instance,
the ICD codeNE2Zmeans “burns, unspecified,” but a simple one letter error
writing DE2Z instead means “diseases of the digestive system, unspecified.”
Box 9.1 pulls together some lessons about usability and safety, putting this
digression into WHO coding into a larger context.

There are several versions of ICD and the latest ICD is copyright and ex-
pensive — usually country healthcare systems pay to use it — so it is hard to
access the correct codes to develop digital systems to correctly use whichever
the current code is. Instead, earlier versions that have been released into
the public domain may be used instead, causing further discrepancies, and
other errors in coding. Many countries, such as the US, have developed vari-
ants of the ICD. For instance, the US extended it for the exceptional needs
of recording COVID-19.108 Obviously, WHO will sort out COVID coding
in their ICD system, but it seems strange to me that coding isn’t managed
centrally, digitally, internationally, and in real time — COVID isn’t unprece-
dented as a new disease in needing rapid classification. It’s the sort of thing
the internet could do easily.

There are blindspots all the way down. The final statistic, the death cer-
a See Chapter 15: Who’s accountable?, page 193→
b See Chapter 12: Safety One & Safety Two, page 145→

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

112 | CHAPTER 9

Box 9.1. Risks of making computers “easier to use”

People who work all day on computers are at risk of repetitive strain injuries
(RSI — nerve damage, often taking the form of painful carpal tunnel syn-
drome). Understandably, everyone gets frustrated with having to do too
many mouse clicks or keystrokes. Making the user interface easier to use
is surely important, and would release time to do more important things?
Unfortunately, making something easier to use also means making it easier
to make errors that can’t be blocked. All errors eat up more time to correct,
likely far more than any time actually saved—worse, errors can destroy lives,
and possibly can end up being fought, takingmonths in court. Is “ease of use”
always worth it?

TheWorld Health Organization’s ICD codes, discussed in the text, make
a simple example of ease of use/error trade-offs.

There aren’t many ways to make a mistake typing “osteoarthritis of hip”
which would make it unrecognizable, but it gets tedious to type so much,
especially if it’s your job to do ICD coding day in, day out. An expert might
well know the right code, FA00, and prefer to type only the four keys.

Yet a single keystroke error typing FA00 can make 40 very different
codes, including JA00 for abortion, NA00 for superficial injury of head, or
FA30 for acquired deformities of fingers or toes. There are tricks that can be
used to help — knowing the clinician’s speciality can help automatically cut
down on the valid choices, but these often need to be overridden. For ex-
ample, if an oncologist is helping out in an emergency COVID-19 episode,
their usual pre-COVID-19 oncology codes are not going to be helpful. Even
so, while typing “osteoarthritis of hip” may be tedious, it’s safe and hard to
make any meaning-changing mistakes that won’t be detected.

The same ease of use/error trade-offs happenwithmouse clicks. If fewer
mouse clicks are required to select a code, the user could also hit a nearby
wrong code more easily.

tificate, doesn’t record errors as a potential cause of death. A death certifi-
cate has the actual cause of death (like pulmonary edema), the clinical cause
of that (like left ventricular failure), and other conditions like diabetes or
pneumonia that were present but not a direct cause of death. So the data is
misleading; there are virtually no proper records anywhere. We know some
examples where official national databases are deliberately circumvented and
not used to record problems.109 Florence Nightingale said as far back as in
the 1860s: “accurate hospital statistics are much more rare than is generally
imagined.”106 Little has changed since then.

In other words, nobody has reliable statistics for errors, harms, or fatali-
ties caused by errors. So there’s no choice but to estimate the figures.

While adverse events are under-reported and errors are under-reported,
digital and other system problems that may underlie those problems are even
less likely to be reported.

THE SCALE OF THE PROBLEM | 113
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Heart disease

Cancer

Preven
table

error

Accidents
Chronic respiratory

Cerebrovascu
lar

Alzheimer's

Diabetes

Flu, pneumonia, etc

Suicide

0

100,000

200,000

300,000

400,000

500,000

Car accidents 1.3%

Preventable error — high estimate = 16.9%

Preventable error — low estimate = 8.1%

Annual
US fatalities

19.3%
18.4%

16.9%

5% 4.7%
4.1%

2.7% 2.4%
1.8% 1.6%

Figure 9.1. The top ten causes of death, from US data.110 I’ve shown percentages
on each bar, so the figures can be easily applied to similar Western healthcare sys-
tems. Note that there is a long tail of 23.1% of deaths from all the other various
causes not shown in the bar chart.

Some estimates of death from error in hospitals puts it, astonishingly,
on a footing with cancer and cardiovascular disease deaths.110 When I com-
bined these estimates with death certificate causes of death, I got the bar
chart in figure 9.1. This shows preventable error, the highlighted bar, as
the third largest killer: preventable error in secondary (hospital) healthcare
may be around 17%. The data I used to get these estimates predates the
horrific huge numbers of deaths from the COVID-19 pandemic (which are
a mixture of political errors, lack of resources, and, inevitably, some pre-
ventable patient harms), but the figures should give a reliable impression
of what happens in normal advanced healthcare situations. We’ll talk more
about COVID-19 and its relation to digital healthcare, specifically, later.c

In the chart, the two horizontal lines (marked 8.1% and 16.9%, respec-
tively) cover the range of estimates. There is a lot of uncertainty. The lower
estimate is close to Lucian Leape’s estimates from way back in 1994.111

Leape points out that doctors might be performing at 99% proficiency,
but this is very much lower than would be accepted in other industries. At
an airport like Heathrow in London, having a 99% success rate would mean
messing up over 2,000 passengers a day — and Heathrow isn’t even the
busiest airport in the world. Heathrow performs at a much higher level of
safety than hospitals achieve. A 99% success rate, which is acceptable in

c See Chapter 31: The pivotal pandemic?, page 437→

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

114 | CHAPTER 9

Box 9.2. WHO’s global facts on patient harm

The World Health Organization’s facts on the global impact of preventable
harms on patients:112

▶ Patient harm is the 14th leading cause of global disease burden,
comparable to tuberculosis and malaria

▶ 1 in 10 patients are harmed

▶ Medical cost associated with error affects millions and costs countries
between 6–29 billions5 of dollars annually [it’s really much worse since
healthcare offloads many costs to social services and community care]

▶ 15% of healthcare spending in Europe is wasted dealing with all aspects of
adverse events

▶ Investment in safety can lead to significant savings

▶ Inaccurate or delayed diagnoses affect all settings of care

▶ Administrative errors account for up to half of all medical errors

▶ In the US, focused safety improvements saved Medicare $28 billion5

between 2010 and 2015.

hospitals, would be a national scandal in any safety-critical industry like air
travel.113

The little segment at the bottom of the “accidents” bar (figure 9.1) shows
car accidents. Car accidents contribute 1.3% of all deaths. Although this is
US data, we all take car accidents seriously, and cars are getting safer and
safer. Why don’t we take the much higher numbers of healthcare accidents
seriously? Why don’t we do something about them? Even if you disagree
with the estimates of preventable deaths, it’s clearly something we should
be very concerned about.114

We shouldn’t ignore preventable death, but we should also be concerned
about preventable harm, like removing the wrong kidney. Harm has huge
impact for the patient and carers for the rest of their lives. The numbers
for preventable serious harms are about 20 times higher than those for pre-
ventable deaths.115 We need to do something about it, and if we go about
it the right way, the figures for both preventable death and for preventable
harm will come down dramatically, lives will be saved, and people will be
healthier — and staff will be happier.

From a purely financial point of view, preventable harm ismuchmore ex-
pensive than preventable death. The healthcare system, or its insurer, has to
provide extra treatment for recovery—hoping it’s possible— and, as needed,
care and support over the lifetime of the harmed patient, rather than just a
financial transaction. Perhaps there will be costs to modify the family house

THE SCALE OF THE PROBLEM | 115
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

and to provide daily care? What about education and care costs? If we took
serious harm seriously, then preventable death would also be reduced.

The horrific Gosport tragedy in a UK hospital,d which involved hundreds
of preventable deaths, could have been identified before so many patients
died, had anyone been collecting the right data and looking at it. I am sure
some data is collected, but as the syringe drivers are “dumb” and they don’t
record anything at all, accurate, objective data was not being collected. As
an added benefit, the same data — if only it was routinely collected — would
identify hospitals with unusually low preventable error rates, and we could
go along to them and find out what good practices they were using or see if
their digital systems had nice features that made them safer. As it is, we have
no idea.

We know many people, fearing blame, do not record errors. If you go
into hospital with cancer, you will most likely “die of cancer” instead of the
hospital admitting that (if so) you caught a preventable infection or that some
other preventable error killed you which should have been avoided. They’ll
say you were very ill, and what do you know? Yes you caught an infection,
but you still died of cancer.

In 2019 four doctors reported some errors they had made with X-rays,
thanks to problems they were having with their IT systems. They worked
in Rhode Island Hospital in Providence, a city in Rhode Island (the small-
est state in the US). The consequence of reporting problems: they received
subpoenas.116 Subpoenas force people with the threat of legal penalties to
disclose evidence, so they are one step, in this case, before formally accusing
people of crimes. The subpoenas said “medical misconduct,” yet the doc-
tors’ reports were meant to draw attention to the problems they had with the
hospital’s computer systems.

Blaming the doctors kills the messenger. If this is the culture, why ever
risk reporting any computer problems?

Chitra Acharya —who has a PhD in Computer Science, so she has an eye
for detail — had the misfortune and opportunity to be with her son in two
pediatric intensive care units for over a year.117 For this one poorly patient,
she recorded 120 errors a month (that’s about four a day) on average. Some
days were worse.

The incidents varied in severity; there were 11 never events, which
are defined as serious incidents (such as wrong site surgery) that are wholly
preventable. August had the highest rate of incidents and the highest rate of
incidents weighted by severity; perhaps something could be tracked down
to understand this and then fix it? In the UK — where Chitra was — junior
doctors “rotate” in August, so they will have had no experience with any

d See Chapter 8: Gosport War Memorial Hospital tragedy, page 84←

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

116 | CHAPTER 9

Figure 9.2. An app for setting up drip infusions.

systems they have not encountered before. If this is the explanation, it is a
serious criticism of the variation in design of medical systems and the lack
of interoperability between them.e

When James Macdonald had radiotherapy to the left side of his neck to
treat a cancerous tumor, unfortunately, the tumor was in fact on the right
hand side of his neck.

James died, and the official cause of death was cancer, which, yes, did
kill him. But had it not been for the left/right mix-up, the cancer would have
been treated and may not have killed him. The error directly resulted in his
untimely death but was unreported on the death certificate.118

My father died from an over-infusion from a gravity drip. Drips are liter-
ally drips: a bag of fluid drips into a tube that goes into the patient. A nurse is
supposed to check the drips are going at the right rate, so the patient gets the
right amount of fluid at the right rate. If this step is missed out — perhaps
because the nurse has to rush to another patient — there is a risk that the
whole bag of drugs empties quickly, as happened with Dad.

Timing drips is a bit complicated and very easy to get wrong, especially
on busy and distracting wards, so my student Mark Davies119 designed and
built an app that helps (figure 9.2). We used User Centered Design to ensure
the app best met nurses’ needs.f

The app animates drips so you can see them drip on the screen, and it
becomes a lot easier to get the drip rate exactly right. And the app does not

e See Chapter 19: Interoperability, page 245→
f See Chapter 22: User Centered Design, page 301→

THE SCALE OF THE PROBLEM | 117
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

allow you towalk awaywithout finishing. As you can see from the old iPhone
in the picture, this app has been around for a while, and it could have been
used to help, as another slice of Swiss Cheese,g when my Dad was admitted.

It’s worth saying there isn’t a conspiracy. There’s a lack of interest and a
lack of awareness, which feed each other, and result in a culture everyone is
in and nobody notices. Certainly nobody is surprised or shocked by patient
harms any more, and few places have any process to learn from error. No-
body has a preventable error registry. In law, death certificates do not record
errors. Statistics are based on things we can count; since we don’t have good
definitions of “preventable death” and we aren’t counting error, let alone er-
ror caused or exacerbated by or not stopped by digital systems, then we have
bad statistics. With bad statistics, we can carry on in a state of not knowing
what to do. Worse, it’s frequently denied that proposals (which might cost
money) to improve safety have no evidence in their favor — there’s simply a
vacuum instead of evidence.

We should ask why healthcare system accidents aren’t getting inquiries,
and nobody is worried about the reasons why digital healthcare systems and
devices may be helping cause them. That’s not entirely true; individual cases
do sometimes get inquiries. The Beatson Oncology Centre got an inquiry,h
the Mid Staffs Hospital got an inquiry,39 and the Gosport War Memorial
Hospital got an inquiry;i these inquiries were all focused on staff and cul-
ture. There have been (so far as I know) no inquiries on the whole systems,
and next-to-no attention paid to the digital systems involved.

It might be because our culture just accepts the legal disclaimers (it is
ridiculous to call them warranties) and accepts the thinking that goes along
with them.

I described my father’s preventable death above.j Tragic stories quickly
get very complicated, and therefore difficult to communicate. I complained
about the incident, and it just got more complex and intricate, and slowed
to a crawl. You experience what’s called delay and deny. The system, or
the bit of it handling complaints, seems intent on ensuring as little change
as possible. Complaints are handled as local problems, on a case-by-case
basis. We need ways to transform complaints into learning.120

Prue Thimbleby, my wife, leads a digital patient storytelling program
for the NHS. I worked with her to make a Digital Story. A Digital Storyk
(spelled with capitals) is a short, first person voice recording edited together
with images to make a video clip. It isn’t easy to make a short story about
a complex complaint, but doing it carefully with a storytelling facilitator is
an enormously helpful and therapeutic process. There are usually so many

g See Chapter 6: Swiss Cheese Model, page 61←
h See Chapter 7: Beatson Oncology Centre, page 69←
i See Chapter 8: Gosport War Memorial Hospital tragedy, page 84←
j See Chapter 9: Peter Thimbleby’s preventable death, page 109←
k See Chapter 30: How to make Digital Stories, page 422→

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

118 | CHAPTER 9

things that go wrong, sifting it down to what really matters to communicate
as a coherent, punchy story helps you separate the niggles from the serious
things. After you’ve made the story you feel heard — and you also have a
clear message to share.

I sent my finished Digital Story121 to the Chief Executive. I said it’s only
a few minutes long, and I’m sure you’ve got time to watch it. He wrote back
to me and said,

At the staff briefing session with clinical leaders and managers
[…] I played your video about the death of your father and
failures of our organization and systems. The reaction from
colleagues was immediate and strong — there was an
emotional reaction and an expression of shame from many
colleagues. We had an open and honest discussion. We will
be using this video in many fora across the organization.

I was also asked to do some workshops. The hospital had listened, and
I felt listened to! Short, carefully focused stories can transform healthcare.
For me, this was all a very positive resolution of the incident, a common
result from using Digital Stories for patient complaints.

We’ve got lots more to say about Digital Stories later.l

l See Chapter 30: How to make Digital Stories, page 422→

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Medical apps are very
popular, but they are as prone
to bugs as any other digital
system. This chapter gives
some typical examples and
begins to suggest solutions.
Like all digital healthcare,
apps could be designed to
block bugs and avoid the
harms that follow.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

10

Medical apps
and bug blocking

The medical app market has exploded with hundreds of thousands of med-
ical apps. As a computer scientist, I can see problems with many of them —
with such rapid, explosive innovation, quality control has become a serious
issue. There are situations where apps give incorrect results and may be un-
safe. These problems are caused by bugs in their designs. The bugs should
have been avoided by better programming or by better testing andmore care-
ful user studies. There are also bugs that probably have little clinical impact,
but are just frustrating.

Medical apps are the future, and where better to start than with a multi-
award winning app that has been in the news for its clever design? I decided
to have a look at Mersey Burns. It’s used for assessing burns patients to see
how much fluid to give them, depending on how badly they are burned.

Mersey Burns runs on iPhone and Android as well as on ordinary web
browsers.122 Anyone can download and try it, and it’s a very nice visual app
that is easy to explain in a book. I don’t want to make a fuss about Mersey
Burns in particular; so, at the end of this chapter, I’ll look at a completely
different app, and show that poor programming is a widespread problem.

I chose Mersey Burns as the first case study for this chapter because it
was the first app in the UK to get a CEmarking, and it has won several prizes
and awards, so it is widely recognized as cutting-edge and innovative.

CE marks are supposed to be a basic quality mark to show that a product
is appropriate for its intended use within the European Union (EU). So if
a children’s toy has a CE marking it means it isn’t covered in toxic paint
and doesn’t have small bits that will fall off it, so it’s safe for a child to play
with. Of course, the CE marking requires different standards for different
things. In principle, a CE-marked medical device should be fit for purpose.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

122 | CHAPTER 10

Figure 10.1. A drawing of Mersey Burns, version 1.6.4. The drawing shows how
burns can be “painted” (in a distinctive red) on the patient’s outline body with your
finger. Here, the screen shows Mersey Burns showing the fluid dose the app rec-
ommends for this case.

I’ll explain CE markings in more detail latera — we’ll see it’s a problem and
guarantees nothing useful for digital healthcare.

A typical review of Mersey Burns on the app store says,

Excellent
This app is brilliant! As an EMT [emergency medical
technician] I went to a gas cylinder explosion yesterday, this
app was so helpful in working the total percentage of burns,
was so easy to use and it worked it all out for me!

Figure 10.1 shows a drawing based on a screenshot of it.123
By the time you read, this I hope Mersey Burns will have fixed the bugs,

which I’ll describe over the next few pages. Fixing the bugs will be worth-
while, but really the bugs should be taken as signals that their development
process missed them— the bugs should not have happened (and should not
have been left around for the several years since the app was launched). Al-
though the bugs are fixable, what really needs fixing is the process that lets
them slip through. The app doesn’t provide any direct way of sending the
developers feedback, so they are unlikely to learn of bugs from experience
in the field, so they will also miss bugs found by others after they’ve finished
development.

a See Chapter 16: CE marking, page 201→

MEDICAL APPS AND BUG BLOCKING | 123
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Box 10.1. Always say “use error” not “user error”

Errors happen, and it’s tempting to talk about user error.
Please don’t.
The correct term is use error.
Use error means an error occurred while a system was being used, which

is what happened. If you use the incorrect term user error, by your language
you are immediately assuming the user made the error. Maybe they did, and
maybe they didn’t. If the user didn’t, and in fact even if they were part of the
problem, then you are going to miss other causes of the problem.

“The user did not respond to the alarm properly.” Sounds like a user
error, right? No; it’s really a use error.

Use the term use error, and it’s now much easier to explore the other
causes. Perhaps — and actually much more likely than “user error” — the
alarm was vague, the alarmmessage was indecipherable, or the message was
obscured, it was just a beeping sound that could have meant anything, and—
very often — it was lost in an overload of a million other alarms and essen-
tial activities. All of these problems are system errors, indeed system design
errors, not user errors.

The development process for Mersey Burns is comparable to the devel-
opment processes used throughout digital healthcare, which is why it’s im-
portant to describe some of the app’s bugs here. They aren’t complicated.

Although Mersey Burns has bugs, it’s important to see them in perspec-
tive. A doctor treating a burns victim without the help of an app might
wrongly estimate the burned body surface area, they may not know the right
calculation, and they may get their calculation wrong. Using a good app
should fix these problems. On the other hand, doctors rarely get thingswildly
wrong, but if an app is buggy (or is hard to use), everybody who uses it is
a potential victim to being caught out by one or other of its flaws when it’s
used. One should do thorough studies to find out which is safest in practice.
Indeed, Mersey Burns did user studies and User Centered Design (UCD),124
which ensures apps (or, in general, any digital systems) are easier, safer, and
more reliable to use — we’ll give some more examples from Mersey Burns
later in this book.b,c Good UCD helps reduce the impact of any bugs that the
development process misses.

So, how is Mersey Burns used?
Imagine a burns victim turns up in the Emergency Department.
In the old days, you’d have to do a rather complicated assessment and

calculation. Where are they burned, and how badly? How long is it since the
burn happened? Each part of the body is different — for instance, burns on
the neck are worse than burns on feet. How old is the patient? What do they

b See Chapter 21: Mersey Burns user guards, page 293→
c See Chapter 29: Mersey Burns roller number entry, page 410→

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

124 | CHAPTER 10

weigh? Are the burns partial thickness or full thickness? If they are badly
burned, the patient may be dehydrated and will risk kidney problems, so
you’ll infuse themwith some fluids. But howmuch, and for how long? All of
these details then go into a calculation, and you end upwith a prescription for
giving the patient a resuscitation fluid. This is where Mersey Burns shines.

You draw the burns on the screen. Compared to the traditional method,
this is very easy. You then tap an icon near the lower right of the screen, and
a “Fluids prescription” box pops up and tells you what to do (figure 10.1).

Strangely, Mersey Burns doesn’t require you to specify the age or weight
of your patient before you get a fluids prescription — it’ll use the age and
weight from your previous patient. In the picture (figure 10.1), the age and
weight are some patient’s details from the last time it was used. This is a bug;
the app should confirm the age and weight of the patient. One hopes the
doctor notices and corrects the patient details — fortunately, Mersey Burns
lets you do that without having to re-enter the burn details as well.

Let’s carry on entering data for the same patient (figure 10.1), as they
probably have burns on their back too.

Tap the arrow button and the body drawing flips over. Now you can
draw the burns on the back. If the user draws the burns, then the app recal-
culates the percentage of burned body area, as you’d expect. Alternatively,
the user can enter the percentage directly as a number, which will generally
be quicker than drawing the details of the burns. Anyway, experienced clin-
icians will know the percentage of many common burns. Let’s say we want
10% burns, and we enter it.

We now click on the prescription button. The patient still needs fluids,
but the app is saying none should be given. What’s happened is that entering
a number has cleared all the drawing we did on the front. Because we’d
turned the body over, we can’t see that’s what’s happened.

The bug works like this. Whenever a numerical percentage is entered
into the app, all drawn burns are cleared. Conversely, when you draw any
entered numerical percentage is cleared. I imagine the designers thought
you would not want to both draw burns and enter a percentage, so you can
do one or the other, but not both. Unfortunately, if you have turned the
body over, you can’t see that your hand-drawn burns get cleared. The way
the app is designed, it’s a silent error if the user both does a drawing and
gives a percentage. The app takes whatever is done last — the drawing or the
percentage — as the definitive thing, and silently deletes the other. The bug
“makes sense,” but it is a silent bug — it could catch a user out and cause
patient harm and nobody would be any the wiser.

One can argue whether the user “should not” make this error, perhaps
because it seems tomake little clinical sense, but given that errors can always
be made, the app should block the error or point out the problem so the user
can correct it and work out how to do what they intended. Apps should
report, block, and manage all possible errors.

MEDICAL APPS AND BUG BLOCKING | 125
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

In general, if an error is possible, eventually somebody will make that
error. Designers of systems should therefore always ask themselves if an
error is dangerous (could it ever lead to delays or to patient harm?) and,
if so, how should their designs warn users or, better, how should they block
errors so the consequences are trivial. In otherwords, we do not say “the user
should not make that error,” but, rather, “how can we make the design safer
in case use errors happen?” Furthermore, to ask these design questions,
designers need a systematic way of finding all such possible errors — we’ll
explore how this can be done throughout Part II of this book, coming next
after this chapter.

When such errors occur, it’s no help saying the user made the error be-
cause that’s how it’s designed. This was the problem with the National Can-
cer Institute of Panama incidentd which led to the imprisonment of radio-
therapists who allegedly killed patients. Mistakes were made but ended up
with serious patient harm because of a bug.

Back to Mersey Burns … if a user is trying to do both drawing and per-
centage (in either order), then there are conceptual problems in the program
that need to be avoided. Here are some design alternatives that avoid the
bug:

A redesigned app could give the user a choice to resolve the problem
— see the sketch mock-up in figure 10.2.

The percentage display tells the user something useful, but perhaps it
need not allow any interactive input: it could just be a number
confirming that the patient has such-and-such percentage burns. It
the user cannot enter a new percentage, the drawn burns will never
be deleted by mistake.

Once drawing starts, the percentage could disappear, or once a
percentage number starts to be entered, drawing burns by painting
them is blocked.

Without doing experiments with users actually doing real work with the
app, it isn’t obvious which the best approach is. Indeed, it’s likely with ob-
serving and talking to users — who would be professional clinicians — that
they will propose more good design ideas, which in turn need more exper-
iments to evaluate. One of the key attractions of Mersey Burns is it allows
people to draw burns and it works out the percentage, so ideas to redesign
will require UCDe evidence to make good design decisions — any redesign
may introducemore problems than it solves. Indeed, I think that introducing
the percentage number entry was originally suggested during UCD, but, ev-
idently, the new feature added because people wanted it wasn’t thoroughly
tested.

d See Chapter 7: National Cancer Institute of Panama problems, page 73←
e See Chapter 22: User Centered Design, page 301→

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

126 | CHAPTER 10

You have drawn some burns, and you are also trying to enter a number
for the percentage of burn area.

Do you want to keep the drawing (and lose the percentage),
or do you want to keep the percentage (and lose the drawing)?

Keep the drawing Keep the percentage

Figure 10.2. A mock-up of how Mersey Burns might be modified, to handle an
error that is currently not noticed by Mersey Burns and therefore could cause prob-
lems. The choice above could be given to the user so they can sort out the ambigu-
ity — what did they want?

Let’s interrupt the Mersey Burns bug story with an actual drug over-
dose story …

In July 2013 doctor Jenny Lucca thought she had ordered a drug dose of
160 milligrams, but her computer took this to be 160 milligrams per kilo-
gram. As a result, her 16-year-old, 39 kilo patient, Pablo Garcia, got a dose
ordered that was 39 times too high.125

A dose 39 times too high? You’d expect the computer to give a warning
and check if such a large dose is what’s really wanted.

The computer Jenny was using certainly warned about overdoses, but it
also warned about even small 0.1 mg overdoses, which rarely matter. So ev-
eryone has learned to ignore its alarms — there are thousands of them a day,
and most mean nothing critical.126 Staff get what’s called alarm fatigue,
and start ignoring alarms and even taking action to silence alarms, which can
have knock-on effects. Patient harms and deaths have happened because of
alarm fatigue.127 Even patients have been known to silence irritating alarms.

We’ve talked about the Swiss Cheese Model already.f Here one of the
defenses, one of the slices of cheese, doesn’t just have a big hole— thewhole
slice of cheese has intentionally been removed.

The University of California San Francisco (UCSF)Medical Center’s Be-
nioff Children’s Hospital, where Jenny worked, had a new $7 million phar-
macy robot, which had been bought to eliminate error.

The robot obeyed its instructions flawlessly: it packaged exactly what had
been prescribed. It eliminated any errors human pharmacists might make,
but at the same time it also eliminated the human oversight the pharmacists
previously would have provided.

f See Chapter 6: Swiss Cheese Model, page 61←

MEDICAL APPS AND BUG BLOCKING | 127
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Like many digital systems, the robot had only been designed to do what
it was told.

Back on the ward, Brooke Levitt, Pablo’s nurse, took the pills packaged
by the robot. She scanned their barcodes, all 381/2 of them, which the com-
puter duly dispensed to match the prescription. This system has been in-
stalled to be perfect and eliminate error, after all.

About six hours later, Pablo’s arms and legs started jerking. He stopped
breathing.

The point is: a bug allowed an error to happen unhindered, and the app
or the pharmacy robot didn’t notice — and the preventable error turned into
an incident. It’s a bit like a car crash happening and the seat belts or the
air bags failing and not reducing driver and passenger harm, so that a bump
escalates into injury.

The idea to catch errors would improve any medical system. Errors hap-
pen. If the computer can spot errors and warn the user, or block the errors,
or even correct the errors, then the errors won’t cascade into patient harm.
The computer should be part of the team that makes healthcare safer, not
a disinterested bystander that lets anything happen without comment. The
computer, robot, app or medical device should be another slice of cheese in
the Swiss Cheese Model.

I personally would make digital system manufacturers liable for ignoring
bugs. I’d also have a rule that if a system alarms more than (say) 5 times
an hour, then the manufacturer is automatically liable (legally called a strict
liability) — a busy nurse cannot be expected to respond to each of 5 alarms,
and the manufacturer knows that before they start.

The actual number of alarms (5, for example) should be chosen after do-
ing some experiments,g and would probably need to be different for inten-
sive care, general wards, home use, and so on. Even better might be a legal
limit on the number of alarms per hour on the ward divided by the number
of nurses on the shift. However it’s done, manufacturers would then start
to make their devices work together to stay within the law, and this would
improve interoperability.h

Alarms, as they are currently done, are one way of the manufacturers
saying they are not accountable for what goes wrong. Alarms are often used
as an excuse to move blame onto the nurses or doctors. Of course, some-
times, but not very often, alarms are caused by doctors or nurses doing the
wrong thing, not very often, or by patients rolling over and pulling lines out,
but the point I’m trying to make is that the assumption should not be that it’s
always the clinicians’ fault for not responding to an alarm. Sometimes the
alarm problems are induced by the poor designs of the systems clinicians
have to use. Instead of first blaming clinicians, then, we need to change the
incentives to improve the designs.

g See Chapter 22: User Centered Design, page 301→
h See Chapter 19: Interoperability, page 245→

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

128 | CHAPTER 10

The question is, why do these bugs happen? For Mersey Burns, the an-
swer is that the designers over-simplified the app. When they developed it
and tested it, as I am sure they did, they knew what they had designed. They
tested whether it worked. And it did. If they demonstrated the app, it would
have seemed to work perfectly.

But they did not test it as it would be used. Sooner or later, real users use
systems in unexpected ways. People using an app (or anything else) don’t
have to behave as you expect. A digital healthcare system must be able to
handle errors and unusual behavior, because they will all eventually happen
in pressurized healthcare.

Now returning to the Mersey Burns app story.
Chris Seaton, the Mersey Burns programmer, has written candidly about

his experience developing Mersey Burns. His writing has its fair share of
insightful comments. Here’s one:

Developing a safety-critical app for multiple platforms is an
absolute nightmare. I never want to develop this kind of
front-end software ever again. Just the mundane problems of
iOS [Apple’s iPhone/iPad operating system] key management
and working with all the different SDKs [software
development kits] drained my enthusiasm. Maintaining a
project on top of constantly changing platforms is also
demoralizing. People would email me and say it didn’t run on
some Android phone variant I’d never heard of. All the
ecosystems are a mess.128

Yes, the programming problems don’t stop in the app, but go all the way
down to the various operating systems and vast software libraries (for in-
stance, for graphics and internet connectivity) that were never intended for
digital health applications.i

In fact, Chris Seaton took a great deal of care to ensure that the calcu-
lations that Mersey Burns does are correct. The calculations are based on
the Parkland formula. Every time the app is used, the program runs 5,000
separate tests to check the app is calculating the prescription formula cor-
rectly. These 5,000 tests were themselves generated by another program
(hopefully that program was checked independently).

Ultimately, all medical app calculations have to be referred back to the
original medical research literature, and here’s a serious problem for every
digital healthcare system and their developers: the medical literature is not
interested in programming or in digital risk.

Unfortunately, most of themedical information on the Parkland formula,
the basis of Mersey Burns, is behind pay walls (which means that you have

i See Chapter 27: Heartbleed bug, page 369→

MEDICAL APPS AND BUG BLOCKING | 129
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

to pay to read it), but Wikipedia has an accessible article.129 In brief, the
formula for the volume of fluid to be prescribed, V in milliliters (mL), is
given as V = 4 × m × A × 100, with the patient weight m in kilograms,
and A being the percentage body area of the burn (hence the 100 in the
equation).

That formula might seem simple enough, but where Mersey Burns helps
is how magically it works out the percentage burn area from just knowing
where you are burned: for example, if your head is burned, that’s 9%, but
if you’re a young child it’s more like 18%. Your arms are about 18% (9%
each). The percentages change with your weight and age, as, for instance,
obese people have relatively smaller heads, and younger people have pro-
portionately larger legs … and so on. An app that keeps track of all those
details helps a lot, especially when the user is under pressure — as they will
be with most burns victims being in pain and needing quick assessment.

A formula like V = 4 × m × A × 100 doesn’t say how to program it.
Clinical details don’t say how to get numbers into a computer reliably. They
don’t say how to associate the right numbers with the right patient, nor do
they say critical things like a valid percentage burn area must be a number
between 0 and 100. Theweight has tomake sense too: although the formula
happily works with negative numbers, patient weights have to be positive.
In the US, weights may be entered in Imperial (pounds) as well as metric
(kilograms), so an app will have to provide units and conversions if it is to be
used internationally. In France and Italy, the decimal point can be a comma
rather than a dot. And so on.

Of course, wemay take all these details for granted. The clinical literature
doesn’t evenmention them. They all seem trivial. Unfortunately, computers
don’t think like humans. Computers don’t know any of these critical details
unless they are very carefully programmed, so these and other such details
are, in practice, likely to go wrong. Any errors or oversights in the program
will exacerbate any errors the user makes. If anything goes wrong, harm can
happen, and if harm can happen, eventually it will happen.

In other words, while doing 5,000 tests on the correctness of the Park-
land formula being used in the Mersey Burns app is essential, it is not suffi-
cient. A good app has to have many more safeguards, particularly for man-
aging use errors.

Despite the very extensive medical literature on burns, there is nothing
(that I could find) on calculating the dose reliably by computer covering the
sorts of design issues listed above.130

The Mersey Burns app has other problems I won’t discuss here — such
as problems with the time of the burns131 — but these are harder to explain
and to understand. The bugs I’ve shown you here are easy to see, and easy
to learn about to avoid, but bugs you can’t see are more dangerous.

After complaining a bit about Mersey Burns, I need to emphasize that it
has been given accolades, and represents the current state of the art. Many

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

130 | CHAPTER 10

other healthcare systems andmedical apps haveworse problems thanMersey
Burns!

The POTTER app’s claim to fame is that it’s based on Machine Learning
(ML), and it claims to be highly accurate. It also has a peer-reviewed paper
about it in the journal Annals of Surgery.132 From the journal’s website, it’s
evident that this is a popular paper, which has been read and tweeted pretty
widely (compared to other articles of a similar age). So it’s a good app to
explore further.

POTTER is amedical app for assessing emergency surgery risk. POTTER
is available as an app that runs on both Android and iPhone, so it’s easy to
check out.

Potter was developed by a team of four people fromMassachusetts Insti-
tute of Technology (MIT), Massachusetts General Hospital, and the Harvard
Medical School, with two PhDs and two MDs between them. Its Machine
Learning approach is based on data from 382,960 emergency surgery pa-
tients, so it all sounds very impressive. It should be noted that the Annals of
Surgery will have had peer reviewers approve the paper for it to get published
— indeed, the paper itself is followed by some enthusiastic discussion from
four doctors from around the world.

Here are two screenshots from POTTER combined into a composite (fig-
ure 10.3), which I took from it on 16 January 2019, the day I downloaded
it. Unfortunately, the app has no version information at all, so I can’t say
which version of the app I was using to make these screenshots. Hopefully
when you check, it will have been improved. The app has no warranty or CE
mark, so it cannot be used in the EU. It provides no warnings, meaningful
use or contact information, either, if you need support.

Clearly, the app does little, if any, data validation. There is no warn-
ing that none of the data I entered made sense, or even that the numbers I
entered, if taken seriously, would indicate seriously ill patients.

You may think my data — answering “1000” for everything — is non-
sense. It is! But it’s clear proof that the app does not notice errors, even
gross errors. What more likely errors, probably more subtle errors, will it
also fail to notice?

The POTTER app ignored my data errors and suggested that the patient
mortality risk is 9.16% of mortality in the next 30 days. The app gives the
impression that this erroneous data matches 192 out of 2,096 patients. For
fun, if you enter –1000 (yes, I mean you enter a negative number) instead
of 1000 for all the numeric answers, it still ignores the nonsense, but it gives
1.09% as the estimate, which is nearly ten times safer! Yet the app is claimed
to give surgeons “objective data” on “meaningful survival” so patients at sig-
nificant risk can forgo surgery.

Obviously, in normal practice, nobody would ever intentionally enter a
negative number for a patient’s age. There are a huge number keyboards

MEDICAL APPS AND BUG BLOCKING | 131
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

Figure 10.3. Composite drawing of screenshots from the POTTER ML app (ver-
sion 1.1) for estimating emergency surgery risk. The app ignores gross errors in the
data given to it, like entering 1000 for every numeric answer, as shown here. The
app still provides an unqualified “final risk estimation” that is nonsense. Reasonable
ranges for this data are shown in figure 10.4.

on mobile devices, but the minus key is next to digits on many standard
keyboards. One day a negative number will be entered accidentally. It’s as-
tonishing that an app ignores use errors in its input. Ignoring errors with
obviously nonsense numbers makes it plain that the error checking in the
app is inadequate.

POTTERuses grams per deciliter, which is the preferred unit ofmeasure-
ment in the US. However, the preferred units to use vary around the world.
For example, normal serum albumin levels are 35–50 grams per liter, as op-
posed to 3.5–5.0 grams per deciliter, which are the units the app uses. This
makes the numbers ten times higher than this app expects, and it doesn’t no-
tice such errors. Creatinine levelsmay be in different units (such as µmol/L),
which means that a clinician entering numbers in this app is very likely to
make massive errors. A medical app like POTTER should check data is en-
tered safely. Clearly, POTTER cannot be used safely internationally outside
the US, although the app store makes it available to use anywhere in the
world.

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

132 | CHAPTER 10

Patient data Healthy range What I tested
Age 0–120 yr 1000

Albumin concentration 3.5–5.0 g/dL 1000
Creatinine concentration 0.6–1.3 mg/dL 1000

Figure 10.4. Safe data ranges, compared to the out-of-range extreme test data I
entered into the POTTER app, getting the results shown in figure 10.3.

Incidentally, you can’t tell from my composite screenshot (figure 10.3)
that when the actual POTTER app provides the answer it doesn’t summarize
the patient data that led it to its conclusion. There is no second chance to
notice that the patient’s age has been entered incorrectly …

It is understandable that an experimental prototype app ignores errors,
but the paper claims the app is “easy to use.” Normally, one would need
to do experiments with users to find out if an app is easy to use; the paper
provides no evidence of any user experiments whatsoever. Standard easy to
use features like “undo” are missing; indeed, pressing the app button resets
the entire session (apart from the first answer!), so losing almost all work
you’ve done if you try to correct any of it. An “easy to use” app should not
be so easy to use to do the wrong things — especially in a safety-critical area
like healthcare.

It’s surprising that the paper about POTTER says that it’s “highly accu-
rate” and that it “outperforms, in accuracy and user-friendliness, all the cur-
rent existing risk prediction tools.” No evidence is provided for these claims,
and the bugs discussed above raise doubts about its quality. In addition, you
can’t say something is “user friendly,” as the paper does, without providing
evidence — there are standard ways to assess usability, and none are men-
tioned. You’d expect something in the appropriate technical language like,
“90% of users completed 85% of tasks and reported on a Likert scale that …
[and give the details …]”

I think it looks like excitement over ML (Machine Learning) has clouded
the developers’ and the journal’s and peer reviewers’ collective judgment.
One important lesson, then, from POTTER is that just because something
is ML or AI or an app doesn’t, as such, mean it’s ready for clinical use; it
just ticks Cat Thinking boxes.j It would have been legitimate for the paper to
explain the interesting application of ML, which it is, but the paper presents
it as an easy to use clinical product. A clinical product must do much more,
including error handling, else it cannot be used safely.

I emailed the authors of the paper a copy of this book and pointed out
my criticisms above.

Here’s their response:
j See Chapter 3: Cat Thinking, page 25←

MEDICAL APPS AND BUG BLOCKING | 133
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

[The POTTER app’s] ML is designed to function around break
points of “less” or “more.” So if the algorithm reads, age>65;
then you entering 1000 still kicks in towards that wing of the
tree.

So any age larger than 65 is taken as “older than 65,” even if it is an im-
possibly large age, like 600, as might happen if the user, meaning 60.0, acci-
dentally omitted a decimal point — for instance, a child’s age of 10.00 could
be accepted as 1,000, and hence treated as if they were over 65 without
warning that the age is exceptionally large. (There can be reasons why huge
patient ages may be critical, so apps should generally provide overrides.133)

The POTTER authors continued …

It goes without saying that goal of POTTER is to help
surgeons and physicians counsel patients, and not to be a
pandora’s box of trials of “can we beat the machine?” Having
said that, we are aware of this shortcoming, and trying to
design technological solutions to the users who still want to
“mess” with it and enter non-realistic values.
You are correct in that POTTER now uses the units used in the
US and not several areas in Europe. We are actively working
on finding the way to accommodate any unit in the answer
with automated behind the scene conversions to make it easy
for non-US users.

There’s seems to be a confusion here. As the author of this book, I delib-
erately “messed” with POTTER to see how it responded to use errors. To see
if the app validates numbers, such as ages, the simplest thing is to enter an
impossibly large number and see if the error checking kicks in. In POTTER
it doesn’t. But of course real clinical users won’t “mess” like me; instead,
they will make different errors by mistake, and any app must respond ap-
propriately to errors. Although the POTTER developers rather dismiss it as
“messing,” it is, in fact, a professional technique for testing programs and
for finding bugs, properly called fuzzing.k If you miss the obvious errors,
you’re likely to have missed other errors.

I am glad the POTTER developers are aware of problems and are actively
trying to design technological solutions for these simple problems; however,
two years later (at the time of writing), there have been no new versions and
the app’s bugs have not yet been fixed.

I’m by no means the only person finding bugs in medical apps. The au-
thors of a paper134 found bugs in apps: a small survey of 10 apps they did

k See Chapter 28: Testing and fuzzing, page 389→

Part
I
⋄

D
iagnosis

⋄
Riskierthan

you
think

134 | CHAPTER 10

Box 10.2. Using wild data as a workaround

I enter extreme data like 1000 to help test how apps like POTTER handle use
errors with patient ages, but sometimes users enter outlandish data deliber-
ately as part of their work.

Ben Shneiderman was asked to look at the age statistics of an emergency
department. Rather than looking at ordinary statistics like the average, he
drew pictures of the data, drawing graphs to visualize it. It was immediately
obvious to the eye that there was an extreme outlier in the age distribution.
Some patients were recorded as being 999 years old!135

Whatwas actually happeningwas in the emergency department, patients
turned up and nobody knew how old they were, so they were entered in the
computer as 999— the computer doesn’t permit “don’t know,” so the doctors
and nurses invented a workaround. If we don’t know, we say 999.

That workaround works absolutely fine, until somebody wants to use the
data, as the hospital was doing. Unfortunately, the analysis — without the
workaround knowledge — is useless. Maybe my entering 1000 to check sys-
tems isn’t so silly.

in 2018 found three different answers (36.8, 50, and 375) for the same
oxygenation index (OI) calculation.

The paper says “it is therefore important to confirm how the website or
application calculates theOI before relying on it,” whereas I’d suggest, rather,
that it’d be far better for the developers to get it right, not leave it to the clin-
ician using it to sort out the problems when they’re busy looking after a pa-
tient. They have much better things to be doing than debugging apps. The
developers should be using professional development methods, including
User Centered Designl — including doing representative experiments with
real users doing real tasks. In particular, without the insights of UCD, de-
velopers will underestimate and ignore use error.

As well as bugs caused by poor programming, there’s also the possibility
of deliberate faults, the possibility of fraud. Some developers want to make
money by attracting investors regardless of whether their apps really work.
It’s very easy — it’s very tempting — to demonstrate unfinished products as
if they are more polished than they really are. It’s clear from discussions
throughout this book that the regulators for digital health still have to catch
up with the technology even when you assume the developers are doing
their best. If, as sadly happens, some companies and developers are devious,
then the current regulatory systems are completely inadequate. And it’s not
just the regulators: if bugs lead to anyone getting harmed, the legal profes-
sion is way behind too.87 The company Theranos is a case in point: a high-
profile Silicon Valley medical start-up, involving plenty of digital healthcare

l See Chapter 22: User Centered Design, page 301→

MEDICAL APPS AND BUG BLOCKING | 135
Part

I
⋄

D
iagnosis

⋄
Riskierthan

you
think

promises, was into wholesale fraud.136 The moral of the Theranos story is
that fraud happens so easily, especially when so many people don’t under-
stand the technical issues, so they are too easy to fool. Sensible people get
sucked into the hype.

Although medical apps have bugs, they are used by trained medical pro-
fessionals who know what they are doing. They may notice the bugs and
so will competently manage any problems that arise. In contrast, there are
more “wellness” apps that are used by people who are not medically trained.
“Wellness” and health apps cover a huge range of issues, from suicide pre-
vention to hair styling, from social running to mind games to delay demen-
tia. Many wellness apps fall into the public health arena, which also includes
targeting pollution, poor education, poverty, obesity, smoking, excess drink-
ing, and drug addiction — all major causes of premature ill health and excess
death. Partly because manufacturers are able to reduce the liabilities of their
business by down-playing the medical relevance of their products, wellness
apps are not regulated.

Not surprisingly, wellness is a huge growth area. There are over 300,000
health apps, including tens of thousands related to mental health. Unfortu-
nately, most have the usual range of bugs as well as dubious clinical effec-
tiveness. For instance, a popular mindfulness app rated with five stars and
having half a million downloads is no better than a placebo (non-effective)
version of the app.137

It seems that enthusiasm for apps trumps rigorous assessment, evalu-
ation, and safety. (Yet another case of Cat Thinking.m) Certainly, people
have rushed into developing medical software, all of which may be fine for
exploring the territory, but without rigorous programming — and rigorous
regulation requires rigorous programming — they are not going to be safe for
serious clinical use. I also predict that when things go wrong, the compen-
sation and legal systems will have trouble sorting out where blame lies.

I hope you’ve enjoyed this chapter, but I know talking about bugs can
be boring, especially talking about ones that aren’t spectacular and can’t be
seen without getting into details. The problem is, as we tend to avoid talking
about boring bugs, we tend to ignore them the rest of the time — and then
staff get blamed for bugs we aren’t noticing and aren’t talking about.

m See Chapter 3: Cat Thinking, page 25←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

The car industry has made
cars much safer since the
1960s. What can we learn
from car safety and from why
car safety improved to help
improve the safety of digital
healthcare?

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

11

Cars are safer

Figure 11.1. My car, after its crash in 2014.

The day before he got married in 2014, my son Isaac asked to borrow my
car, a silver Škoda Fabia. Well, of course he could! … about an hour later, the
police telephoned me to say there had been an accident (figure 11.1).

Isaac had hit another car.
It’s hard to talk about the crash without saying something like “Isaac had

an accident” or “Isaac had hit another car.” I doubt that the parents of the
other driver talk about Isaac having a crash; if their daughter was called Jane,
her parents are likely to talk about the crash Jane had. They’d say something
like “Jane had hit another car.”

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

138 | CHAPTER 11

It is very hard to talk about an accident without starting to lay the blame
on the people we know. It’s hard for me to say something like “Isaac was
driving the car when an accident happened to him.” It would just sound
suspicious if I talked in such a convoluted way!

The police said there was a crash at that road junction every week. Put
in other words: it doesn’t matter who is driving, accidents happen regularly
there. So, really, the road junction had the accident. Which in turn means
that the local council, who designed and maintain the road junction, caused
it. Somebody in the road junction planning department caused the crash.

When we say Isaac had the accident, it’s so much clearer, but its simplic-
ity stops us thinking about all the other possibilities. It’s too tedious to say
some unknown person or persons in the council or maybe somewhere else
caused the crash. Simply saying that Isaac had the accident saves us a lot of
troublesome thinking and pedantic wording.

So we avoid thinking and talking about the more complex reasons acci-
dents happen, and we avoid a lengthy process of working out the true causes
and liabilities. Sadly, the road junction is never going to get safer unless we
work out how to make councils more accountable. Perhaps they should pay
for every accident? If so, they would soon make dangerous junctions safer.
Currently they have no incentives to do so. Since in the way we talk about
road accidents we all blame the drivers, we end up using car insurance to
pay for everything, and the “cure” is found in repairing the cars (and paying
for personal injuries if they happen) rather than fixing the roads and their
design.

Likewise, when things gowrong in hospitals, it is somuch easier to blame
the nurse, the “driver in the room.” It is far simpler, and we do not need to
start thinking about whether the design or programming of an infusion pump
or some other gadget had anything to do with the incident. If we suspect an
infusion pump is part of the problem— like the road junction was—we have
set ourselves an important, but complex task. We need to understand the
inner workings of the thing and where it may have gone wrong. In hospitals,
we’ve the problem of tracking down everything that was in the room—most
infusion pumps and other devices are rarely treated in a forensic way: the
hospital will havemoved the stuff around long before any investigation starts.
Far easier to just say Isaac (or whoever the nurse was) “had” the accident.
Then we can stop thinking. If we blame the nurse, we can sack them or even
send them to prison, and thereby “solve” the problem.

Everyone believes we solved the problem; the bad nurse who let us all
down has lost their job — this is a great story for the media. Nurse betrays
our trust! Yet the truth is that the real causes have not been uncovered. The
system has not changed. The accident can happen again.

There aremore interesting things to say about the accident that happened
when Isaac was driving. You can see the car has a crumple zone at the front,
which has crumpled. The air bag also went off, and it saved him. This is

CARS ARE SAFER | 139
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Figure 11.2. A fatal car crash in 1950.

what crumple zones and air bags are supposed to do: they absorb energy in
crashes and save people from more serious injury.

There are also many safety features in modern cars that are harder to see
or recognize as such, like the seat belts, the ABS brakes, the “crash box” or
rigid frame to protect the passengers, and more. Car manufacturers today
want drivers to survive car accidents, or, better, to avoid accidents. If your
tires and brakes are good (and properly maintained), you can stop in a con-
trolled way, and you may never have an accident, because your car stops
before it hits anything or anyone. It’s important to buy safe tires, just as it’s
important to know how to buy and use safe digital healthcare.a

Despite the speed of the impact, and the damage to their cars, Isaac and
the driver in the other car walked away uninjured.

Safety technology works.
But car accidents weren’t always like this.
If Isaac had driven a car fifty or so years ago, perhaps the police would

have called me to the scene of a fatal accident. The drawing (figure 11.2)
shows a car accident that happened in the 1950s, and which happened at
about the same speed. It’s comparable. And utterly catastrophic.

Originally, when they were first made, cars were unsafe. Just getting
them to work was the main problem! Then the manufacturers said, “drivers

a See Chapter 29: Safety ratings will improve healthcare, page 401→

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

140 | CHAPTER 11

Figure 11.3. A Škoda car poses for promotional literature. Since Ralph Nader,
extolling excellent safety ratings helps market a car. Unlike cars, digital healthcare
doesn’t have safety ratings so nobody can create informed market pressure to im-
prove safety.

have accidents.” So, just from the way they talked, it couldn’t be the man-
ufacturer’s fault, as obviously the drivers had the accidents. Also, drivers
of the day wanted fancy cars, and safety wasn’t on their agenda either. Ev-
erybody, then, blamed the drivers for their accidents. How safe the car was
wasn’t part of anyone’s thinking.

Then Ralph Nader wrote the shocking book, Unsafe at Any Speed: The
Designed-in Dangers of the American Automobile.138

Ralph Nader’s book changed everyone’s attitudes to car safety.
Nader pointed out how cars had poor brakes, poor steering, and poor

tires, and how manufacturers blamed the drivers. I recommend reading it,
as, although he’s talking about cars instead of medical systems and devices,
he could have been talking about today’s hospitals and the “unsafe at any
speed” digital systems in them.

I think the most important change Ralph Nader brought about is that
instead of saying “drivers have accidents, so it’s not our fault,” car manufac-
turers have now changed their emphasis to “drivers have accidents, therefore
we must make safer cars.”

Now that car safety is recognized as important, car manufacturers com-
pete over safety. Now that there is legislation that requires all manufacturers
to build-in safety features, it’s no longer uncompetitive to be a manufacturer
that invests in safety. Indeed, the Škoda Fabia that Isaac was driving has top
safety ratings.

CARS ARE SAFER | 141
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Box 11.1. The problems of buying lemons and selling peaches

New cars come with a specification and a warranty, and customers know
what they are buying and the manufacturer sorts out unexpected problems.
Nader’s achievement was to put safety on the customer’s radar, and then this
transparent safety market helps it improve — because customers want safe
cars, and they may well pay premium prices for safer cars.

New cars are getting safer, but, currently, digital healthcare is muchmore
like the second-hand car market. Customers rarely know enough about what
they are buying. The sellers may be concealing problems. There is much
more at risk in the second-hand car market because customers are so easy to
exploit. Customers often end up with lemons.

On the other hand, if you have a good car that you want to sell — a
peach — nobody will trust you, and you won’t be able to get a good price
for it.

This book shows clearly that many digital healthcare systems are lemons.
They have unacknowledged bugs, and the system is set up so that the cus-
tomers — the patients — are unaware of the risks, and they basically have no
recompense. And, on the other hand, if you are a new digital start-upmaking
a safe healthcare product, you’ll find it very hard to cover your costs because
you can’t prove — within the current healthcare regulations — that you’ve
got a peach product.

Maybe this all sounds obvious, but it isn’t. George Akerlof’s paper “The
Market for ‘Lemons’: Quality uncertainty and the market mechanism” was
so insightful it won the 2001Nobel prize in economics.139 The digital health-
care market is not yet willing to open itself up to transparent market forces.
The resistance to transparency in digital healthcare comes from all sides: nei-
ther manufacturers nor healthcare organizations, like hospitals and regula-
tors, are happy to go public. Unlike other industries, we take it for granted
that patient confidentiality and commercial confidentiality trump the need
for transparency, learning, and improvement. Sorting out the digital health-
care market might win another Nobel Prize.

NCAP, the New Car Assessment Program, is an organization that rates
cars for safety.b Škoda want us to know they make safer cars (figure 11.3),
and NCAP ratings provide a trusted way of assessing safety.

Because the Škoda car has a high NCAP rating, and people want safer
cars, it sells well, and thus I ended up with one.

Just as it’s easy to talk about Isaac’s accident, speaking, and thinking as
if it was his fault rather than go into a complex story about road design, we
make up simple stories when things go wrong in hospitals: we quickly speak
and think as if we were let down by the person at the sharp-end. We under-
stand people. People make mistakes. End of story. Sometimes, of course,
we may have been let down by someone, but our simplistic scapegoat think-

b See Chapter 32: NCAP mission statement, page 467→

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

142 | CHAPTER 11

ing latches on so fast, it’s hard to think clearly about the details that matter.
(Scapegoat thinking is a very seductive case of attribute substitution, an error
we talked about earlier.c)

When road accidents happen, the police record the types of cars at the
scene. If we combine this data with other things we know about cars, like
their mileage, we can estimate the riskiness of each type of car.

With medical devices and digital systems we have no idea, because we
aren’t collecting the data. We don’t even know what devices are in use. If
we just kept track of what systems hospitals had and combined these with
basic statistics on health, such as how long patients stay in each hospital,
how many die, how many incidents are reported, we would immediately get
some insights — and no doubt lots of interesting questions — into which
systems were riskier and which were safer.

But, apparently, we’re not interested.140

Wouldn’t it be good if medical devices were as safety conscious as cars?
Wouldn’t it be good if, when there is an incident in a hospital, manufacturers
step in and say, “how can we make our systems safer”?

What do we need to do to change the culture so that hospital safety is
improving — just like car safety has improved over the last 50 years, and
continues to improve?

c See Chapter 3: Attribute substitution, page 28←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

Focusing on the bad stuff is
the traditional Safety One
approach. Safety One is
unconstructive. Instead,
Safety Two means focusing
on doing more good. Safety
Two emphasizes doing more
good things and therefore
squeezes out the bad things.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

12

Safety Two

We obviously want fewer bugs in digital healthcare. If we drew a pie chart
of everything that we are doing, it might look like this:

Many

good things

A little

bad stuff

Almost everything we do is good, but a small fraction of what we do
sometimes goes bad. This is true whether we are talking about program-
ming, or whether we are talking about what goes on in patient care in hos-
pitals (most patient care is amazing, but some of it falls short). Rather like
programming, though, patient care that seems to work perfectly well can
suddenly go wrong when something else changes — just like programs al-
ways have bugs, but the bugs only surface when the environment pushes
the programs into handling something unexpected. The bugs are bad things,
whether in programs or how we do patient care. Systems are not perfect.
Very fortunately, most of the time we can get away with these lurking prob-
lems, but then one day it really matters and something bad happens.

Thinking and worrying about the bad stuff makes us focus on “the bad
people,” and that’s actually counter-productive. The bad things are already
past, but what we want is fewer bad things in the future. What’s happened
has happened, but if we can learn how to fix things, we’ll be able to avoid
many future bad things.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

146 | CHAPTER 12

Box 12.1. What encourages success?

If you study the bad things that happen in hospitals, the adverse incidents,
you are very likely to find workarounds, shortcuts, miscalculations, guide-
lines not followed, poor use of technology, and other failures. These are all
obviously bad things, and they should not be happening. Each problem is
caused by staff, so therefore there is a natural tendency for us to blame peo-
ple and require them to improve.

Sidney Dekker asked what happens in the other incidents — the success-
ful ones are in the majority, after all.141 If you know what’s going right, you
can find out how to do better.

What did he find? Exactly the same things happen. Workarounds, short-
cuts, miscalculations, guidelines not followed, unfriendly technology, and
more failures.

So the seemingly “obvious problems” found in adverse incidents do not
cause the problems! These things always happen. Something else must be
making the difference. Dekker and his team dug harder into their data. They
found some things were consistently present more frequently when things
went well, including:

Diversity of opinion and people raising dissent.

Discussing risks.

Not relying on past success as a guarantee of present success.

People able to say “Stop.” Other people may notice problems.

Low barriers across seniority and departments.

Not waiting for audits or inspections before starting to improve.

Pride in good workmanship.

All these findings can be summarized in just one word, civility. There is
direct research showing civility makes healthcare safer.142 Civility is some-
thing that computers are generally very bad at.

The people caught up in bad situations, or caught up in situations that
were nearly bad ones (often called near misses), have fantastic insights into
how to help improve. They could become helpers rather than scapegoats.

Here’s the thing. As the pie chart above makes clear, it’s obvious that
doing a higher proportion of good stuff is the same as doing a smaller pro-
portion of bad stuff. When we know how to do more good stuff tomorrow,
doing so will inevitably squeeze out some of the bad stuff that might have
happened. If we don’t learn from bad stuff, it’ll just happen again. Indeed,
as any Human Factors specialist will tell you: the first thing to do to fix a
problem is to redesign the system to help stop the problem happening. The
first thing to do is to learn.

SAFETY TWO | 147
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

As Ignaz Semmelweis found out:a if someone gets infected they may die,
but it is far better to wash your hands and avoid passing on infection in the
first place. Worrying about the mistake somebody made to get infected is
Safety One thinking. Washing hands is Safety Two thinking — it avoids
the problems Safety One obsesses about.

This isn’t to say that inquiring into bad things is wrong, but only thinking
about what went wrong and who to blame is wrong.

At the sharp-end of clinical practice, focusing on the bad things and “bad
people” doing them (adverse incidents, patient harm …) is called Safety
One.143 It is the traditional approach. Clearly we want to reduce error, so
when it happens, we focus on it and its causes.

Typically in Safety One we blame the staff involved, but, interestingly, as
we succeed in reducing problems, we are increasingly unaware of what is ac-
tually going wrong. We have less data about problems to analyze. Ironically,
Safety One leads to what’s called the regulator’s fallacy: the more you reg-
ulate problems, the less data you get to help you improve. The incident data
becomes noise. And who wants to admit harming a patient? If we main-
tain the fiction that nothing has gone wrong yet (“we don’t have problems
here!”), who wants to be the first person to report an incident? Nobody.

In contrast, the more you employ Safety Two thinking, the more good
ideas you get, and the easier it is to be safer. (And that’s without taking into
account the infectiousness of celebrating successes.)

Safety Two focuses on the good things that are being done. The problems
that are being solved. How we helped patients go home happy and healthy.
As Safety Two succeeds, it gets more and more success stories. It gets more
success data to go on, and creates a virtuous cycle.

Crucially, focusing on the good stuff instead of the problems changes our
perspective. We can learn to do better. Doing better is systematic, whereas
each bad error — as Swiss Cheese makes clearb — is mostly a chance com-
bination of factors, usually from which we can learn little other than that we
were just unlucky. Swiss Cheese makes clear that those hazardous factors
are around all the time. The thing that’s interesting is how we can best avoid
them. Without Safety Two thinking, we may never work it out.

Would you learn how to make houses safer if you only studied houses
that fell down? You could learn a bit, but you’d learn far more if you also
studied successful houses that stayed up and why they stayed up. In partic-
ular, if you don’t investigate anything until something falls down, then you
only learn about the accidental particulars of the failure. To be able to build
safe houses, you need to know what safe engineering practice is: what are
the principles that ensure houses are stable and that keep houses up?

I heard of a sailor on an aircraft carrier who was given a decoration for
picking up a wrench. If an aircraft had landed on the flight deck and hit the

a See Chapter 2: Ignaz Semmelweis, page 15←
b See Chapter 6: Swiss Cheese Model, page 61←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

148 | CHAPTER 12

Box 12.2. The orange-wire test

Conventional accident and incident investigations try to find out what went
wrong. This is Safety One thinking. It has its place, but rarely makes much
difference to the rest of the world. With Safety Two thinking, incident in-
vestigations try to find out what went right, and also what can be put right
for a safer future.

Liam Donaldson’s orange-wire test is an analogy made with aviation
safety.144 Imagine an airline engineer finds a faulty orange wire on a plane.
Suppose the state of the wire suggests a systematic fault, which will affect
all planes of the same type. In aviation, it’s standard practice that all planes
in the world will be prioritized for inspection and fixed as appropriate. In
healthcare, currently, when there is an investigation, the investigation looks
backwards to determine what caused the adverse event — and because the
investigation is couched in local terms, nobody else is much interested in it.
But like the orange-wire test, the incident analysis should also be proactive:
what has it learned that can help improve healthcare worldwide? And how
can healthcare worldwide respond to fixing the problems identified?

Incident reporting systems needmodifying with Safety Two inmind. In-
vestigations must know what digital systems are relevant to an incident, and
they should seek out the “orange wires” — the bugs, the system flaws still
lurking to keep on causing problems. Immediately all manufacturers should
be informed, as well as all healthcare organizations using those systems.
(This is easy using the internet, of course — provided there is an incident
reporting system that supports doing so.)

When manufacturers and local IT managers respond and fix the prob-
lems, the orange-wire test has been passed.

wrench, the accident of dropping the wrench would have turned into the
catastrophe of a fast jet hitting it and causing chaos. The sailor was given an
award for stopping an accident turning into a catastrophe. The interesting
thing is that nobody was interested in who dropped the wrench — it could
even have been the very person who picked it up. Worrying about blame —
who dropped the wrench? — is Safety One thinking. Instead, the award
celebrated safety and helped improve safety through Safety Two thinking —
yes, accidents happen, but the important thing is avoiding catastrophes by
doing the right thing more often.

Inmy imagination, somebodywould have debriefed the sailor, and found
out what good ideas they had for improving things. Maybe sailors working
on the flight deck will then be given better tool belts so they are less likely to
drop wrenches? Who knows, but if Safety One had been used to blame the
sailor, many ideas for improvement would never have been considered. The
sailor would have been disciplined and sidelined. Improvement would not
have happened.

The analogy with healthcare is closer than it might at first seem. Aircraft

SAFETY TWO | 149
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Box 12.3. Never events and always conditions

There are some sorts of bad incidents that seem so horrible that we never
want them to happen. If, further, we think they should have been pre-
vented, then we start on the route of defining never events. Here’re two
standard never events: “Intravenous administration of mis-selected concen-
trated potassium chloride,” and “Patient suicide.” The idea is that when a
never event happens, it is investigated and taken very seriously.

Never events are Safety One thinking. One problem with never events
is that there are lots of horrible things that can happen, and an official list of
never events will never be long enough. Another problem is that if certain
events should never happen, when they do happen it seems that somebody
must be to blame. Conversely if there is an incident that is not a Never Event,
it won’t be taken so seriously — though the patient might be unable to tell
the difference, especially if they died.

In contrast, Safety Two encourages thinking about always conditions.
What can we always do to make the best outcomes happen more often?

Needlestick injuries happen when somebody jabs themselves with a
sharp object, like a syringe needle. If the needle was contaminated, typically
by blood, needlestick injuries can be very serious.

One approach to needlestick injuries would be to say wemust never have
needlestick injuries — if so, we’ll likely end up with rules that blame any-
one who hurts themselves. Alternatively, we could always buy syringes like
VanishPoint,145 where the needle is automatically retracted after use. With
VanishPoint, it’s almost impossible to get a contaminated needlestick injury
by accident.

One of the key lessons to learn from needlestick injuries is that better-
designed technology can reduce errors and harms. Especially with digital
technologies.

maintenance crew are obsessed with Foreign Object Damage (FOD), such
as dropping nuts and bolts into aircraft and losing tools. Tools are counted in
and out and signed for so they don’t get left behind or left on the flight deck,
just like surgical instruments and swabs in an operating theater are double-
checked so none are accidentally left in the patient.

Safety One is the dominant cultural assumption in healthcare, as well as
in wider society, including the media. It is so easy to blame “blundering”
doctors and nurses in a witch hunt — there are many examples in this book
where poor digital systems caused problems that were blamed on the health-
care staff. The “blame game” achieves nothing, but exacerbates the blame
and then the self-blame of people caught up in the incidents. It then badly,
sometimes catastrophically, affects mental health, and therefore undermines
the effectiveness of all of healthcare.85

Amemorableway to summarize Safety Two thinking is, “Startwithwhat’s
strong, not with what’s wrong.”146

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

There’s a lot more to digital
health than being excited
about digital computing. We
need to learn how to think
computationally to take full
advantage of digital.
Computational Thinking is
the mature way to think
about computing — and
digital healthcare.

(Don’t forget that the
computer chip means
that this is a more technical
chapter.)

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

13

Computational Thinking

When Charles Babbage started to design the world’s first digital computer in
1822,147 he was so far ahead of his time that he had to build it out of brass
gear wheels. He was very excited by the potential of his Difference Engine,
as he called it, and as he built it he had so many new ideas he could not
resist abandoning it to start building an even more powerful successor, the
Difference Engine No 2. He never finished Difference Engine No 2 either,
because by 1837 he had become obsessed with new ideas for an even more
exciting computer, one that he called the Analytical Engine.

Apart from the fact that he failed to finish his Difference Engines and
see them work, on the plus side his Analytical Engine would have been the
world’s first ever programmable computer.

He didn’t finish his Analytical Engine either.
Babbage did, however, inspire Ada Lovelace, who has gone down in his-

tory as the world’s first programmer. (The programming language Ada,a
which we’ll meet again, was named after her.) Ada, Countess of Lovelace,
was way ahead of her time, and she is noteworthy for realizing that one day
computers would be able to do far more than mere calculation — they could,
for instance, compose music. She wrote this prescient piece in 1843:

Supposing, for instance, that the fundamental relations of
pitched sounds in the science of harmony and of musical
composition were susceptible of such expression and
adaptations, the engine might compose elaborate and
scientific pieces of music of any degree of complexity or
extent.148

Ada also anticipated mathematical modeling of the human body, in par-
ticular she thought about the nervous system, so in some ways she antic-
ipated modern digital healthcare. Her notes148 have been called the most

a See Chapter 27: SPARK Ada, page 375→

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

152 | CHAPTER 13

important document in Computer Science before modern times, and, cer-
tainly they are full of fascinating analysis and insights.

The London Science Museum constructed a replica of Babbage’s Differ-
ence Engine to the same engineering standards as were available to him in
the 1800s. It performed its first calculation in 1991.149 The Science Mu-
seum then built Babbage’s printer, just as he’d designed it, and finally got it
to work in 2000.

You can argue that Babbage, the archetypal British eccentric inventor,
was nearly two centuries ahead of his time, or you can argue that his Differ-
ence Engine certainly set a very high bar for the longest delay to computer
projects.

Over a century after Babbage, during World War II (1939–1945), Alan
Turing helped design some amazing electro-mechanical devices to crackGer-
many’s secret Enigma code.b Years ahead of his time, by 1950 Turing had
also anticipated and worked out some of the key ideas about Artificial Intel-
ligence.

But back in 1936, three years before the war, Turing had already pub-
lished a very remarkable article about a simple but general purpose com-
puter, which has now come to be called the Turing Machine in his honor.
He wrote this before any computers had actually been built, but he showed
that, in theory, once you build a sufficiently powerful computer it can do
anything. Anything at all that any computer can do. This is a stunning in-
sight.

Turing designed Turing Machines as very simple computers. He made
them so simple so that he could explore the fundamental limits of comput-
ing. What Turing found was that once you’ve got a few bits of a computer
working, it will be powerful enough to simulate any computer, and so it can
do all the things that any computer can do.

It is easy tomake a TuringMachine, as they are so simple. Anything pow-
erful enough to behave like a Turing Machine is now called Turing Com-
plete, because, as Turing showed, no computer can do anything more pow-
erful than a Turing Machine can. As if to prove the point, Turing Machines
have been built out of Lego and even out of wood (figure 13.1).150

Many things are powerful enough, but nothing is more powerful: noth-
ing can do more sorts of computing than Turing’s original machine. This
discovery has an amazing implication: there is nothing that is more power-
ful than a Turing Machine, and every form of computing is equivalent to a
Turing Machine. Your brain, for example, cannot do more powerful com-
puting than a wooden Turing Machine! (Though it may well do it faster and
more quietly.)

It happened that Alonzo Church had gone down a very similar line of
thinking, and so in their joint honor, the Church–Turing Thesis is that all

b See Chapter 24: The Enigma Code Machine, page 329→

COMPUTATIONAL THINKING | 153
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Figure 13.1. The amazing wooden computer built by Richard J. Ridel. Because
this machine is a Turing Machine it can (eventually) do anything any computer can
do, provided it doesn’t run out of wood first. The point is, computers can be made
out of anything and they can simulate anything.

forms of sufficiently powerful computing are equivalent. In fact, all suffi-
ciently powerful computers are equivalent to Turing Machines and every-
thing that being a Turing Machine implies, namely that they can simulate
any other computer. As the wooden and Lego Turing Machines make clear,
computers don’t have to be very powerful before they can do anything, and
they don’t have to be made out of digital electronics. The ideas of Turing
Completeness and the Church–Turing Thesis are BIG.

If your mobile phone can run apps, it is essentially Turing Complete.
In principle, it can run any app and do practically anything, so long as you
don’t run out of memory (or battery). Indeed, being Turing Complete, it can
even simulate any computer doing anything. It was a remarkable discovery
of Turing’s, and firmly established the profound power of computers over
our lives. There are now numerous Turing Machine apps that you can run
on your mobile.

The amazing visual effects you see in films like Star Trek are just one
example of the power of Turing Completeness. Films can now create any
imaginary world, and they can create the illusion of anything happening —
whether that is visualizing ordinarymachinery (like spacecraft) doing things,
or visualizing computers on a spaceship doing anything computers can do,
and so on recursively.

While Turing Completeness enables films to be compelling, as they can
simulate anything (they can even do the animations for physically impos-

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

154 | CHAPTER 13

sible fiction), equally, the power of Turing Completeness creates profound
problems at the heart of digital:

Computers can generate images and experiences that can simulate
absolutely anything we can imagine. They can look and feel
incredibly realistic, whether they are just a designer’s ideas about
screenshots or full-on interactive virtual reality. Anything in any film
you’ve ever seen, like Star Trek, can be created and made into a
persuasive world. We can imagine a Star Trek doctor and medical
suite that does amazing things, and it can be made visible and appear
as if it really worked. With computer game technologies you can
interact with it as if it was real.

However, what computers can actually do is logically restricted. In
fact, the human limitations of programmers puts further practical
restrictions on what is possible — some things are too big or too
complex to get our minds around to program correctly. Our creative
imagination is not sufficient to ensure things work reliably.

Digital things that look good may not be good. They may be
imaginary. Despite the apparent realism, we have no idea how
imaginary they are. We have no idea how many bugs there are in
reality. Unless we have an actual, rigorously worked out and
confirmed plan, it won’t work as we expect.

When I first started teaching programming (in the early 1970s, when
everything was much simpler), a first exercise was to write a program to read
two numbers and print their sum. In those days, just getting your program
into a computer on a stack of punched cards and getting the answer back
was quite a learning experience. If your programwas accepted, the computer
printed the answer on paper, which was then put in a pigeon hole for you to
pick up the next day. Our students needed a simple exercise so they could
first learn all the arcane procedures, and this was it.

One student handed in a program that said WRITE 15, and it was fol-
lowed by 7 and 8. I’m simplifying a little bit: the correct answer was a bit
more complicated, as it had to be written correctly in a proper programming
language — FORTRAN in those days — but this gives the idea the student
had.

Yes, the program did print the sum of those two numbers, 7 and 8, per-
fectly well, as of course 7 + 8 = 15. But it did not actually read those
numbers, nor did it add those numbers and print their sum. If the numbers
7 and 8 were changed to 17 and 25, the program would not print their sum,
42; instead, it would still print 15. The student was thinking that a program
that looked like it worked would get marked as correct. His program read
two numbers and printed their sum, but what was wanted was a program

COMPUTATIONAL THINKING | 155
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

that could add any two numbers and print their sum. This story illustrates
some profound problem. It’s easy to make a program look like it works if
you don’t look too closely, but it may be incomplete, imaginary, have bugs,
or even be faked to look better than it is. Another problem is that we all
knew what the question meant, but you could say the student had legiti-
mately found a buggy interpretation of what we asked them to do, and what
he did wasn’t what wemeant. We asked for a program to add some numbers;
his program could do that. What we had meant to ask was for a program that
could add any two numbers. Even then we didn’t mean any two numbers, as
computers can’t handle any numbers —we hadn’t asked for any error check-
ing! There are limits. So there is a whole mess in what the question actually
meant, as well as a mess in what this student gave as an answer.

These quirky problems arise in a very simple example: a first student
program. Imagine how complex the problems become in real questions like
how to design a hospital computing system. There are fundamental gulfs
between what we want digital systems to do, what we tell them to do, what
we program them to do, what they really do, and what we realize we meant
after things go wrong. And like the student exercise, many of the problems
aren’t at all obvious until you get something in front of you that is obviously
wrong — but you didn’t have the foresight to avoid it happening. Bridging
all those gulfs is not just hard work — in fact, it’s strictly impossible.

This example makes many important, profound points — in fact, too
many points to follow up here.151 For instance, testing a program is not
enough to establish whether it’s correct. This student’s program does pass
a test: it adds 7 and 8 and correctly gets 15. Unfortunately, this test is in-
adequate, as is obvious — but it’s only obvious in hindsight, because we’ve
understood the conceptual error in the student’s program. Usually, we can’t
see the program, and therefore testing in general can never be sufficient —
they may seem to work, but still have bugs we’ve missed. And real programs
are far more complicated than this utterly trivial student example. Poten-
tially, they pass every test you throw at them, yet they still have bugs lurking
somewhere that you’ve missed.

Turing also showed that there are some things a Turing Machine cannot
do, regardless of its power — these things are now called non-computable.

If something is non-computable, a computer cannot do it. More pre-
cisely, it cannot do it correctly — there must be bugs. So, before you start
programming, you need to show your ideas are computable, that they will
work in principle.152 If you try to develop a program that does something
that in principle is non-computable then your program must have bugs.

It’s possible, unavoidable even, that many things humans do informally
in healthcare are non-computable — if anybody wrote down precisely what
a computer had to do to get these things done, it would in principle show
up the inconsistencies. There’d be bugs as the computers make the incon-
sistencies visible — computers don’t do ad hoc workarounds when things

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

156 | CHAPTER 13

are strictly impossible to do by the letter. When computers crash or have
interoperability problems, they are just making the bugs visible.

Turing showed that if something is computable, there are any number of
ways you can do it. In contrast, if something is non-computable, it won’t
work correctly however you try to do it. A practical insight following from
this rather technical idea is to try to avoid implementation bias: that is,
avoid premature concern for how something is to be done, before working
out what is to be done and whether it will work. For example, many peo-
ple want healthcare to move away from paper and faxes to modern email.
But email is just a faster way of doing what paper and faxes do: it’s just a
change in implementation and it doesn’t change what the computation is.
The question should be not can we do what paper does but faster, but what
does paper do? What does paper compute (or what do people compute with
paper)? Paper keeps clinicians up-to-date with patient information, for ex-
ample. What would be a good way of doing that? Possibly, having a shared
database. That would mean clinicians could share all information and you
would not need email.

The point here is: paper can’t provide a shared database. To improve
paper, you want to find out what you were trying to compute, not just try
to make paper more efficient. Making paper more efficient — computerizing
it — doesn’t address the fundamental problems that need solving.95

The point is, email does what paper does and certainlymuch faster and in
many ways better. But paper is an implementation trying to solve a problem.
We need to find out what the problem is, not think paper is the problem that
needs solving. Computerizing what we are already doing — replacing paper
with computers — is having implementation bias. We end up with comput-
ers highlighting the problems paper has, so much faster that we complain
about the problems of computers, when really the problems are the previ-
ously unappreciated problems that paper has made an inadequate attempt at
doing.

But back to the history of computing. It took another ten years after Tur-
ing’s ideas for the world’s first recognizably modern computer, the ENIAC,
to be built. The ENIAC was built at the US University of Pennsylvania, and
was working properly by 1946.153

Before JohnMauchly andPresper Eckert had finished building the ENIAC,
they had already started work on its successor, the EDVAC, which they pro-
posed in 1944 for $100,000. They got it working seven years later, deliv-
ered at a cost five times higher.

All this ancient history of digital computing has set precedentswe haven’t
shaken off. It’s still considered normal to be continually updating and re-
vising digital systems. Life-critical systems, in some areas like aircraft and
space-flight software, however, are remarkably stable and reliable.

The furthest humans have ever traveled fromEarth was in the very nearly

COMPUTATIONAL THINKING | 157
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Box 13.1. The British EDSAC computer

The British competitor to ENIAC and EDVAC was EDSAC, the Electronic
Delay Storage Automatic Calculator. EDSAC was the first computer to run
a video game, and was the world’s first proper digital computer with a com-
pletely stored program. EDSAC was constructed by Maurice Wilkes and ran
its first programs in 1949. (I am a proud holder of the British Computer
Society’s Wilkes Medal.)

Wilkes is famous for this 1949 quote about bugs:

It was on one of my journeys between the EDSAC room and
the punching equipment that the realization came over me
with full force that a good part of the remainder of my life
was going to be spent in finding errors in my own programs.

Emphasizing the fact that any sufficiently powerful computer (human
brain or actual computer) can simulate any other, the EDSAC can now be
simulated onWindows,Macintosh, andLinux computers.154 The project that
built the EDSAC simulator quotes this from 1949:

There are not enough “brains” to go around at the moment,
but a dozen would probably be sufficient for the whole
country … The future? The “brain” may one day come down
to our level and help with our income-tax and book-keeping
calculations. But this is speculation and there is no sign of it
so far.

Computers were specialized andmight do tedious numerical work for us,
but networks, social media, and entertainment — let alone digital healthcare
— weren’t anticipated.

disastrous 1970 space flight of Apollo 13, dramatized in the film of the same
name.155 It flew around the moon using computers that were huge, filling
rooms, but were far less powerful than your mobile phone. It’s amazing
how computers have become so powerful and become so small. My iPhone
XR, which easily fits in my pocket, is an amazing example of how comput-
ing has totally transformed in just a few years (figure 13.2). I wonder what
technology will soon be able to do, eclipsing my iPhone in the same way my
iPhone eclipsed Apollo.

In the early days of computing, computers weren’t so powerful, and we
struggled to get computers to do the work we wanted them to do. They were
so slow, and they hardly had enough memory to do anything useful. Getting
something as simple as doing a payroll — printing out checks to pay your
staff — was a lot of hard work. The computers were only just big enough to
handle all the data. So our programs had to be correct, small, and efficient,
else nothing would work.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

158 | CHAPTER 13

1951 2019
EDVAC iPhone XR

Cost $500,000 $900
(over $5M in
2019 money)

Weight 7,800 kg 0.2 kg
Power consumption 56 kW 0.00173 kW
Floor space 45.5 sq m 0.00063 sq m (upright)
Bits of memory 44,000 2,048,000,000,000
Speed in operations 340 5,000,000,000,000
per second
Active components 6,000 valves 6.9 billion transistors
in processor
Error-free runs 8 hours Months
Number of human 34 1
operators
Other features Oscilloscope Wi-Fi, camera, microphone,

for output accelerometer, GPS, phone,
streaming video, and more

Figure 13.2. One lifetime of digital progress. Digital technology is not only unbe-
lievably more powerful, but it’s personal: almost everybody has far more powerful
computing literally at their finger tips than could have been imagined only a few
years ago. What’s coming next?

We didn’t realize it at the time, but we were developing the science of
thinking clearly about how to tell a stupid thing, the computer, how to solve
a problem quickly. Soon, that process got to be called algorithmics,156 and
finding the best, usually the fastest, algorithm for a computer to solve a prob-
lem became a popular occupation — programming.

Then Jeannette Wing noticed that we were doing something much big-
ger.157 We were in fact finding the best way to solve problems, whatever the
thing doing the solving was, even if it wasn’t a digital or electronic computer.
It could be a human brain, or a group of humans, or even insects.

All the methods we have of solving problems with computers, even AI,
are methods that solve problems with anything — thanks to the Church–
Turing Thesis and Turing Completeness. Hence Computational Think-
ing is the way of thinking about computational problems, where “computa-
tional” takes on the very broad view that Turing realized. Almost anything
“computes,” so we take Computational Thinking to mean the general ways
to understand problems to precisely and correctly specify how an agent can
reliably solve all possible variations of the problems repeatedly without er-
ror158 and without supervision.

COMPUTATIONAL THINKING | 159
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

In that definition of Computational Thinking, I’ve introduced the term
agent. An agent could be a computer, and precisely specifying how it be-
haves might, of course, mean doing some programming. But thanks to the
Church–Turing Thesis, an agent equivalently can also means a human, an
organization, a team, an operating room, a bureaucracy, the legal system of
a country, a robot, an autonomous AI agent, even an ant or microbe — that
is, an agent is anything that can do things following rules.

An important point is that Computational Thinking involves indirec-
tion. It isn’t just about solving a problem, but it’s about solving a problem
so generally so somebody else or something else — a computer, an agent,
whatever— can repeatedly solve the problem in all its forms, again and again.
(That’s the indirection.)

For example, sorting a list of patients in front of you into alphabetical
order is ordinary problem solving; but working out how to get a computer to
correctly sort any number of patients into alphabetical order is a step more
complicated. You can’t cheat; you have to figure out a general method that
always works under any circumstances thrown at it. You have to cope with
patients with the same surname but different forenames; you have to cope
with accents; you have to anticipate quirky variations — like sorting no pa-
tients at all, or sorting a list of patients including those with missing names
because we don’t know them. This is the indirection: Computational Think-
ing is solving every possible form of a problem so that an autonomous agent
can solve any particular case of the problem without bugs.

Computational Thinking gets more fun when we realize that the agent
may not be very reliable: the question arises how to block, detect, and re-
cover from problems and errors. You can see Computational Thinking is
essential in healthcare. It is how good standard operating procedures
(SOPs) — such as the rules nurses should follow to do clinical procedures —
should be devised.

Computational Thinking is best thought of as the set of methods that
Computer Science uses to do its science. Other sciences have their meth-
ods, like controlled experiments, randomized controlled trials,c surveys, tri-
angulation, laboratory work, or field work, and so on. Computer Science has
Computational Thinking.

At the beginning of this book,d we saw how the discovery of biological
bugs transformed the thinking around disease and infection — we now have
methodologies that worry about and manage sterilization, cross-infection,
contamination, and more. We now know that to do good science (as well as
a whole host of other things, like safe cooking) you have to have reliable ways
of working that take account of something you simply cannot see. Similarly,
as we are maturing how we think about digital, not least learning about our
own unnecessary bugs, Computational Thinking is the collection of appro-

c See Chapter 28: Randomized Controlled Trials, page 393→
d See Chapter 2: We don’t know what we don’t know, page 15←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

160 | CHAPTER 13

priate methodologies for doing good digital work. Computational Thinking
helps us be successful and reliable in everything we do with digital, even
though a lot of it may seem unnecessary because we can’t see the real but
intangible things it is sorting out for us.

In short, mature, responsible digital, programming, computer science,
IT, Health IT, informatics — whatever you want to call it — should be based
on doing Computational Thinking.

Computational Thinking collects together awide range of powerful, tried-
and-tested ideas, and techniques. I’ll explore a few in this chapter.

First, though, why should digital healthcare worry about Computational
Thinking anyway? Doesn’t digital healthcare work well enoughwithout get-
ting “computational” or having a “methodology”? In most areas of digital,
serious Computational Thinking doesn’t reallymatter, so long as the systems
work well enough. In many areas, what the computers are doing is very flex-
ible (like graphics formovies); inmany areas digital is pretty straightforward,
like in banking. Even if you are richer or poorer than I am, your bank account
works just like mine.

In areas like aviation, what digital has to do is complicated, but it’s very
well defined; for instance, aviation programmers know they have to keep the
plane operating within its safety envelope. Basically, planes obey basic laws
of physics, and they keep well away from each other.

In healthcare, though, things are much more complex. We don’t really
know what is going on, and every clinician does things differently. No two
patients are the same, men and women are different, pregnant women are
different, children are different — and many patients tinker with their own
treatment (otherwise known as compliance issues). Some patients have
diseases, others have injuries, some have dementia, some are unconscious
on life support, andmany havemixtures of problems (comorbidities). Each
patient is unique.

Mistakes can kill or harm patients; thinking very clearly about digital
healthcare is essential. Drugs have side effects, and they can interact with
each other when a patient is on more than one. Computers need to keep
track of them. Then there is the billing and monitoring, keeping track of
equipment and use-by dates… andmuch,muchmore. Aswe’ve seen repeat-
edly in this book, we are not generally thinking clearly enough about digital
in healthcare. While the details may seem overwhelming, Computational
Thinking is about how we should think; it’s offering a strategic, proven, way
to improve digital healthcare.

Good programmers do all sorts of things to help their computers perform
quickly, efficiently, and reliably. They have developed a wide range of rig-
orous techniques to help. Computational Thinking says these ideas can be
used for many more things than just programming digital computers.

Computational Thinking is very rich. I made a list of key insights for
this book, but it quickly grew to over fifty ideas, so I’ve selected a few of

COMPUTATIONAL THINKING | 161
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Box 13.2. Reproducibility is essential

I realized that Computer Science didn’t follow standard scientific methods
when I noticed some implausible articles in the respectable Journal of Ma-
chine Learning Research back in 2004. I noticed that many articles were not
reproducible.159

Reproducibility is a core part of good science, and hence of Computa-
tional Thinking: it means that the work you do should be explained fully so
that others can reproduce it and check it.160 If research in science is not re-
producible, nobody can check it, and one begins to suspect whether it was
accurately reported in the first place. In an exciting field like Machine Learn-
ing and digital healthcare, reproducibility is critical.

Reproducibility is only just starting to be acknowledged as a very serious
issue for digital healthcare. Why should we believe reports of the effective-
ness of new digital healthcare ideas if nobody can check them? There are
obvious conflicts of interest: people want to convince us their healthcare in-
novations are amazing, but they don’t want to give away trade secrets. Taken
together, that encourages them to exaggerate without risk of anyone being
able to check their claims. If independent scientists can’t reproduce a digital
health report, why should any of its claims be believed to work in healthcare?

Ironically, everything in digital healthcare is based on computer pro-
grams, and computer programs are very easy to share and reproduce. Every
research paper on digital healthcare, those that purport to be science, should
provide aweb addresswhere to get full details of what is being done. Further-
more, modern digital cryptography provides many useful techniques to help,
for instance to provide certificates to ensure the website is in fact materially
the same as the website that was reported in the published paper.

Once we get reproducibility sorted out, digital health regulators should
demand peer-reviewed evidence — publicly checkable articles in scientific
journals — that proposed products work as claimed. Everything would get
safer.

the more powerful and easier-to-explain ideas that have direct relevance to
digital healthcare. My examples are rather “programmy,” because I want to
emphasize that programmers have a vast repertoire of ideas to draw on that
can contribute to healthcare system design.

The first idea in my list, computational complexity, shows that digital
healthcare regulation has to get involved in best practice, and start to regulate
the details of programming digital systems.

Computational complexity

We know that many things that computers do, like sorting patient names
into alphabetical order, are very easy to do. But there are some things, like
scheduling operating rooms, that are much harder to do.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

162 | CHAPTER 13

The idea from Computational Thinking is to work out a problem’s com-
putational complexity, and then you have a precise idea of how hard it is
to do. Most things we ask computers to do have a low complexity: matching
patients to their beds is easy, but scheduling operating rooms is much harder.
In fact, scheduling operating rooms is very hard, especially as emergencies
keep changing the schedule in real time. Since it is so hard, Computational
Thinking about it suggests asking for some help: for instance, if one oper-
ating room was reserved for emergencies and never scheduled for routine
operations, that would make the problem much easier to solve.161

Some problems have a complexity that goes up exponentially (called
combinatorial explosion), and these are problems you really want to avoid
having to solve — or you have to come to terms with imperfect solutions that
can be solved more easily, but not as well.

Combinatorial explosion makes program testing hard. Very hard.
This point underlies almost every problem in digital healthcare. As pro-

grams get bigger, testing them thoroughly becomes totally impractical. If a
program has one test, say testing if the patient is diabetic or not diabetic,
then there are two separate outcomes to check — does the program work
correctly when the patient is diabetic, and does the program work correctly
when the patient is not diabetic?

Two checks doesn’t sound too onerous. But as the number of program
tests increases, the number of checks suffers combinatorial explosion. A lot
depends on exactly how the program is structured, but basically, two more
tests will need 8 checks to cover all possibilities, 3 more tests will need 16
checks … With only 10 tests, already 1,024 checks are needed to cover ev-
ery combination. The numbers start getting larger and larger very rapidly,
exponentially, in fact. For 11 tests 2,048 checks are needed — now, going
from 10 to 11, just one more test adds over a thousand more checks to be
done.

Mersey Burnse is a program that has 1,125 explicit tests in its code. If
we could check each case quickly, say in only a minute (assuming we knew
what should happen for each test, and assuming we can work 24 hours a day,
7 days a week, and all non-stop), then doing the checks needed would take
us a lot longer than the age of the universe. In other words, the complexity
of even a simple app is such that we can’t test it thoroughly; more precisely,
we can’t test it thoroughly this way.

Let’s explain it another way, adding an important point.
Instead of thinking about a medical app like Mersey Burns, think of a

game app to play chess. Of course, you would do testing to make sure that
it can draw a chess board, and that the pieces move nicely. But you would
not test it works for every possible game of chess: that’s impossible, because
there are far too many possible games of chess to check.

e See Chapter 10: Mersey Burns app, page 121←

COMPUTATIONAL THINKING | 163
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

In 1950, Claude Shannon estimated that there are 10120 possible chess
games.162 The number has since been revised, but the idea has become so
famous that the number is now called the Shannon Number. The Shan-
non Number is a huge number — written down, the Shannon Number is
1,000,000,…,000 except here I didn’t written out in full all of its 120 ze-
ros. In words, the Shannon Number is one million million … million, with
the word “million” repeated twenty times.

The point is, there is no way you can test a chess program thoroughly:
the huge Shannon Number shows there are far, far, far too many games to be
able to check each one is played correctly. And here’s the important point:
to check a chess program this way, would you have to know what should
happen in every possible game, and nobody can play chess that well!

Chess is too hard to test, and unfortunately almost every medical app or
digital system is much harder than chess.

The conclusion is that we cannot rely on testing. Instead, you sample a
manageable number of cases to persuade you the app basically works, then
you have to rely on the program being so well written that there are very few
(preferably zero) bugs left that you haven’t spotted. The question is: how
can you write a program that you can rely on when testing is not sufficient?

David Parnas is the key character who cracked this problem.163 If pro-
grams are broken up into independent modules, then the modules can be
tested independently. Since they can be checked independently, the worst
of the combinatorial explosion is avoided. If you write a program that in-
cludes a previously checked module, you do not need to waste much time
re-checking it. Indeed, most of your “checking” will be checking whether
you properly understand how the module works so you can use it reliably.
Moreover, the more people use a module, the more real-world checking it
will get and the more reliable you can assume it will become.

Unfortunately, Mersey Burns has no modules, and so Computational
Thinking therefore tells us we cannot check it effectively.164 Mersey Burns
is a typical digital system, so this isn’t a criticism of Mersey Burns, but is
a weakness almost all (if not all) current digital healthcare systems suffer
from: we cannot reliably check typical digital healthcare systems thoroughly
enough to be sure they are free from bugs. Therefore we cannot eliminate
harm caused by digital systems.

The deeper value of testing is not just that it finds mistakes in a program
(which you want to understand and then fix), but that it shows that the way
you made the program let some faults get through. If you fix the faults in the
way you designed the program, which allowed the bugs to happen, you can
now fix many bugs in one go, even ones you have not yet found. In other
words, truly understanding a bugmeans not understanding why the program
failed, but understanding how you managed to overlook the problem when
designing the program. The aim, then, is to correct the cause of the bug,
rather than be distracted into the temptation of fixing one bug at a time. It

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

164 | CHAPTER 13

is very hard to think like this, because the main reason bugs happen bugs
happen is that the programming process is not rigorous enough, andworking
out how to program better is very hard to do on your own. It’s easier, and
unfortunately distractingly satisfying, to fix bugs one at a time.

Seeing finding bugs as finding problems with the design process like this
is a bit like the thinking behind Safety Two. You are interested not so much
in problems, but in having a process to do better.

The important insight from this discussion is that medical device regu-
lation will only be effective when it starts to address how programs are de-
signed and built. Current digital health regulation is steeped in quality con-
trol processes (like writing documentation) and not in exactly how programs
are constructed. It’s a bit like having building regulations without demand-
ing to see and check the structural engineering calculations — and if it’s a
hospital, it’ll have all sorts of requirements for infection control, handwash-
ing stations, ventilation, and more to make it work safely and effectively for
healthcare. Buildings may look nice, but may not be safe. Likewise, under
today’s digital health regulations, digital systems can look nice but not be
sufficiently safe.

Tony Hoare summed up the choice perfectly in his 1980 Turing Award
lecture:

There are two ways of constructing a software design. One
way is to make it so simple that there are obviously no
deficiencies. And the other way is to make it so complicated
that there are no obvious deficiencies.165

Until we more tightly regulate digital healthcare to require professional
methods to program safely, we’ll continue to suffer from unnecessary bugs,
and therefore both patients and healthcare professionals will continue to suf-
fer preventable harms from using digital systems. To be more realistic, digi-
tal healthcare regulation needs to be more mature. In building safety, men-
tioned above, there are a whole range of regulations that are enforced dif-
ferently in different aspects of building. The gas safety, the electric safety,
the fire safety, the structural safety are all regulated, and collectively make a
coherent whole.

In digital healthcare we haven’t done this. It’s as crazy, to my mind, as
if the building industry said we can’t regulate electric lighting by using gas
regulations, so we won’t regulate lighting then. In buildings, which we un-
derstand well, there’s an obvious fallacy we can see in that suggestion. In
digital healthcare, we haven’t got the cultural awareness and maturity to see
through the analogous fallacies.

Fortunately, though, there areways to programbetter. I’ll talk about them
later in this book.f

f See Chapter 27: Stories for developers, page 367→

COMPUTATIONAL THINKING | 165
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Graceful degradation

When things start to gowrong (perhaps because of a bug), we don’t want the
computer (or infusion pump or pacemaker…) to crash and stop everything.
Rather, wewant the computer to keep going, perhapsmore slowly, so that we
can get the job done. In healthcare, losing patient data would be a disaster, so
graceful degradation means working out what must be saved as things start
to deteriorate — and also recognizing when things are deteriorating before
they crash! It is very hard to ensure graceful degradation, and it requires a
lot of thought. The main way is to anticipate problems, then stop taking on
new work that would overwhelm the computer; another way is to use logs,
so that after rebooting, the log can be re-rerun to recover everything that was
being done just before the crash.

Error correction

Computer networks are often unreliable (they may be interrupted for many
reasons, or simply get unplugged), so network communications always use
error correction, so that errors don’t matter. Although things may go more
slowly, the system will recover.

One of the basic types of error correction in computer networks is hand-
shaking. When I send you something, I expect you to shake my hand to
confirm you’ve got it. If I don’t get a “shake,” then I need to do something
to recover from the error, like send the data again. The problem I reported
where 73 nurses were investigatedg for losing patient information happened
because the computer systems had no way of knowing whether data had got
to its destination and had not been deleted once there. Since the computer
systems didn’t report any errors — they weren’t checking for any errors —
the managers just presumed that the loss of data must have been caused by
something other than the computers, namely the nurses.

But that’s digital systems. The insight of Computational Thinking is that
this is a general approach to any complex system, not just digital systems
(where it is obviously necessary). You go to your doctor and they test you.
“If you don’t hear from us, your tests are clear!” Well, if you don’t hear from
them, perhaps they lost the tests? Perhaps they got your address wrong?
How can you be sure that no news is good news? You can’t.

Mettaloka Halwala, a father of two daughters, died from chemotherapy
complications in 2015.

A PET scan at Melbourne’s Austin Hospital had shown signs of poten-
tially fatal lung toxicity but the results were faxed to the wrong number. The
coroner, Rosemary Carlin, said,

g See Chapter 8: Disciplinary action against 73 nurses, page 92←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

166 | CHAPTER 13

It is difficult to understand why such an antiquated and
unreliable means of communication persists at all in the
medical profession.166

Computational Thinking shows that this problem is not unique to the
fax technology, whether it’s antiquated or not. Faxes may be old and anti-
quated, but the computational problem of losing messages can happen with
any poorly designed system, even the latest ones. The age of technology is
irrelevant if it is not designed for reliability.

In this case, the fax machine also served as a printer that was shared with
20 specialities — even if the fax had been sent to the right place, somebody
else might have inadvertently walked off with it. Yet there were no checks
in place to detect error! The absence of checks, not the presence of faxes, is
the computational problem.

In another case, a young mother died after referral letters were sent to
house number 16 rather than to house number 1b. Unless there is some
error-checking, nobody knows anything has gone wrong until after an in-
vestigation — which is far too late. In this case, perhaps the letters should
have said, “Please ring and confirm your appointment. If we don’t hear from
you in a week, we will …” … do something appropriate for the seriousness
of your condition.167

We’ve known for centuries that b and 6 are readily confusable, as are 5
and S, 0 and O, I and 1, and more. There isn’t really any excuse for un-
wittingly confusing them; there certainly isn’t any excuse for computer pro-
grams not being designed to help users avoid input errors caused by these
well-known confusions. Indeed, there aremany easy solutions. In the present
case, the most strategic thing would be to tell the patient when they first reg-
ister: “You have a house number that can be misread. Why not also give
your house a name to help avoid problems? Perhaps you’d like to nominate
a friend’s address we can also send copies to?” Writing the house number
as 1-b not as 1b would have helped, as would using a post code, patient’s
name, house name. Having a box on the envelope that says, “If incorrectly
sent, please return to sender so that we can sort out the error.” A copy of
the letter could have gone to the patient’s GP and to the nominated friend.
And so on. It’s not hard to think of solutions if you want to make healthcare
safer, and with digital it’s not hard to implement solutions without having to
retrain everybody and expecting them to remember all the new rules.

Check checking

Programming is difficult, so programs end up with bugs because we either
make slips or because we don’t quite understand the problem we are trying
to solve with the program. At least when we pause to think we know our
limitations, the obvious insight is this: we should program in a way that ex-

COMPUTATIONAL THINKING | 167
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

pects and therefore defends against problems. Not only should the program-
ming process and the programs themselves be designed to detectmany errors
(whether bugs, errors in data or use errors), but we also need to thoughtfully
learn from the checking process itself how to make the next version of the
programs even better and more reliable.

The next level insight is that the checking process itself may have bugs,
and therefore we should design it to detect its own bugs.

So, not only should we design programs to be testable (because they are
rarely totally correct), but, also, we should design the testing process, for
instance to plot discrepancies, so that we can more easily learn to do better
next time. Build tools to help testing, and make those tools better by their
better testing — and so on.

Unfortunately, programming is so much fun, we often get so excited that
we forget our programming may be buggy. This, of course, is standard loss
of situational awareness.h The main solution is to use software engineering
tools that give us broader awareness, Formal Methods, testing tools, code
review, decent programming languages, and so on.

The Computational Thinking insight is that many activities — say, plan-
ning the activity of introducing a digital system to help improve some work
in a hospital — are pretty much as complex as programming, and we should
do those activities with the same cautious attitude we properly bring to pro-
gramming. We may be wrong, but, if so, how will we find out, and how can
we do better?

Expect bugs; check for bugs; find bugs; fix bugs; fix the causes of bugs. I
can’t resist repeating what I said earlier:

In other words, truly understanding a bug means not
understanding why the program failed, but understanding
how you managed to overlook the problem when designing
the program. The aim, then, is to correct the cause of the bug,
rather than be distracted into the temptation of fixing one bug
at a time.

Abstraction

Abstraction means finding a simpler way of thinking about a problem that
will still solve the problem you are worried about. I have one egg in the
kitchen. It may be white, brown, in a plastic tray, or in a paper tray, it may be
in the fridge or on the worktop — those are all distracting concrete details —
but with the abstraction “one” I know I need twomore eggs for my three-egg
recipe. The abstraction of number doesn’t tell us everything about eggs, but

h See Chapter 20: Situational Awareness, page 261→

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

168 | CHAPTER 13

it tells us everything we need to know about the quantity — in this case, of
eggs.

Pulling out the core parts of a solution so that it will work with many
problems is abstraction. One of the clever results of abstraction is that if you
test the abstraction, you know it should work on all the specific problems it
works for. Generally, working out exactly what the “core parts of a solution”
are helps create much better solutions.

First-class objects

Computers handle objects and data, from simple keystrokes to complex pa-
tient data, but it is not all handled the same way. For example, you can often
copy a small piece of text from the screen, but you can’t copy several bits of
text. Or when using a calculator, you can type 4 + 5 (to get 9, of course)
but almost everywhere else the computer wants a number, you can’t type a
formula to work out the answer directly — you have to do it yourself, and
perhaps you’ll make a mistake. Or you can email a text document, but you
may not be able to email an X-ray— if so, X-rays are not first-class. The idea
of a first-class object is that you can do anything with it.

A special case of being first-class is equal opportunity: there being no
difference between what the user can do and what the computer can do.168
For instance, can you copy everything any text computer generates, as if you
had been typing it yourself? Often the system displays something, like the
patient’s name, but it’s second-class text you can’t in some circumstances
copy. Computational Thinking asks why: editing and other operations are
computational, so why are they not implemented uniformly? There may be
good reasons (such as confidentiality), but often it’s just an oversight or a
bug.

The advantage of something being first-class is that the user is not dis-
appointed that they can’t do something; or, equally, that what they learned
in one part of the user interface works elsewhere.

Generally, being first-class is an ideal (because it’s difficult to do per-
fectly), but the idea suggests making a list of the operations that can be done
with objects and data, and then checking whether some features have been
accidentally missed or incompletely implemented out in some contexts.

The idea of first-class objects is very powerful for programming language
design, as completeness is important, but programming languages are in
many ways much simpler than user interfaces, so being first-class doesn’t
make everything terribly complicated. There are many other design prin-
ciples for programming languages that would be fruitful for user interface
design development.169

COMPUTATIONAL THINKING | 169
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Optimization

Solutions generally aren’t fast enough, or they aren’t as fast as you’d want,
so profile and monitor them to see how to improve them.

Early computers were very slow and limited, so from the earliest days
Computer Science worried a lot about how to make programs small and fast.
We’d write a program, and see where all the time went when it was run, then
we’d experiment and improve it until it ran faster. You can always improve
something.

Optimization is Computational Thinking because so many people accept
slow solutions. Computational Thinking means deliberately finding out why
things are slow, and then seeing how to improve them — or finding out, if
so, why they have to be slow. Often, things are slow because they are wrong!
However, it’s possible to get too keen on optimization and impose it too soon;
this just makes things go wrong faster.i

Separation of concerns

To make it possible to write complex programs and get them right, ideas and
actions are carefully separated so that they do not influence each other. Then
we can think about them separately, one at a time.

For example, you might want to sort a list of patient names into alpha-
betical order. This is a complex problem because to sort people’s names you
need to pick out the surname. Rather thanmake a complex program, we split
oof—we separate— sorting into a generic problem. Wewrite a program that
can sort anything.

Separately, we work out what we want to sort: in this case, patient sur-
names. Doing both together would be a recipe for the problems to get in-
tractably mixed up and become very hard to debug. The code for sorting
(which is hard enough to get right) would be all mixed up with stuff about
surnames (which are hard enough to get right). Mixing two hard problems
together makes solving them both correctly at the same time very unlikely.
It’s better to separate concerns.

Separation of concerns is closely related to decomposition — splitting
problems into simpler parts — but it then keeps those parts separate so they
can be solved independently, which also controls the possible combinatorial
explosion.

Things go wrong, computers crash or get attacked by hackers, so we log
everything they do so that later we canwork out exactly what went wrong.170
Often logs are also used to recover everything that would otherwise have
been lost. Good logs will include listings of routine tests passed by the pro-
gram, to confirm it is working correctly.

i See Chapter 21: Premature optimization, page 280→

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

170 | CHAPTER 13

There is a whole world of new digital techniques that can provide secure
signatures, stop information being tampered with, and much more. This is
an example of Computational Thinking that doesn’t just help solve a problem
well, but completely transforms what can be done. (Digital currencies, like
Bitcoin, are a financial innovation on a par with the invention of coinage,
or when the Romans invented the predecessor of our modern check, the
præscriptiones.)

Avoid thinking

Achapter onComputational Thinking says avoid thinking!? Imean, of course,
get the computer to do your thinking for you. Human thinking is slow, easily
distracted, and unreliable.j,k Computer thinking is fast, tireless, and repeat-
able.

Computer thinking is nomore reliable than the human thinking thatwent
into programming it, but you can win by using several programs — if they
agree, you are very likely to have understood the problem and programmed
it correctly. In contrast, when several humans agree, it may be because of
group think or peer pressure, or just idleness — agreeing is simpler than
working out your own opinions.

Here’s an example. You’ve built a digital health system, maybe a medical
app, and the question is: does it work correctly? This is actually such a hard
question, and most developers would rather not go there; they’d rather rely
on hope. Aswe’ve seen throughout this book, that strategy isn’t very reliable.

Instead, computational thinking says: how could a computer save you
doing all the work of answering the question? At its simplest, why not pro-
gram a computer to simulate all the ways of using your system? Then, in-
stead of taking weeks to test the system on people, you can do all the tests
in a few minutes. Moreover, when the system is debugged, it will only take
a few more minutes to rerun the tests — it’s really no more effort. Of course,
this efficient process doesn’t answer all the questions — you can still use
people to help answer the question, doing UCDl — but the computer testing
has very efficiently answered 90% of the question.

There’s a nice twist. If you can’t think of a way that a computer could
help solve your problem, you don’t really know what the problem is. You
need to tighten up the problem specification (or do something else).

Computational Thinking, then, is thinking in a clear way to solve prob-
lems efficiently and correctly with as little hassle as possible. Donald Knuth
takes it a stage further: science in general (not just Computational Think-

j See Chapter 3: Cat Thinking, page 25←
k See Chapter 20: Human Factors, page 259→
l See Chapter 22: User Centered Design, page 301→

COMPUTATIONAL THINKING | 171
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

ing) is what we understand well enough to explain to a computer.171 In other
words, anything that is too vague to be explained to a computer is not sci-
ence. We would like everything in digital healthcare to be evidence based,
to be based in science. That means we must use Computational Thinking,
otherwise we are being too vague — and probably, in a Cat Thinking way,m
letting hormones win over evidence.

Computers do exactly what they are told, and Computational Thinking
has to be precise and correct; there is no scope for cheating and workarounds
that humans intuitively do quietly — even secretly — to make rules work.
There is a lot of science about programming computers efficiently and cor-
rectly.

Because of the Church–Turing Thesis, Computational Thinking doesn’t
just apply to digital computers. Computational Thinking also applies to any-
thing we humans can think of that “computes.” That includes any ideas of
health, digital or not, hospitals, hospices, general practices, ambulance ser-
vices, and more.

Imagine we’ve spotted that a hospital ward is being run on paper, and we
want to computerize it. The standard approach would be to ask managers
what is going on, and draft a specification of what they want the computer
system to do to help. We then implement the system, debug it, and in an
ideal world we would then do User Centered Design (UCD)n to make the
system better match what people on the ground needed. Then the system
would be delivered.

A more mature view is to consider: what is the hospital ward already
computing (that is, doing things a computer could do) and trying to com-
pute, and how can we re-specify or debug it so that it can be done better?
We do not need to computerize the bits of paper; we need to computerize
what the bits of paper were trying to do.95 In turn, the bits of paper are prob-
ably a historical solution to problems, and we should try to work out what
computation is going on that is worth supporting. The paper, the notes and
forms, were the best way of solving the problem before we had digital, but
now there are better ways of doing things using computers. Simulating an
old paper solution is not likely to be a good idea.

Gradually, looking at theward as a computer, we begin to seemany things
that can be improved— before anything specifically digital is attempted. Be-
fore we get distracted by touch screens or blockchains. And then, when we
look more computationally, the digital computer system is going to end up
being a much better fit, aligning to the improved work practices.

Although AI is often stunning, throwing in AI to solve a problem can of-
ten make things worse. AI allows you to rush in with a computer system that
will learn how to make things work. That means nobody needs to seriously
think through what’s needed, as the AI will sort it out as it goes along. In

m See Chapter 3: Cat Thinking, page 25←
n See Chapter 22: User Centered Design, page 301→

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

172 | CHAPTER 13

other words, AI can be a lazy way to skip doing the Computational Think-
ing. AI will reinforce any inefficient and error-prone procedures, because it
can learn how to work with them. There will be no critical Computational
Thinking. Any bugs in what it is learning to do will now just happen faster
— and without the oversight humans used to have to stop bad things hap-
pening. A special case of AI reinforcing existing problems occurs in bias —
if existing procedures are racially or biased in other ways, the AI will just
continue the problems. In fact, AI will probably make the ethical problems
harder to spot as nobody will really know what the AI is doing. I’ll talk more
about this serious problem later.o

Take the story about Denise Melanson:p I described some ideas to help
make prescribing drug doses more reliable, but I didn’t explain where my
ideas came from.

One of the key bits of the story that had been computerized were printing
the drug bag label, and controlling the motor inside the infusion pump to de-
liver a set rate of drug. But the larger computational story should also involve
what computing went on inside the nurses’ heads: why were they working
out the drug dose calculation, when digital computers are much better at do-
ing that sort of work? If the infusion pump could have read the drug bag
label (say, using a barcode, or even using Near-Field Communication, NFC,
a basic sort ofWi-Fi), then the calculation error would never have happened.
And so on.

Indeed, why did the drug bag label present all the data to do the drug dose
calculation so the nurses had to work out how to do it and then had to do it?
We know that computers are better at sums than people. Why didn’t the
pharmacy label printing computer do the calculation itself? Actually, it did,
but it buried it amongst a lot of confusing information that was not needed—
because nobody had done the Computational Thinking to work out what was
actually needed.

Charlene Murphey died at Vanderbilt University Medical Center in De-
cember 2017 during preparation for a body scan. She had an erroneous dose
of vecuronium, which is a muscle relaxant, so Charlene suffocated, unable to
breath. Her nurse, RaDonda LeanneVaught, had intended to give her versed,
a curiously named tradename for midazolam, a standard anti-anxiety drug.

There is a longer story here, but put very briefly: the nurse tried to find
the drug called versed in the automated drug dispensing cabinet (ADC). She
typed its first two letters, VE, into the computer, and then took out the drug
the computer offered her — which unfortunately was vecuronium.172

This is drug name confusion, and it is not a new or unexpected problem.
o See Chapter 18: AI and ethics, page 230→
p See Chapter 5: Denise Melanson’s fatal overdose, page 49←

COMPUTATIONAL THINKING | 173
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Box 13.3. Medical “algorithms” aren’t digital algorithms

Naturally we want all digital systems to use best practice, and that would
include being properly based in themedical literature. It seems elementary to
require digital systems to be based at least on the best quality peer-reviewed
medical literature.

Take body mass index, BMI. We make an app that works out BMI for
you and, as it is based on the medical literature, it must be right.

No. The medical literature does not provide algorithms, clear specifica-
tions for basing computer programs on. It provides, at best, basic formulas
and, usually, some statistical testing of clinical outcomes.

The usual formula for BMI, the Quetelet index,173 is your body weight
divided by the square of your height.

To be an algorithm for a computer, the computer must also know that
bodymass and height are both positive, and that they fall in reasonable range.
You have to decide what to do with units; for example, in Europe, kilograms
and meters make sense, but in the US, pounds and feet make sense (box
25.1 talks more about internationalization). An algorithm, unlike a clinical
formula, needs to know what to do when the numbers entered by the user
do not fall within valid ranges, or even what to do when some of the input is
missing or is syntactically invalid. Are these the right numbers for the patient
in the room, or do they refer to some other patient? If the numbers come out
of a database, then there need to be more checks. And so on. In other words,
a clinical algorithm is only one part of the story.

Healthy 32-year-old Liam Thorp was called up for an urgent COVID-19
vaccination.174 He phoned his doctor to ask why he’d been called up, and
found out he was recorded as being 6.2 cm high (not 6 foot 2), which led to
an enormous BMI of about 28,000. For comparison, a BMI of 40 or over is
consideredmorbidly obese. So, the developers had followed the BMI clinical
algorithm to the letter, but they had totally failed to check any data for validity,
let alone common sense.

The Computational Thinking that should have gone on much earlier when
the ADC was designed should at least have included this simple precaution:

We are creating a program that allows the user to enter abbreviations
of drug names. What errors might this induce? To find out, let’s list
the equivalence classes [a standard Computer Science problem] of
drugs so that we can check that different classes of drug are never
confusable, cannot be stored together in one machine, or at least
always get additional user confirmations. When a drug is stored in
the cabinet, the equivalence class tests must be run again to stop
unexpected confusions, with new drug names added after we’ve
delivered the system. We will put all these tests in a test suite so
that they can be automatically checked again whenever any part of
the system is updated.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

174 | CHAPTER 13

I’ve used the standard technical term here (equivalence class) to empha-
size that this is routine stuff for computational thinkers. If you are going to
program computers, this changes how theworldworks, and you have amoral
duty to explore the world you have created to ensure it is as safe as possi-
ble, and stays as safe as possible even after modifications, routine updates,
and future developers overriding your original design decisions. Equivalence
class algorithms are routinely taught to undergraduate students.

Onewonderswhy themanufacturers of drugs do not do this sort of think-
ing when drugs are named. Why are different classes of drugs even given
confusable names in the first place? Why is a drug even called versed, which
is already a common word meaning something completely different? You
don’t even need to be well-versed in English to know this!

One wonders why there aren’t more slices of cheeseq in the story. If
the drug cabinet has dangerous drugs in it, why aren’t two nurses always
required to confirm the correct drug has been chosen? Why doesn’t the
drug cabinet ask for independent confirmation? Or, why doesn’t a syringe
driver or infusion pump use an alarm when a different sort of drug is used?
(Here’s one case: imagine that a patient has already had some drug; if the
patient’s infusion pump is now given a different type of drug, why not ask
for confirmation?) And so on.

There is an important twist to Charlene Murphey’s tragic story. Her
nurse, Vaught, did not at first find any drugs after searching for VE, so she
entered the override function. Then vecuronium was matched. Using the
override is routine at many hospitals, as it’s so often needed just to get your
job done. Previously, override must have been used countless times with-
out any problems. Vaught has been charged with a criminal offense, but the
patient safety community has rallied behind her.175 Certainly, criminalizing
Vaught for exposing a design problem is not going to help improve any digital
systems.

After something goes wrong, you naturally want to find out why it went
wrong. Incident analysis — not just doing an investigation, but working
out the causes ofwhateverwentwrong—can benefit enormously fromCom-
putational Thinking, including an awareness of howdigital systemsmay have
contributed to the incident.

When something goes wrong with a computer, you immediately think
of bugs, things wrong with the design of the program. You don’t blame
the computer; you look for bugs and wonder whether it was properly pro-
grammed. So when something seems to go wrong with a nurse, you should
not blame the nurse, but wonder what has gone wrong with the system they
are working in — what’s gone wrong with their “program.” If their program,
their set of rules or standard operating procedure, was not designed under-
standing Human Factors,r then that’s like writing a computer program with-

q See Chapter 6: Swiss Cheese Model, page 61←
r See Chapter 20: Human Factors, page 259→

COMPUTATIONAL THINKING | 175
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

out worrying about how the computer will run it, without understanding
Computer Factors.s

When a computer program doesn’t work, it will be the designer’s fault for
not finding out enough about the computer (and the algorithm the program
is trying to run), just as the nurse “crashing” is the fault of the system for not
creating a program or set of rules that works properly given everything we
know about humans.

Putting the insights of this chapter another way: worrying about and
avoiding bugs is Safety One thinking, but Computational Thinking is Safety
Two thinking. Design and develop digital healthcare properly, and avoid the
problems.

s See Chapter 21: Computer Factors, page 277→

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

Drug doses and other forms
of patient treatment require
detailed calculations.
Calculation errors are one of
the most common types of
error and they could be
reduced in many ways.
Calculators themselves ignore
errors, and they should be
fixed if they are going to be
used in healthcare.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

14

Risky calculations

Kimberly Hiatt was a pediatric nurse in the Seattle Children’s Hospital, USA.
She somehow made a calculation mistake. We don’t know all the details,
but on 14 September 2010, instead of 140 milligrams of calcium chloride
for eight-month-old Kaia Zautner, she drew up 1.4 grams. She immediately
reported the error to staff at the Cardiac Intensive Care Unit at the hospi-
tal,176 and reported the error on the hospital computer:

I messed up. I’ve been giving CaCl2 [calcium chloride] for
years. I was talking to someone while drawing it up.
Miscalculated in my head the correct mLs according to the
mg/mL. First med error in 25 years of working here. I am
simply sick about it. Will be more careful in the future.177

The hospital escorted her from the hospital, put her on administrative
leave, then fired her. The Nursing Commission gave her a $3,000 fine and
80 hours of coursework, and 4 years of probation. The baby, Kaia Zautner,
died. A statement by a cardiologist said it was not clear whether the mistake
caused the death of the child, as the baby was already critically ill, but that it
would have exacerbated cardiac dysfunction.

Sadly, Kimberly Hiatt committed suicide. As a result, the Nursing Com-
mission closed its investigation.

Hiatt was a tragic second victim.67
If the hospital had decided to support Hiatt, she could have been one of

the safest nurses in the hospital, and she would have been able to contribute
to making hospital systems safer — improving drug labels, changing proce-
dures, changing calculators, who knows what? Even if there were reasons
to separate her from direct clinical duties, she could have been a fantastic
mentor or trainer. We shall never know. We shall never know what patient
safety insights have gone to her grave.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

178 | CHAPTER 14

Box 14.1. Handheld devices may have real bugs

How often do you disinfect your handheld devices?
Over two thirds of nursing students’ mobile phones are contaminated

with the “superbug” methicillin-resistant Staphylococcus aureus (widely
known as MRSA).178 This means that student nurses — in fact, probably
everyone — carry drug resistant infections around hospitals, to their homes,
and plausibly infect other people.

The authors of the paper say more research is needed on how to ad-
dress the problem; for instance, although their research showed the bugs
were present on phones, the research did not explore whether cleaning mo-
bile phones would be linked with a reduction in healthcare-associated infec-
tions. It seems obvious it would, especially given all the evidence for the
effectiveness of handwashing.

The infection problem shows that just testing new digital applications in
the lab or in simulation studies is not sufficient — these are medical devices,
and they can have direct medical impact. The new applications may intro-
duce more infections that offset the clinical benefits of the applications —
especially when working with immuno-compromised patients.

The suicide of healthcare workers is a taboo subject. I wonder what Seat-
tle Children’s Hospital’s approach to mental health is — if it has a process,
inevitably it’ll be computerized, so this, too, is a digital health issue in itself.
As Clare Gerada points out, there’s a doctor’s suicide every three weeks in
the NHS, and the fact barely registers.179

One insight is that, despite all the computers and digital things in the
Seattle Children’s Hospital, none intercepted or stopped the error. None ap-
parently even noticed it.

Hiatt did the calculation in her head. Calculations are all over healthcare,
and calculators are the natural response to them. Calculators are digital, and
surely (you’d think) it’s better to use one than doing calculations in your
head or by hand? Calculators must be the most common form of digital
healthcare. We take them for granted.

So let’s have a closer look.
Calculators have a very long history, starting with counting in sand, and

on counting boards, and then the abacus, which was already in use by the
Sumerians by around 2700 BC. Blaise Pascal invented the first real digital
calculator in the 1640s to help with his father’s tax returns, but what we
recognize today as modern handheld calculators were developed in the late
1970s. Manufacturers have now had half a century of experiencewith them.
Today, of course, mobile phones can run apps that turn them into simulations
of handheld calculators.

With all this experience, we would expect today’s calculators to be very
reliable, and certainly adequate for use in hospitals.

RISKY CALCULATIONS | 179
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Well, let’s see how well modern calculators work …
Here’s a very simple calculation: What percentage of theworld is British?
This calculation is going to be much easier to do than a typical drug dose

calculation, but going through it will show some of the issues — and it’ll
show up some worrying surprises.

In August 2019 the British population was just over 66 million. The
world’s population was just over 7.5 billion.5 To find out the percentage of
British people in theworld, we divide 66million by 7.5 billion, thenmultiply
by 100 to turn the fraction into a percentage. It sounds easy enough …

On most calculators, we need to do something like pressing AC , to clear
the calculator and make sure no previous numbers interfere with our calcu-
lation; then we need to press 66000000 ÷ 7500000000 × 100 = to
get the answer. It would have been more reliable to enter 7,500,000,000
using separators (a number that’s now clearly in the billions), but calculators
don’t like you typing commas! Interestingly, the iPhone (but not the Casio)
displays commas, so large numbers are at least easier to read correctly on the
iPhone.

If we do this sum on the Casio HS-8V, currently one of the most popular
handheld calculators, we’ll get the answer 88%.

Surely Britain isn’t 88% of the world’s population?!
Let’s try the iPhone (running Apple’s iOS operating system). That gets

8.8%. Closer, but still nowhere near right.
Let’s try the iPhone in landscape mode, which makes the calculator turn

into a scientific calculator. In scientific mode the iPhone gets 0.88%. Which
is right at last.

Pictures of these calculators getting different results for exactly the same
calculation are shown in figure 14.1.

There is no trick here. Try it yourself — but remember that different
calculators do different things and youmay not at first get the results I found.
Also, Apple may have updated their calculator before you read this. I was
running iOS version 13.2.2 in November 2019, but their calculator has had
this bug ever since the iPhone came out in 2007.

When I was at primary school, I was taught to do sums in two different
ways. For example, add up a column of numbers from the top, then add up
from the bottom to the top. If I get different answers, at least one of them
must be wrong, and I should try again.

The Casio is just wrong, but the iPhone has two ways of doing the cal-
culation, and it gets different answers. So the iPhone is wrong and it could
have worked out that it was wrong, at least if it did sums the way I was taught
to at school.180

None of these calculators tell the user a mistake has happened. The user
will remain oblivious. All of the problems could have raised warning flags
and alerted the user that something was awry. It would have been easy for
all the calculators to have been designed to detect errors and warn the user.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

180 | CHAPTER 14

Shows 88. Shows 8.8 Shows 0.88

Different results
for exactly the same calculation

Figure 14.1. What percentage of the world is British? We get three different an-
swers doing the same calculation on two calculators. Worse, there are no error
messages or any warnings of the bugs and incorrect results. In landscape mode,
the iPhone can handle larger numbers, and in this mode it gets the right answer.

There are more problems with calculators.
If you make a keying mistake that you do notice, most calculators make

correcting it very difficult.
For example, if you press × instead of ÷ , there’s not a lot you can do

on most calculators but to start all over again.
Some calculators do have delete keys. The whole point of a delete key,

surely, is to correct errors? But it isn’t so simple.
Let’s say you accidentally press two decimal points, and try to delete the

second one. This should correct your error, but:

On the iPhone and on many popular calculators, you aren’t allowed
to have two decimal points in the first place. So the delete key, if you
do press it, will delete the only decimal point you have, and will
therefore create a new error of having no decimal point at all.181

On some calculators, like the Casio HR-150TEC calculator, the
delete key only deletes digits and nothing else. So if you keyed 4
5 · · 5 7 and tried to correct that extra decimal point,
you’d lose the digit before the decimal point, and be left with 4.57.

Both cases are wrong, and, worse, get no error warnings from the cal-
culator when they occur. So the user may well be oblivious. You only do

RISKY CALCULATIONS | 181
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

a calculation with a calculator because you don’t know the answer, so it is
unlikely that you know the answer is wrong.

It’s very easy to find bugs like these problems with decimal points
and delete keys, as well as many other bugs, completely automatically
using computer tools.182 It’s surprising that major manufacturers do
not use computer tools to help them find and fix bugs.

But we can’t blame manufacturers, because we all buy these things,
so in principle the manufacturers are selling us stuff we want. The
problem is, we can’t see the bugs, so we have no idea which products
are safe and which are dangerous. A solution to this problem is to
have safety ratings, which we’ll discuss later.a

The calculators are CE-marked, whichmakes it look like they are certified
as “safe.” The rules for CE marking are strange; since calculators are generic
“office equipment,” they are certified as appropriate for use in offices. Yet
they are regularly used in hospitals for life-critical calculations. Surely the
CE marking for hospital calculators should be appropriate for that use?

Nobody is going to die over arguingwhat proportion of theworld is British.
My population example was not a medical calculation that any lives directly
depend on, but it’s a clear example of how unreliable calculators are — even
when doing very simple things.

Not only are calculators unreliable, but they don’t do anything about the
errors they cause.

Why did the calculators go wrong on such a simple problem as answering
“what percentage of the world is British?” (If you prefer, you can do this
calculation using the population of your own country.183)

My “trick” — showing you a deliberate error, but which could have hap-
pened accidentally — was that the population of the world is too big for the
calculators to display. The display throws away digits when there are too
many for it to handle. So the calculators end up getting numbers that are too
small, they have no idea, and things go awry. The problem is that nothing in
the calculator notices or warns that there is a discrepancy between what the
user has done and what the program is working on.

I chose this problem because it is easy to show you, but calculators have
plenty of other problems that are equally if notmoreworrying—especially as
calculators are used throughout hospitals to do things likeworking out critical
drug doses. I published a major critique of calculators in 2000, and Will
Thimbleby and I did research that developed a novel design that considerably
improved on them, showing how to make them much safer.184

The point is that the problems are easy to fix if anybodywants to fix them.
The calculator problem is not a curiosity, but is a symptom of lax program-

a See Chapter 29: Safety ratings will improve healthcare, page 401→

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

182 | CHAPTER 14

ming that did not handle user input correctly — in fact, these dangerous
number bugs are ubiquitous.55

I’ve told many people (including Apple, Casio, and HP) about these sorts
of bugs, but most people argue “but that’s what calculators do.” Which is
true, of course. But surely they could be safer? When a calculator causes a
mistake, it would make things much safer if at least it warned the user.

Spreadsheets are used everywhere, and they are used throughout health-
care. Microsoft’s Excel spreadsheet application is the most well known, and
I’ll use it for the next story.

Excel can trace its history back to an early spreadsheet that Microsoft
marketed in 1982 called Multiplan; the first version of Microsoft’s Excel was
released in 1985 (for the Apple Mac) and then in 1987 for the PC. Excel
is now available for Windows, Mac OS, and iOS (iPhones and iPads). The
various versions are all compatible with each other, but to be specific — and
in case you want to double-check — I’ll take my examples below from the
Apple Mac version 16.47, as updated in 2021.

In short: Microsoft have been developing and improving Excel for over
thirty years. They have had ample time to fix bugs — but they have the prob-
lem of any successful software that they have had to stay backward compat-
ible so that users’ spreadsheets continue to work as Microsoft continually
upgrade their software. Some of the “deliberate bugs” in today’s Excel may
be hang-overs from accidental bugs in earlier versions. From a commer-
cial point of view, keeping existing customers is important. From a digital
healthcare point of view, eliminating any bug that could cause patient harm
is a priority.

It would be possible, at least in principle, for Excel to have two modes.
One is a backwards-compatible mode, the other is a safe mode, perhaps es-
pecially for healthcare use. Unlike Microsoft Word, Excel does not have any
preferences, but it already has permissions and properties that could be ex-
tended to help. One current property, for instance, is “Checked by” and
maybe this idea could be extended to cover “Checked by Excel Digital Health
Safety Mode”? We’ll soon see why I think this (or something like it) would
be a really good idea.

So, let’s start off with the top-left of an empty spreadsheet. I’ve num-
bered a series of spreadsheet pictures to make it easier to follow the step-
by-step changes I make to the spreadsheet. (For copyright reasons, I need
to make clear that these are not actual screenshots, but my own diagrams to
reproduce the exact behavior of Microsoft Excel Apple Mac version 16.47.)

Here’s picture 1, the top-left of an empty spreadsheet:

RISKY CALCULATIONS | 183
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

1.
Microsoft Excel Apple Mac version 16.47

A B …
1
2
3
… … …

Now type 1 and 10 into the empty cells A1 and A2. We will get this:

2.
Microsoft Excel Apple Mac version 16.47

A B …
1 1
2 10
3
… … …

Although we’d usually want to do far more interesting things, a simple
thing to start off with would be to add up these two numbers.

Of course, in this simple case, we already know the answer will be 1 +
10 = 11, so we don’t expect anything exciting. In general, spreadsheets are
much bigger and much more complicated, and we won’t always know the
answer — in fact, the whole point of using Excel is to help us when we don’t
know the answers we want. It’s always a good idea to do some sums where
you do know the answers as part of your checking that the spreadsheet is
doing what you want it to do.

Excel provides two main ways to add up numbers: using the + operator,
and using the SUM() function. We’ll put SUM(A1:A2) as a formula in cell
A3, and as a reminder, I’ll write it out in full in cell B3 so it’s easy to keep
track of what’s going on when I start editing the spreadsheet further. (If you
want to do this too, just write = = SUM(A1:A2) into cell B3, which will make
everything work exactly as shown.)

3.
Microsoft Excel Apple Mac version 16.47

A B …
1 1
2 10
3 11 = SUM(A1:A2)
… … …

Nothing exciting is happening so far. We have two cells, containing 1
and 10; their sum (shown in cell B3) is 11.

Let’s edit cell A1 to be 70 kg, maybe representing a patient’s weight.
Now hit return, so Excel recalculates the sum. Picture 4, below, shows what
happens:

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

184 | CHAPTER 14

4.
Microsoft Excel Apple Mac version 16.47

A B …
1 70 kg
2 10
3 10 = SUM(A1:A2)
… … …

The sum of 70 kg and 10 is not 10. Something has gone wrong.
Similar strange resultswould be given ifwe’d triedPRODUCT,MIN,MAX,

MEAN, IF, or many other functions instead of SUM. In fact, the problem is
Excel itself.

What’s happening is that Excel treats 70 kg as zero.
There’s a reason for this apparently strange behavior.
Imagine you want to add up a column of hundreds of numbers. You’d

use SUM to do that easily, say, by writing =SUM(A1:A100). In a long column
of numbers youmight wantmissing numbers to be treated as zero, youmight
break up the columnwith blank lines tomake the spreadsheetmore readable,
you might have missing numbers, or you might want headings. In all these
cases, “anything not a number is zero” seems to be what you want. This is a
deliberate feature of Excel. It’s intentional. Since it probably isn’t a feature
you want, programmers prefer to use the more accurate word misfeature
for a “feature” that is more often a bug.

Unfortunately, if something is meant to be a number, but has an error
in it, then Excel will silently take it to be zero. That’s why my example of
70 kg is treated as zero. Indeed, if you typed 70 followed by a “non-breaking
space,” which you can’t see at all, the Excel cell would look exactly like 70,
but Excel would still treat it as zero. There might be “a reason,” but it’s not a
good enough reason for healthcare where safety ought to be more important
than the occasional convenience for Excel programmers.

I want to emphasize again that I’ve made up these simple examples to
make the problems obvious. In a real use of Excel, you might be busy trying
to treat a patient, and you’d be doing a far more complicated calculation, for
which you might not know the right answer. Of course you might have an
idea what the right sort of answer would be, but there’s no guarantee that
Excel’s errors won’t give you an answer close to what looks OK but is still
wrong enough to harm your patient.

Excel is actually perfectly good at recognizing errors when it wants to.
For example, if you do a division by zero sum, say =1/0, Excel’s answer is
#DIV/0!, and the error of writing =bad in a cell is #NAME?, and so on.

In all such errors that Excel recognizes, there’s a little pop-up that gives
you further insights and help. Why doesn’t Excel do this for errors with
SUM, like the ones I’ve just been talking about? Well, this would make
the improved version of Excel incompatible with earlier versions, which is a
knock-on problem. Instead, perhaps cells could have a new cell feature —
features like formatting (which is already widely used) are easy enough to

RISKY CALCULATIONS | 185
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Box 14.2. Austerity by spreadsheet

No discussion of spreadsheet errors would be complete without a mention
of the Reinhart and Rogoff story.

Without a doubt, austerity (that is, governments cutting back on pub-
lic funding) has killed many people. In the UK, the Government policy of
austerity reduced state funding for health and social services, and resulted in
about 22,000 excess deaths per year (in a population of 66 million).185 The
austerity policy was at least partly due to a buggy spreadsheet.

In brief, two Harvard University economists, Carmen Reinhart and Ken-
neth Rogoff, published a paper in 2010 called “Growth in a Time of Debt,”
where they showed that high debt slows down growth. Their influential pa-
per was used to justify government austerity programs worldwide. For ex-
ample, Olli Rehn, the EU Commissioner for Economic Affairs, and George
Osborne, who became the UK Chancellor of the Exchequer, both relied on
the paper to argue that national debt was the universal cause of financial
crises.186

Then, in 2013, Thomas Herndon, Michael Ash, and Robert Pollin
revealed numerous errors in the Reinhart-Rogoff spreadsheet.187 They
showed, in their words, that “exclusion of available data, coding errors and
inappropriate weighting of summary statistics led to serious miscalculations
that inaccurately represent the relationship between public debt and GDP
growth.”

It’s a high-profile example of one buggy spreadsheet causing problems
affecting millions of people.188

Reinhart and Rogoff’s problem was that their spreadsheet calculated
something complicated, and they didn’t notice they’d made some serious er-
rors.

add without breaking anything else — to mean something like, “This is not a
number, but it is being deliberately used in a SUM calculation.” That would
preserve backward compatibility — you’d be warned about potential prob-
lems, but you could override each one if you approved of it.

I haven’t covered all the possible responses to this problem of Excel in
this brief discussion, but I’ve certainly shown that Excel unnecessarily, and
dangerously (certainly when it’s used in healthcare), ignores use errors.

Another approach189 is to use Excel’s built-in data validation. You can
program Excel so that a user making a mistake, like we did in our example
above, will result in a warning dialog box popping up. This might be a good
idea … you might think.

You’ve successfully got an error warning dialog box to pop up, but this
isn’t the end of your problems. There’s a button in Excel’s dialog box, Retry .
Curiously, if the user clicks Retry , Excel will carry on, ignoring the error.
There will be no further warnings, and Excel still treats the bad number in-
correctly.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

186 | CHAPTER 14

With lots of warnings, anyway, many users understandably get alarm
automation or alarm fatigue— they’ll just hit return whenever a message
pops up. Why read it? These pesky messages happen all the time! So, Excel
might have warned the user, but it hasn’t ensured the user doesn’t carry on
and make the horrible mistake of relying on the bad results that are about to
happen.

I understand Microsoft wants to keep Excel backward compatible with
earlier versions, but I think it needs a feature (perhaps a bit like some we
suggested above) that can be used to force it to report errors and stop the
user progressing without correcting the error (so that alarm fatigue is man-
aged). Any hospital would then configure Excel so that all use of it in the
hospital was safer. Maybe there should be a special designed-for-healthcare
spreadsheet: it could be close enough to Excel to have all its advantages, but
it could be much safer.

One problem undermining this dream is that if anyonemade a healthcare
spreadsheet like this, I think it would need to be regulated as a healthcare de-
vice — which manufacturer wants to do that while there is a huge market for
unregulated software? In the meantime, manufacturers are selling unsuit-
able digital systems into healthcare without restriction.

To summarize: calculators and spreadsheets are used all over healthcare,
yet they ignore errors that are likely to be critical in patient treatment. Many
“little” digital systems, from printers to Excel, are not regulated for use in
healthcare. They are treated like office equipment and are just assumed to
be good enough. I’ve shown this just isn’t the case. All digital systems used
in healthcare need thorough regulation; digital regulation needs a serious
rethink as part of improving safety across healthcare.

There’s a similar problem with Europe’s most popular infusion pump,
the B-Braun Infusomat (figure 14.2). Now, because it’s an infusion pump,
we can’t deny that the user, typically a nurse, has better things to do than
notice and fix unnecessary bugs. They have a patient to look after.

I am now going to spell out the steps taken to show a bug in the B-Braun
Infusomat that could trip up a nurse. Worse, the bug could trip up a nurse
andmislead any investigation into the error, because the bug also means that
the B-Braun records the wrong details in its logs. I emphasize this is not the
only bug I’ve found with the Infusomat, but it’s one of the easiest to explain.

The Infusomat can be programmed to deliver drugs into a patient, and it
can do so at various rates as set by the user. The four arrow keys on it let you
enter numbers; the idea is that the left and right arrows choose a digit, and
the up and down arrow keys adjust the chosen digit.

Here’s an example, showing how a display of zero changes when the up
arrow is pressed:

RISKY CALCULATIONS | 187
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Figure 14.2. This drawing is based on a simulation I programmed of the B-Braun
Infusomat infusion pump, so I could carefully explore the Infusomat’s design and
engineering in detail. You can move the mouse around and click on buttons and
they do what they do on the real Infusomat. I ran my simulation in parallel with
using a real Infusomat (software version 686E), and continually updated my sim-
ulation with everything I learned from the real Infusomat to ensure my simulation
was accurate.

0 .

Then press to increase the selected 0 to 1 …
1 .

Then press to increase the selected 1 to 2 …
2 .

It seems very straightforward: pressing the “up” button, , increases
the selected digit 0 to become 1, and pressing it again increases 1 to 2. Of
course, if we carry on pressing it, 2 increases to 3, and so on, so we can easily
set any digit we like.

Our research has shown this to be a reliable way of entering numbers,
provided that there are no bugs.190

Each time any button is pressed, the Infusomat clicks, providing audible
confirmation that the button has been pressed hard enough and is work-
ing properly. This might be what you think, but if you press a button twice
quickly, it may click twice but nothing at all will happen, or it may happen
just once. These bugs could be serious problems if a nurse urgently needs to
change the dose, and presses buttons quickly. It will sound like the number
has changed each time the button is pressed, but the clicks are misleading.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

188 | CHAPTER 14

Box 14.3. Solving a hindsight problem

A knee-jerk reaction to the Infusomat problems would be that the Infuso-
mat should have been formally specified and shown to comply with some
standard theorems, like “only the highlighted digit changes” (which is easily
turned into a precise mathematical statement). Unfortunately, this is hind-
sight bias: we now know this is a problem, but at the time of design, it’d
have been very hard to specify the millions of critical design ideas, let alone
include this one.

Instead, we can get a computer to find them. In principle, there are an
infinite number of mathematical theorems describing a system, so we need
some constraints such as: find small theorems; or find partial theorems191

— theorems that are often but not always true.
The “only the highlighted digit changes” is, on the actual Infusomat, a

partial theorem. It’s usually true, but the Infusomat’s bugs make it fail. In
other words, we can find bugs like this automatically.

A really important insight with partial theorems is that they indicate likely
problems for users. Most of the time, a partial theorem is true — so the user
will come to believe it is actually true. One day they will be misled.

So, we get the computer to list partial theorems, and then go over them.
Some indicate bugs, some indicate strange design decisions, and some —
given the complexity of clinical tasks — might actually make sense.

For example, when we tried automatically looking for partial theorems,
our tool found theorems that failed when a device was switched off. Well,
most users know that when a device is switched off, it doesn’t work! Also,
when a device is switched off, it is usually safe. So we tell the tool: find
partial theorems, but ignore those caused by “Off.” We then get a tighter list,
and repeat the process, gradually either improving our list of theorems, or
improving the design by fixing its bugs.

I’ll now run through how to set a drug dose of 0.01 mL, as a simple
example. Let’s see what happens, and how it happens.

We’ll start from the display showing zero as before, and press a cou-
ple of times to move the cursor to the right. The number shown “expands”
nicely, creating two extra 0 digits, so the displayed value is 0.00, with the
third zero being selected. We nowhave the cursor selecting the digit wewant
to change. To increase the 0.00 to 0.01, we press , expecting, of course,
to increase that digit. Here’s exactly what happens:

0 . 0 0

Then press to increase the selected 0 to 1 …
0 . 1 0

Oops! The wrong digit, not the one under the cursor, has changed!

RISKY CALCULATIONS | 189
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Figure 14.3. Sometimes patients need lots of different drugs. Here, many infusion
pumps and syringe drivers are being used for one patient.

Like many of the bugs we’ve encountered, the device has let the user do
something that it doesn’t cope with correctly. The dose the pump is going to
give the patient is apparently ten times higher than what was intended, but
the pump doesn’t warn the user that anything unexpected has happened. It’s
possible that the Infusomat can’t physically deliver such a small dose, so it’s
just made the number larger. That’s a possible explanation, but it isn’t an
excuse for silently changing the dose by a factor of ten — it’s a bug.

There will normally be an investigation if harm happens to a patient.
The Infusomat keeps a log of what it does, and the log will show that the
user entered 0.1. If investigated, the user will say they entered 0.01; they
don’t understand how they could possibly havemade amistake. In fact, they
didn’t. The Infusomat made a mistake. Unfortunately, the investigators are
more likely to believe the logs, and blame the nurse’s dishonesty or their
faulty memory.

I’ve seen sick babies in intensive care connected to 18 Infusomats (figure
14.3), stacked one above another. Multiplying up a “tiny” risk like being
caught out by a bug will potentially harm thousands of people worldwide,
and probably incriminate thousands of nurses along the way. One might
argue that the bug is unlikely to happen in practice, and that a professional
nurse should check. But why should a nurse have to check there are no bugs
affecting their patient care?

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

190 | CHAPTER 14

This chapter has been a list of problems, but I put it in Part II (finding
solutions), rather than in Part I (riskier than you think), because the key to
finding solutions is to realize that there is a problem to solve.

The problem with numbers in healthcare is ubiquitous, and once it’s rec-
ognized as a problem it will be really easy to fix. Ironically, computers were
invented to handle numbers; numbers are easy. There is no excuse not to
solve these problems now before more people are harmed.55

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

Software warranties generally
deny all liability for problems.
Manufacturers and
developers should be
required to be more
accountable. Everyone needs
to be constantly curious
about improving systems and
reporting problems.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

15

Who’s accountable?

To use the Mersey Burns appa you first have to agree to its terms and condi-
tions. Here’s an extract taken directly from the app’s terms itself:192

No warranties The app is provided on an “as is” basis
without any representations or warranties …
Liability Under no circumstances will St Helens and
Knowsley Teaching Hospitals NHS Trust [the legal owners of
the app] be liable …
Indemnification You agree to indemnify and hold St Helens
and Knowsley Teaching Hospitals NHS Trust harmless from
any claim …
Modification You must promptly download any update to
the App from the ‘App store’ upon such update becoming
available, and you must check the disclaimer page of the App
prior to each use of the App …193

And to rub it in, they add that they can modify the terms and conditions
or the software at any time without giving you any notice.

I imagine — I don’t know — that the Mersey Burns developers were told
by their lawyers that this is what they had to say, whatever they thought. If
these terms and conditions are legal and binding, I’d like us to change the
law so that developers and resellers take some responsibility, as they have to
with almost everything else in the world.

This problem is not unique to Mersey Burns by any means. Here is an
extract from the terms from another medical app, with its original capital
letters (I’ve lightly edited it to make it briefer and easier to read):

a See Chapter 10: Mersey Burns app, page 121←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

194 | CHAPTER 15

BY ACCESSING OR USING THIS APP YOU AGREE TO BE
BOUND BY THE TERMS AND CONDITIONS
THE SERVICE IS PROVIDED ON AN “AS IS, AS AVAILABLE”
BASIS. NONE OF THE DEVELOPERS OR THEIR AGENTS
MAKES ANY WARRANTIES OF ANY KIND, EITHER
EXPRESS OR IMPLIED, WITHOUT LIMITATION, FOR ANY
PARTICULAR PURPOSE.
The company aims to keep the Site available to maintain saved
information. However, we shall not be liable for lost altered, or
corrupted information. We do not warrant that the Service will
be uninterrupted or error-free or that defects will be corrected.
YOU ASSUME TOTAL RESPONSIBILITY AND RISK FOR
YOUR USE OF THE SITE AND THE INTERNET.
You agree to indemnify, defend and hold the company and
information providers harmless from and against any and all
claims, legal action, liability, losses, damages, costs and
expenses (including accounting and attorneys’ fees).
Your sole remedy for dissatisfaction is to stop using the
application.194

There is, unfortunately, nothing unusual about suchwarranties for digital
systems.

If you use an iPad or iPhone (I’mmentioning them because I have these;
I am familiar with them, and I think they are great), you’ve already agreed
to Apple’s own terms, which apply to everything you do on them:

YOU FURTHER ACKNOWLEDGE THAT THE iOS
SOFTWARE AND SERVICES ARE NOT INTENDED OR
SUITABLE FOR USE IN SITUATIONS OR ENVIRONMENTS
WHERE THE FAILURE OR TIME DELAYS OF, OR ERRORS
OR INACCURACIES IN, THE CONTENT, DATA OR
INFORMATION PROVIDED BY THE iOS SOFTWARE OR
SERVICES COULD LEAD TO DEATH, PERSONAL INJURY,
OR SEVERE PHYSICAL OR ENVIRONMENTAL DAMAGE,
INCLUDING WITHOUT LIMITATION THE OPERATION OF
NUCLEAR FACILITIES, AIRCRAFT NAVIGATION OR
COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL,
LIFE SUPPORT OR WEAPONS SYSTEMS.195

Apple is a world leader, no question. Their warning is normal, standard
practice across the digital industry. Apple wants you to be clear that their
software is unsuitable for running medical apps: failure of many medical
apps could lead to personal injury. It certainly undermines any safe medical
app use, especially in the radiology department.

WHO’S ACCOUNTABLE? | 195
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Under British Law, the Unfair Contract Terms Act 1977 (UCTA) pro-
hibits excluding liability for causing personal injury or death. As it says,

Section 2(1) A person cannot by reference to any contract
term […] exclude or restrict his liability for death or personal
injury resulting from negligence.
Section 2(2) In the case of other loss or damage (i.e., other
than death or personal injury), a person cannot so exclude or
restrict his liability for negligence except in so far as satisfies
the requirement of reasonableness.

The clash between the warranty and the law (and any contractual ar-
rangements made when the product or service was purchased) means that
a court case balancing the issues could be interesting and expensive. So far,
there are no precedents, since so few people are aware of the pervasive nature
of bugs and their impact on the reliability of healthcare systems.

I think, at root, there is a serious regulatory problem: it’s understandable
that manufacturers don’t want to say “feel free to sue us for anything and
everything!” but equally it’s unfortunate they revert to denying all liability as
strongly as they possibly can. Regulation could step in and provide a lot of the
missing clarity. Clarity would also help make problems easier to solve. With
clarity, insurers would be clearer about their liabilities, as would patients and
staff caught up in incidents. Everything would be easier to solve amicably.
And, if the regulations were sensible, then there would be fewer bugs and
software failures, because manufacturers would prefer to — or would have
to — improve quality rather than seek refuge behind restrictive warranties.

Warranties for big systems, such as hospital systems, go further than the
appwarranties consumers are familiar with. They usually add confidentiality
clauses (gag clauses), so they are much harder to get access to and discuss
freely. Often manufacturers further add DeWitt clauses, named after the
man who fought for the right to publish his research on database systems
(and to stay employed at his university when Oracle, a disappointed com-
pany, complained) — if the agreement includes a prohibition to name or
publish clear research about a system, it’s now called a DeWitt clause.196
Many digital health systems forbid researchers from publishing screenshots.

The manufacturers argue that the research might be wrong or even vex-
atious. My view is that if scientists make errors, they are pleased to be cor-
rected; that is the way science works. Otherwise, publishing specific details
enables other researchers to test and duplicate the claims rigorously. In this
book, I’ve taken that view: I’ve certainly criticized systems, but I have given
you enough information to check what I’ve said. Manufacturers may make
changes as a result of what I’ve said, in a sense invalidating it, but that would
be good — patients would benefit. On the other hand, if I’d anonymized ev-
erything, you probably wouldn’t believe me, and manufacturers would have
had no incentive to improve.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

196 | CHAPTER 15

We’d think it very strange indeed if car manufacturers or even smart
phone manufacturers prohibited people publishing reports of their products’
performance and handling. We rightly expect the media to regularly report
details of the latest cars and phones to inform us. It helps us choose which
to buy. It’s ironic that when it really matters — when it comes to healthcare
— the manufacturers on the whole don’t want us to know.

In the US, manufacturers can also appeal to the learned intermediary
doctrine in law: the manufacturer informs the clinician, who then acts as a
learned intermediary with the patient. The idea is that with drugs, the doctor
knows more about the various effects of the drug and the particular patient’s
condition, so they are advised by the manufacturer, but take responsibility
for their advice to the patient.

The learned intermediary doctrine (or variations in other countries) is
also used, I think mischievously, to protect manufacturers of patient data
systems. The idea here is that the patient record system, heart monitor, or
whatever, presents data to the clinician, and the clinician uses their profes-
sional expertise to determine what to do. The problem is that, used liberally,
the doctrine allows the manufacturer to evade responsibility for debugging
their system: the data is described as “advisory” rather than as “correct.”

In the Lisa Norris radiotherapy overdose case, we saw that manufactur-
ers changed the specification of their system and the radiotherapists didn’t
know they had.b With the Graseby syringe drivers used in Gosport,c Smiths
Medical, their makers, have taken this further. Their operator’s manual says:

All possible care has been taken in the preparation of this
publication, but Smiths Medical accepts no liability for any
inaccuracies that may be found.
Smiths Medical reserves the right to make changes without
notice both to this publication and to the product which it
describes.

Whywould you not want to be responsible for inaccuracies? Whywould
you want to make changes but notify nobody? Surely good practice is to
notify all relevant parties when changes are made, and thus avoid some of
the problems that undermined the safety of Lisa Norris’s treatment plan.

Smiths could have said they put all reasonable efforts into the system
and its manual, maybe mentioned using state-of-the-art methods, and also
stated that they’d like to hear from anybody who found errors so they can
correct them speedily.197

More contractual problems arise as healthcare organizations walk into
contracts that tie them up for years. Hospedia tied the NHS into long-term
contracts to provide patients with pay TV. A service like that might have

b See Chapter 7: Beatson Oncology Centre, page 69←
c See Chapter 8: Gosport War Memorial Hospital tragedy, page 84←

WHO’S ACCOUNTABLE? | 197
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

seemed sensible a long time ago, but now hospital Wi-Fi makes streaming
free — except some NHS regions signed an exclusive contract with Hospedia
to provide video at cost to patients until 2027. How could the NHS’s pro-
curement be so naïve about the rate of change of digital technology as to lock
themselves up for over twenty years? (They signed up in 2004 and the con-
tract runs to 2027.) Well, Hospedia must have had a very good story to sell,
and they must have sold it to procurement people who didn’t understand
digital technology.198

Manufacturers resist calls for stricter regulation because, as they say, it
would stifle innovation, slow the development of new treatments, and cost a
lot of money, and by the time something was approved it’d already be obso-
lete. None of these claims holds water. Airplanes have to go through rigor-
ous testing and test flights, and can take over five years to get airworthiness
certificates. Plane manufacturers understand this, and it doesn’t limit the
innovation (the Boeing 737 MAX tragedies mark a recent exception I’ll dis-
cuss in more detail later).d People’s lives depend on safe aircraft. As I’ll soon
argue, manufacturers could improve their devices in the time it takes to get
them certified— it isn’t wasted time; why rush to market with unreliable dig-
ital healthcare? Unfortunately, digital encourages this, because you can rush
to market, for all the usual commercial reasons, and then sort out the soft-
ware over the lifetime of the product (for instance, continually developing
bug fixes and upgrades, taking advantage of the internet to deliver them). It
is of course a good idea to fix bugs, but planning product development so the
manufacturers needn’t worry about the bugs in their products is unhelpful.

Until the law is changed, there is little incentive to improve digital sys-
tems, in hospitals or anywhere else. Gag clauses and lack of accountability
have nothing to do with safe and effective healthcare. Indeed, both increase
costs as well as compromising safety.199

I went to the website of the UK’s MHRA, the Medicines and Healthcare
Products Regulatory Agency. They say:

The MHRA does not accept liability for any errors, omissions,
misleading or other statements whether negligent or
otherwise.

Even when they are negligent? I thought the MHRA enforced the law to
make healthcare safer. Wouldn’t it be more reassuring if the MHRA felt able
to say something like,

The MHRA defines and enforces the standards to which all
medical devices and manufacturers must comply. We require
manufacturers to accept liability for their products, as we
accept liability for our own publications and regulations.

d See Chapter 26: Boeing 737 MAX crashes, page 352→

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

198 | CHAPTER 15

TheMHRA could be theworld’s leadingmedical regulator, making all the
UK’smedical and digital healthcare products the safest andmost highly com-
petitive internationally. Of course, by being similarly proactive, the same
could be said of the US FDA, the Australian Health Practitioner Regulation
Agency (AHPRA), or the Nigerian National Agency for Food & Drug Admin-
istration & Control (NAFDAC) too. Size is no barrier; the Nepal Department
of Drug Administration has some ideas …

The point is, any regulator, so motivated, could improve digital account-
ability and hence drive improvement in the quality of digital health and health
more widely. Besides, safer digital healthcare would be more profitable and
more competitive.

Until that time, why do we use any digital healthcare systems and med-
ical apps when the manufacturers, developers, and regulators take so little
responsibility for their safety?

Some programmers like to call themselves software architects. A real ar-
chitect (somebody who designs and assesses buildings) in the UK is required
to have professional indemnity insurance, at a minimum (as of 2018) of
£250,000 — a very small figure compared to clinicians! As the Architects
Registration Board says,200 anyone who is carrying out professional work
(even if they do it for free) may face liabilities, and they may continue to
face costly cases even after their own death, so their insurance plans should
cover this too.

It is the nature of building projects that faults and defects caused by fail-
ures in architectural design may not be visible for years, so the architect re-
mains liable (in the UK) for 15 years for such liabilities. One wonders what
manufacturers and software vendors will do another 15 years later — when
the systems for which they should have been liable are no longer supported,
no longer run, and, anyway, the original programmers have long since left.
What a difference between real architecture and software architecture.

That’s regulation for architects, but I couldmake similar arguments based
on the regulation of nursing, allied health professionals, even rehabilitation
engineers. Programmers, especially programmers developing and program-
ming digital healthcare, need to become accountable, just like other profes-
sionals. Indeed, as I’ll argue again and again, programmers build the systems
that care for patients (often being the last stage of delivering critical care, like
drugs and radiotherapy), so their regulation should surely be comparable to
the regulations of the people qualified to use their devices and systems.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

Digital healthcare needs
much better regulation —
and regulation needs to keep
up with the unique issues of
digital healthcare. Better
regulation is a Safety Two
approach: regulate for better
processes to stop things
going wrong.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

16

Regulation needs fixing

Regulation is always in flux, and there are always proposals to change it. No
doubt some of this chapter will soon be out of date on some technicalities,
but it won’t go out of date on the attitudes that underlie regulation. Reg-
ulation needs tightening, and it urgently needs to stay up-to-date with the
unique issues raised by digital healthcare.

The US regulator, the FDA, has a regulatory shortcut called 510(k) that
allows devices to be approved if they are substantially similar to some previ-
ous device that has previously been approved. This is supposed to encour-
age innovation, and it’s a light-touch approach that industry supports — as,
it must be said, do many patients eager to get help from new promises, like
rapid treatments for their diseases.

The 510(k) process creates a daisy chain of products, each being justified
by an earlier one that had been approved. It’s possible for earlier products
in the chain to be withdrawn from the market because they are obsolete or
unsafe, yet industry can keep adding new approved products onto the end
of the chain.

In the UK and across the EU the situation is similar.
CE marking is an EU idea used to regulate almost every product, from

children’s toys to hot water boilers and explosives. It allows approved prod-
ucts to be marketed in the EU. In particular, medical devices, and digital
systems, like medical apps, must be certified with the CE marking in order
to be legally used.201

To be legal, CE marking has to be printed precisely (figure 16.1). A cor-
rectly printedCEmarking is supposed tomean that an “authority” claims that
the marked product meets the relevant European standards. A CE-marked
product can therefore probably be used safely. CE marking and what it re-
ally means is terribly complicated,202 and I’d argue that if the aim is to ensure
safety, then the law should be a lot simpler and work as we all expect it to —
which it doesn’t.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

202 | CHAPTER 16

At least 5mm

Figure 16.1. The required dimensions for the CE mark are stricter than what it
stands for. The pedantry in what a CE mark looks like and what it actually means
for patient safety make a surprising contrast.

One of the important aspects of safety regulation is finding the right bal-
ance for proportionate regulation: not too much, and not too little, given
what you are trying to achieve. In healthcare, products range from bed sheets
to heart pacemakers, from cancer drugs to water jugs, from sheets of note pa-
per to ECT machines. Medical device regulation is unavoidably complex.

In Europe devices are classified, and cover a range from unclassified, to
classified as Class I, Class II or Class III, depending on the risk to the patient
or member of staff. Class I is the least risky, and includes devices like ther-
mometers and weighing scales; Class II is more risky including devices like
ultrasound machines; finally, Class III is the most risky, including devices
like brain implants for controlling Parkinson’s. In the US, the classification
system follows the same general idea, but is completely different in details.
In all areas of the world, the classification strategy predates thinking about
digital, and it is now being tweaked to fit.

A European Class I medical device can be self-certified by the manufac-
turer themselves.203 When CE marking of medical devices is self-assessed,
the developers who overlooked bugs in the first place may be the same team
that self-assess to certify the software is safe. This is clearly an unsafe pro-
cess. It’s marking your own homework. It matters because digital crosses
the conventional classifications. Microsoft Excel is not a medical device (ac-
cording to the rules), but it is used for doing radiotherapy calculations that
are a matter of life and death. Excel, seen like that, has uses as risky as any
Class III device, yet it needs no regulation.

Inmore complex cases the certifying authority in the EUwill need to be a
Notified Body, which are themselves regulated. If a Notified Body declines
to award a CEmarking, themanufacturer can shop around Europe to find one
that will. There are over 50 Notified Bodies, and they vie for the lucrative
business of awarding CE markings.204

Strangely, some critical devices don’t need approval to use in healthcare.

REGULATION NEEDS FIXING | 203
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Calculators, which are widely used for critical drug calculations, are con-
sidered to be “office” products, so their CE marking means they are fine for
offices. It says nothing about their safety or appropriateness for use in health-
care, and we’ve already seen that they have faults.a

The CEmarking system is confidential, so it’s impossible for third parties
(like hospitals considering buying and using a CE-marked product) to find
out what’s going on. CE marking, then, doesn’t do much to make digital
healthcare any less risky.

Devices with higher classifications need to be certified by independent
Notified Bodies but they aren’t required to see the programs. It’s like your
teacher giving your homework a mark without them ever reading it, and,
moreover, in a world where you pay them to pass you. And if you don’t like
the mark you get, you can go find another teacher who’s nicer to you.

The existing regulatory approaches don’t make sense for digital health-
care. For a start, the FDA’s 510(k) idea of substantial equivalence requires
arguing that two digital systems — the old one and the new one being ap-
proved — are equivalent. Yet equivalence is a well-known unsolvable prob-
lem in computer science; that is, you might build programs to be equivalent,
but you cannot check whether two programs do the same thing after they’ve
been built.205 It is mathematically impossible. Therefore, you cannot reg-
ulate for substantial digital equivalence afterwards, unless you know all the
math behind the construction of the two products, and even then it will of-
ten be impractical. Then, if you think of 5010(k), CE markings, and other
regulatory ideas, they were developed before digital issues were relevant to
healthcare. The current and future regulation of digital healthcare so far still
doesn’t take account of the power of digital, which means, for instance, that
computers can do anything and can mislead clinical practice.b

Internationally, regulators have started to explore the issues of digital sys-
tems. It is now recognized in principle by regulators — but not yet in any
regulations — that software is critically used across healthcare in different
ways. Three main classes have been identified:

1. Software that on its own is effectively a medical device — Software
as a Medical Device, SaMD;

2. Software that is part of a physical medical device — Software in a
Medical Device, SiMD;

3. Software used in the manufacture or maintenance of a medical
device.

The last category covers the case that software may be used in the design
of conventional medical devices, like hip implants. If there were any bugs

a See Chapter 14: Risky calculations, page 177←
b See Chapter 13: Computational Thinking, page 151←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

204 | CHAPTER 16

in the software, the medical device would be compromised. Bugs in any
healthcare software are critical, wherever the software is used in the process.

For example, you could have a spreadsheet full of numbers. This is obvi-
ously data. But the data could have been generated from a software formula.
Now the data is obviously program! The programmight be AI; then the pro-
gram itself has been generated by learning something from its training data.
Is it data or program? Or print the spreadsheet onto paper; now it’s obviously
just numbers and not software. Yet from a regulatory perspective, that data
should have been at least checked by software, so the data and its correctness
depends totally on the quality of the software used in its production.

The problem for regulators is that historically medical devices were obvi-
ously physical, and the regulatory frameworks matured around that assump-
tion. Then software become pervasive across healthcare, and changed the
rules. Unfortunately, software has got to its present position with no real
regulation. Even if we work out how to regulate digital perfectly, there is a
huge backlog of unregulated and hardly regulated software that patient health
depends on, and it will take ages to sort things out.

An area that is missed in the three-point classification above is emer-
gent behavior. Things happen when software is joined with other things
(including other software) that cannot be anticipated just by examining the
software alone. The new things “emerge” — meaning the problems cannot
be seen in the digital systems considered separately. For example, cyberse-
curity problems aren’t caused by one system, but by connected systems, pos-
sible failing firewalls, and more. In a famous example, a single employee in
the NHSmanaged to email 1.2 million staff; which was exacerbated bymany
staff using “reply to all” to complain about it.206 Considered alone, email is
wonderful, but its features have unexpected emergent features when used,
which become painfully obvious in large organizations. Indeed, this email
chaos is a bug: this reply-to-all problem is not a new emergent problem that
should have caught anyone by surprise. It’s a well-known bug that the NHS
uses email with anything like a reply-to-all feature without a check on the
number of emails that are going to be sent.

The same sort of buggy email features are still being used to accidentally,
and quite inappropriately, mail confidential patient information. One case
had a “horrendous breach of privacy,” emailing identity details of 2,000 pa-
tients at a gender identity clinic.207 This serious unlawful incident will likely
cost the NHS many millions of pounds in compensation. It’s important to
fix well-known bugs, and certainly not just use standard digital systems, like
“common off the shelf” (COTS) office email systems, assuming them to be
immediately suitable for use in healthcare. There have been enough health-
care email fiascos for this not to be an unexpected problem.

I ordered a brand new Cardinal Health Alaris GP infusion pump after I
visited one of their factories. I waited to get one of the first on the market.

REGULATION NEEDS FIXING | 205
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Figure 16.2. A drawing showing part of the Alaris GP pump’s operator manual.
Since the missing features, “For future implementaton,” are clearly written into the
user manual, this can be no accident. The device’s computer program is not fin-
ished.

When my new infusion pump turned up, it had very few features that
worked. A small part of the user manual that came with it has been redrawn
in figure 16.2.208 Notice that three buttons on the front panel have not yet
been implemented. They do nothing. The device is approved, but when the
software is upgraded later, then these buttons can be programmed by the
manufacturer to do anything. Whatever the buttons then do, the regulators
won’t have seen it, since the pump has already been approved without the
functionality being implemented. Since it’s a digital device, new features
could do almost anything and change the behavior — and safety — of the
approved Alaris GP.

An infusion pump (like theAlaris GP) is no longer a pump— it’smore like
an iPad. You can download apps to make your iPad do practically anything,
and its behavior can change from being a novel to a virtual reality enhancer to
a fitness monitor. Similarly, the software downloaded to upgrade an infusion
pump can change it beyond recognition.

I used theAlaris GP inmypostgraduate lectures as a case study ofmedical
device design. It prompted some interesting discussion, and I put it away
until I ran the course again the following year. The next year, the Alaris
GP did not work. The battery had gone flat over the year, so I plugged it in
and waited for it to charge back up. It didn’t. It never worked again. The
Alaris GP has a bug: the software it runs on requires battery backup, and
when the battery goes flat, the software disappears and the device becomes
unusable. This is not a helpful bug for hospital equipment that may be stored
in cupboards, and is relied on to work when it’s brought out to be used.

To be clear: the flat battery itself is a hardware problem (you need to
recharge it or get a newbattery), but a device unable to copewith a flat battery
is a software problem: it’s a bug that the digital features cannot cope with
normal and expected conditions, like a battery going flat. Most likely, the

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

206 | CHAPTER 16

Box 16.1. Drug regulation and fake drugs

In just one submission to NICE, the UK’s organization that reviews NHS
treatments, a drug company provided 151 pages documenting rigorous evi-
dence of clinical trials, modeling, and the economic value of their treatment
for cystic fibrosis.209 Cystic fibrosis is a nasty genetic disease that affects
about 0.07% of the population in Ireland, the worst affected country in the
world. Just one of the relevant cystic fibrosis drug trials involved 1,030 pa-
tients in 191 sites across 15 countries and took over 96 weeks — the trial
was rigorously designed and registered in a national database and has rigor-
ous peer-reviewed paperswheremore details can be found.210Whydo digital
systems that affect 100% of patients not require a comparable approach?

Then there’s the huge problem of fake medicines. The European Union
(EU) Falsified Medicines Directive (Directive 2011/62/EU) has measures
requiring obligatory safety features, including anti-tampering devices; rules
on the import of pharmaceutical ingredients; and rigorous record-keeping
requirements. If medicines can be faked, why not digital systems? Just con-
sider cybersecurity hacks: faking digital systems is very common. Where,
then, are the special regulations for fake digital healthcare?

A typical cystic fibrosis treatment can cost the NHS £100,000 a year per
patient. A typical medical app is free. No wonder medical device companies
can’t afford to develop safer software.

Alaris GP software is stored in “volatile memory,” which requires battery
power to work; when the battery goes flat, the memory fails. Clearly, at least
some of the software ought to be stored in non-volatile memory so nothing
essential disappears when the battery goes flat. Some people might want to
argue that this problem is a hardware fault and not a bug, but the fact is, the
Alaris no longer works because the software doesn’t work. I call that a bug.

The FDA reviews the documentation (but not the software) that theman-
ufacturer provides to justify their device being approved. In 2011 the US
National Academy of Sciences reviewed the FDA’s 35-year-old 510(k) reg-
ulatory process, and found it to be ineffective in assuring safety or clinical
effectiveness.

The National Academy of Sciences concluded:

Manufacturers are increasingly using software in devices,
software as devices, and software as a tool in producing
devices. That trend is expected to continue. The committee
found that current guidance on software validation is
insufficient for preventing serious software-based device
failures.211

More defensive people will say that was written way back in 2011, and
that much has changed since then.

REGULATION NEEDS FIXING | 207
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Take one example: Europe has revised its Medical Device Regulations
(MDR),212 saying “a fundamental revision of those Directives is needed to
establish a robust, transparent, predictable, and sustainable regulatory frame-
work for medical devices which ensures a high level of safety and health
whilst supporting innovation.” While the new regulations are stricter, they
are not stricter for digital systems. AI and ML are not mentioned, safer pro-
gramming techniques are not mentioned, the internet isn’t mentioned, and
so on. Fortunately, the MDR specifies minimum standards, and countries
are free to enforce higher standards, for instance in developer qualifications.

I find it interesting to contrast medical device regulations with, say, elec-
trical or gas regulations. Electrical regulations, gas regulations, and many
other regulations are very specific on technical details and on the qualifica-
tions and the certificates practitioners require to operate. People go to prison
for flouting the rules.213 In medical devices, the regulations (so far) are very
vague. The MDR, for instance, does not specify that manufacturers need a
specific level of digital qualifications. The gap between medical regulation
and digital practice is huge, and is increasing. Digital isn’t stopping to let
regulation catch up.

If the lax regulation of digital healthcare is astonishing, the Netflix docu-
mentary, The Bleeding Edge,214 about more conventional non-digital medi-
cal devices, such as hip implants and vaginalmeshes, is utterly sobering. The
99-minute documentary interleaves facts about the $400 billion5 US med-
ical device industry, ineffective regulations, and cover ups, underpinned by
powerful personal stories of people harmed, many horribly and irrevocably.

The UK’s Health and Safety at Work Act, 1974,215 is arguably the most
important piece of health and safety legislation in UK history. The Act says
of itself that it is

An Act to make further provision for securing the health,
safety, and welfare of persons at work, for protecting others
[which includes patients] against risks to health or safety in
connection with the activities of persons at work.

The Act’s important Section 6 is a really good summary of what needs to
be done to fix risky digital healthcare, and, at least in the UK, it’s the law.
Here’s some of what it says:

(1) It shall be the duty of any person who designs, manufactures, imports or
supplies any article for use at work […]

(a) to ensure, so far as is reasonably practicable, that the article is so designed
and constructed that it will be safe and without risks to health at all times
when it is being set, used, cleaned or maintained by a person at work;

(b) to carry out or arrange for the carrying out of such testing and examination
as may be necessary for the performance of the duty imposed on him by
the preceding paragraph;

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

208 | CHAPTER 16

(c) to take such steps as are necessary to secure that persons supplied by that
person with the article are provided with adequate information about the
use for which the article is designed or has been tested and about any
conditions necessary to ensure that it will be safe and without risks to
health at all such times as are mentioned in paragraph (a) above and when
it is being dismantled or disposed of; and

(d) to take such steps as are necessary to secure, so far as is reasonably
practicable, that persons so supplied are provided with all such revisions of
information provided to them by virtue of the preceding paragraph as are
necessary by reason of its becoming known that anything gives rise to a
serious risk to health or safety. […]

(2) It shall be the duty of any person who undertakes the design or manufacture
of any article for use at work […] to carry out or arrange for the carrying out of
any necessary research with a view to the discovery and, so far as is reasonably
practicable, the elimination or minimization of any risks to health or safety to
which the design or article may give rise.

It seems, then, that a lot of people in healthcare are breaking the law! How-
ever, the UK Health and Safety Executive (HSE) has decided to exclude sit-
uations where

The error was due to design failure of medical equipment,
which was unknown or had not been made known to the
organization through appropriate channels such as MHRA
[the UK medical devices regulator] or other safety alerts.

There is a widespread view that regulating digital healthcare should be
relaxed, otherwise innovation will not flourish. Yet pharmaceuticals have
a rigorous regulatory environment, and drug manufacturers don’t complain
much — thanks to thalidomide,c we’d all be very alarmed if they wanted to
undermine the safety and regulatory environment that has been so carefully
built up.

Ironically, digital regulation is in principle much easier to enforce and
comply with than pharmaceutical regulation. It is much easier to comply
and document everything you do when programming.

Everything computers do is written down, so it is easy to store in con-
trolled documents and hand over to regulators, and everything the comput-
ers do is digital and can be automatically recorded. If things weren’t written
down, then the computer programs wouldn’t even work. In contrast, most
things pharmacists and chemists do are not automatically written down, so
recording things for regulatory purposes is a lot more work in addition to
what they are doing in their laboratories. What are digital innovators com-
plaining about? I think they’re just complaining about the costs of having to
do a good job.

c See Chapter 8: The thalidomide story, page 81←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

Cybersecurity is a serious
problem for all computers
and digital systems. In
healthcare, patient safety is
paramount, but in the wider
world, security has a higher
profile than safety. Both have
problems caused by poor
programming and all the
design and development
processes that precede actual
coding.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

17

Safe and secure

WannaCry was a worldwide cyberattack that happened in 2017. WannaCry
quickly brought healthcare services worldwide to their knees. WannaCry
sounds like an exotic and highly technical attack that only nerds or malicious
countries would have the skills to understand and unleash. In fact, Wan-
naCry was completely unsophisticated. The scary thing is that something so
simple was so disruptive to an unprepared world.

Kits are readily available that enable unskilled hackers to build attack sys-
tems like WannaCry. Why they want to do this is another matter.

The WannaCry attack affected some 200,000 computers running Mi-
crosoft Windows, including many computers in the NHS and other health
services worldwide. Fortunately, the objective of the criminals who wrote
WannaCry seems to have been criminal extortion rather than terrorism, as
the attack announced itself with a computer screen that informed the users
that all their data had been encrypted and that theway to recover it was to pay
a ransom. The disruption would have been worse had WannaCry not been
quickly stopped by a cybersecurity researcher, Marcus Hutchins, who also
goes under the name MalwareTech, activating a “kill-switch,” albeit largely
by chance.

Even though healthcare was not a specific target of theWannaCry attack,
in the UK NHS alone 37 hospital trusts, including 27 acute trusts, were in-
fected and locked out of devices. Almost 20,000 hospital patient appoint-
ments were canceled. Some 44 hospital trusts were not infected but experi-
enced disruption, 21 trusts and 71 doctor (GP) practices had systems trying
to contact the WannaCry command server, 595 GP practices were infected
and locked out of devices. There would have been an unknown amount of
further NHS disruption that was not reported — not least because computer
systems and email were shut down to try to limit the problems.

Disruption to healthcare in other countries worldwide was on a similar
scale.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

212 | CHAPTER 17

Figure 17.1. The WannaCry malware announces itself. The attack would have
been much worse had it stayed silent, and just corrupted patient data without any-
one noticing.

WannaCry caused huge disruption, and trying to avoid disruption caused
more disruption. Queensland Health, Australia, in its attempt to protect its
digital systems fromWannaCry, managed to accidentally shut down the sys-
tems at five of its key hospitals. The affected hospitals were driven back to
pencil and paper.216

The WannaCry attack just stopped things working, but it could easily
have been designed to make changes to data instead of just encrypting it, be-
cause if files can be read and encrypted, then, clearly, they can be changed
in arbitrary ways. WannaCry was not specifically aimed at healthcare, but
imagine what the effect would have been if it had instead been designed
to change critical medical data and, rather than blatantly announcing itself
with a ransom screen (figure 17.1), and had remained hidden until several
backup cycles had passed. How quickly could a hospital recover if blood
groups, allergies, and other life-critical fields in medical records could no
longer be trusted? Things might have gone horribly wrong long before any-
body tracked down the cause.

WannaCry hit the headlines, but similar cybersecurity problems are rife.
It is sobering to search the US National Cybersecurity and Communi-

cations Integration Center’s (NCCIC) database. Here’s one example: Advi-

SAFE AND SECURE | 213
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Box 17.1. Ransomware and cyber extortion

Cyberattacks take control of your digital systems. They can then do almost
anything. Making money is easy. With ransomware, the cyberattack en-
crypts your data so you can’t use it, and then holds you to ransom. Pay them
thousands, and they “promise” to decrypt your data so you can use it again.

In 2019, Riviera Beach, a small city of 35,000 people in Florida, paid
up to a demand of $600,000.217 The Riviera Beach cyberattack happened,
ironically, after a police officer opened an email with a malware attachment.

It’s very good business when hackers can make so much money. Their
techniques develop and they becomemore adept, and they stay well ahead of
healthcare organizations that are already strugglingwith old IT infrastructure.

Unfortunately, giving in to any ransom just encourages them. Worse,
once a ransom is paid, the hackers have no incentive to bother to sort out the
mess they’ve created. Recovering from a cyberattack, even when the hackers
decrypt the information, can be hugely costly. The best insurance is to have
safe backups from which an organization can recover. After all, you need
backups in case the primary systems have a fire or other outage. Backups are
intended to sort this sort of thing out, though to recover from a cyberattack
it is of course essential to ensure the backup is not attacked as well.

Best is not to get attacked in the first place (which requires fewer bugs).
Most importantly, “IT literacy” or “digital literacy” — all staff knowing how
to avoid attacks in the first place — is a good protection. Like not opening
emails from strangers, and recognizing when emails spoof the people you
think you know. Many years ago, I had my email account hacked because of
an email that seemed to have come from a reliable colleague. Unfortunately
he had been attacked: the hacker had already taken over his account. I was
fooled. I now use two-step authentication (or two-factor authentication,
2FA, and more generally multi-factor authentication, MFA), so a hacker
needs not only my accounts (from my computer) but my phone as well (or
vice versa if my phone is attacked). IT literacy means keeping up; two-step
authentication is now getting old hat.218

sory ICSMA-18-037-02, dated March 2018, concerns GE Healthcare dig-
ital medical device vulnerabilities,219 and lists 23 GE devices that are used
worldwide and have a security problem. The problem can be exploited re-
motely with little technical skill. The NCCIC gives details, explains what GE
has done, and has suggestions for managing the problems. Nevertheless, it
all seems a bit hit and miss: these are bugs in medical devices that should
never have occurred in the first place — and they should have been detected
and remedied by GE rather than by independent researchers.

Indeed, in July 2019, GE reported cyber-vulnerabilities to some of their
anesthetic machines, specifically their Aestiva and Aespire models 7100 and
7900. If these machines are connected to the internet, the bug allows a
remote hacker to modify settings and, dangerously, also silence alarms. I

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

214 | CHAPTER 17

was interviewed by the BBC about this problem, and I said my bit,220 but I
now know that the BBC learned of the problems before some hospitals had
even heard there was any problem with their equipment — one hospital told
me they first knew about the problem from reading “my” BBC news item!

GE Healthcare is reported to have said there was no “direct patient risk.”
In my opinion, this is a bit misleading; there is no patient risk so long as the
anesthetist is alert to the problems. In law, the anesthetist is responsible,
but in reality if their anesthetic machine is tampered with and has silenced
alarms, isn’t this a bug (which you can blame on GE or the hacker exploiting
the bug) rather than an anesthetist’s responsibility?

GE’s disclosure of the problems followed a contorted pathway down to
the key people who could do anything about it. This is unacceptable at many
levels. Fortunately, most hospitals don’t have anesthetic machines routinely
connected to the internet — but this is no real protection, as it only takes a
few seconds of internet connection for things to go wrong.

One anesthiologist was reported as saying:

The likelihood of harm being caused to a patient through any
hacking of the devices is “incredibly small” — patients should
be reassured that their anæsthetist will be monitoring them
constantly, and will have received many years of training to
rectify immediately the situation of a device failure.220

It’s understandable that they’d want to reassure the public like this, but
this sort of public gloss on a serious, avoidable, problem won’t help improve
the quality of digital healthcare.

It’s baffling that many well-published attacks like WannaCry and others
seem to have changed so little. Old systems are still being used; new systems
continue to have basic bugs that leave them vulnerable to hacking; regula-
tions and IT management haven’t tightened up.

In October 2020 — over three years after WannaCry — a Finnish psy-
chotherapy center, Vastamo, was hacked. The hackers published sensitive
information of at least 300 people online and sent emails to the center’s pa-
tients to extort cash.221 The center’s patients include children, and its data
includes transcripts of sessions.

Whywasn’t all the center’s sensitive data encrypted securely, so that even
if it was stolen, it was useless to the hackers? Put in other words: why was
the database design so buggy, why was such a bad system procured, and why
wasn’t it fixed?

In May 2021 — over fours years after WannaCry — another cyber attack
affected all of Ireland’s national and local Health Service systems. The attack
meant that all computer systems had to be shut down.

AnneO’Connor of theHealth Service Executive told the Irish broadcaster
RTÉ:

SAFE AND SECURE | 215
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

… we will be in a very serious situation and we will be
cancelling many services. At this moment we can’t access lists
of people who are scheduled for appointments on Monday, so
we don’t even know who to cancel.222

Clearly, and soon, if not yesterday, healthcare services will have to start
training patients as well as staff about cybersecurity: once patient health data
is hacked and, very likely, combined with other hacked data (such as hacked
credit card or bank details) patients will very easily be persuaded to part with
everything.

It’s hard not to ask very basic, but probably quite harsh-sounding, ques-
tions about multistep security, backups and other protections, and proper
organizational IT support, whether in Finland, Ireland, or —withWannaCry
— everywhere. On the other hand, cyber attackers are nasty people, and we
can’t just blame the victims. Indeed, cyber attack methods are changing all
the time, and it’s hard, even for full time cyber professionals, to keep up. I’ve
left further discussion of these sorts of problems to the book’s further read-
inga — where I mention RIPPLE20 and other bugs that have compromised
billions5 of devices.

The scale of the problem — and the fact that things don’t seem to be
getting any better in digital healthcare — is utterly shocking.

I wrote this book on my Apple MacBook Pro laptop. I’ve set it up so I
have to log inwithmyname and password to use it— so ifmy laptop is stolen,
the thieves can’t log in and use it. But a determined thief could unscrew the
back and take the laptop’s disk out, and plug it into another computer they
do have a password for. To stop that being a problem, I also encrypt the
disk itself. That means to access any data on it, even if you take it out of the
computer, you need the disk’s own password as well.

I also back upmy laptop several times a day, and I backup to four different
locations, just in case any of them get into trouble. For instance, two of the
backup locations are in my own house, so if somebody broke in and stole
my raid disk systems or if the house burned down, I need to make sure I
have independent backups. Two of my backups are not networked, so they
cannot be hacked.

I don’t just backup, I also use a version control system so that I can re-
cover today’s work, yesterday’s, or recover work from any time in the past.
That’s in case I accidentally make a mess of my data and back up the mess —
I’d then want to recover the previous day’s work, not the messed up work.

I’ve also got firewalls and stuff to reduce the risk of any cyberattack get-
ting to my laptop in the first place.

Since I’m writing a book about bugs, you can be sure that fate is de-
termined to make an example of me by ensuring lots of things go wrong at

a See Chapter 33: Good reading, page 471→

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

216 | CHAPTER 17

once! I have had disk drives fail in the past, and to be honest, although I
have data that goes back to the 1970s, my current redundant backup system
only works back to 2017.

At least that’s what I do. I don’t have any patient data on my laptop, so
my approach is pretty relaxed compared to what professionals should do.

LifeLabs is a Canadian medical lab test company that handles data for
15 million patients, including their addresses, passwords, birth dates, health
card numbers, and medical lab results. LifeLabs reported they were hacked
inNovember 2019, and they lost patient data, some of it going back to 2016.

Here’s what we know:223

LifeLabs paid the hackers a ransom. This implies that LifeLabs have
no off-site backup that was not also compromised by the attack. In
turn, if LifeLabs has recovered data (thanks to paying the ransom),
this implies that they will have no way of checking if the “recovered”
data has been compromised by the hackers. For example, it would be
easy for the hackers to change lab results for all patients, possibly
causing life-threatening consequences, and LifeLabs would have no
idea that had happened.

LifeLabs have no idea whether the hackers have distributed the
patient data any further. The hackers could make a lot of money
selling the patient data. This implies the data was not encrypted,
although encrypted data is still worth selling (though they would get
less for it) because somebody may be able to break the encryption.

LifeLabs is now offering a free year of protection, including dark web
monitoring (to see if the data resurfaces) and identity theft insurance.
A year’s protection seems little compensation for criminals getting
access to information like your home address and using it next year.

The chief executive of the company, Charles Brown, called the
incident “a wake-up call for the industry.” That suggests they’ve
been asleep. He hasn’t been paying attention to cybersecurity
problems —WannaCry was worldwide news two years earlier — and
he hasn’t been thinking about how to make his company more
secure. Furthermore, it has been reported that he doesn’t know if the
LifeLabs hacked medical test data was encrypted, which certainly
suggests he has very little idea about cybersecurity or how his
company runs its digital systems.

The easiest way of cracking encryption is to use social engineering
— for instance, tricking passwords out of LifeLabs employees. Given
how ignorant the chief executive is about cybersecurity at his
company, how many of his employees know about phishing and
other social engineering tricks?

SAFE AND SECURE | 217
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

I think we can all agree with Charles Brown: the incident certainly was a
wake-up call.

I must admit I was surprised that WannaCry didn’t immediately result in
worldwide legislation to force LifeLabs, Ireland’s HSE, and Finland’s Vas-
tamo — and all the others — to wake up; clearly some people have carried
on as if nothing has happened. For LifeLabs, “carrying on” resulted in an
unnecessary loss and likely corruption of data for millions of patients.

Like the US National Cybersecurity and Communications Integration
Center, the UK has its own National Cyber Security Centre (NCSC) too, and
it lists plenty of problems, includingUS andUKhospital cyber incidents. Cy-
bersecurity is a very serious global problem. Cybersecurity problems aren’t
healthcare’s fault, although it’s easy to make cybersecurity worse (like by not
securely backing up data).224

Somehow, healthcare clearly needs to have much better awareness and
muchmore effective procedures for dealing with digital problems. I ammys-
tified that there is no legislation or regulation in place tomake sure these sorts
of things happen. How can a company managing millions of patients’ data
be surprised by cyberattacks? Nobody is listening. What we need is at least
this:

National systems need to sort out their procedures. In the UK, NHS
Digital said it could not confirm the extent to which the Aestiva and
Aespire machines were still in use across the NHS. Why don’t they
keep inventory? Basic stuff.

Hospitals cannot procure digital systems without being fully aware of
safety and cyber issues. Levels of acceptable performance must be
specified in contracts. The entire burden of working out technical
details of what’s required needn’t be on hospitals: manufacturers
should be helpful and open about these issues, and hospitals can
select what they want for given systems. But to be silent is not an
option.

Manufacturers must be more proactive in notifying hospitals of
problems, and must provide effective solutions. Of course,
manufacturers should follow best practice.

Security updates must be handled systematically. In a national
healthcare system, it is surprising that this is not centrally
co-ordinated.

Front-line staff — all staff with IT access — must be trained and be
more aware of digital risks.

All the above applies to cybersecurity problems and to all other forms
of bugs and software upgrades.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

218 | CHAPTER 17

Digital

healthcare

systems

Networked

users

and hackers

Healthcare

staff

IT

staff

Patients

Developers

may introduce bugs, Trojans or viruses

accidentally or deliberately

Cybersecurity Safety

Cyberattack surface User interface surface

intentional problems unintentional problems
caused by hackers sometimes caused by staff

Many cybersecurity standards Needs rigorous standards

Figure 17.2. A digital device responds to the network and to users in essentially
the same way. In addition, developers may introduce weaknesses, accidentally (e.g.,
bugs and viruses) or deliberately (e.g., Trojans and other malware). Poor design and
programming on either side is dangerous.

Cybersecurity, rightly, has a very high profile, as it is obviously impor-
tant to get right and to have the best defenses against malicious attack. It’s
obvious that there are bad people out there who want to hack systems, so
we would be irresponsible to ignore the threat. But the opportunities these
people have to hack are created by poor-quality software. Sure, the “evil
hackers” get in and poor cybersecurity exacerbates the problems, but the
root cause is that software bugs and weaknesses leave the front door open.

In contrast, virtually no clinician is trying to hack in or cause systemprob-
lems: the problems happen unintentionally — and the clinicians are labeled
as “blundering” or “bad.”

We often overlook the fact that cybersecurity problems have the same
causes as all other problems with risky digital healthcare: namely bugs and
poor-quality software.

The picture (figure 17.2) illustrates the point. On the left, programming
bugs are deliberately exploited by hackers, mainly via the internet and Wi-
Fi software. On the right, bugs are mainly encountered unintentionally by
users, doctors and nurses, operating the equipment. Don’t just concentrate
on cybersecurity, as there are bugs on both sides.

There is a complication my diagram doesn’t show. Some cybersecu-

SAFE AND SECURE | 219
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

rity problems happen when internal staff (including contractors) fall prey
to phishing or other social engineering scams. One common phishing at-
tack happens when one of your colleagues has already been attacked, and
they then (unwittingly) send everyone on their address list an email, includ-
ing sending you one. You then get phished, with some plausible-sounding
email. It only takes one person to respond, and the chain of deceit expands
its range by stealing another address list. Since the email apparently comes
from a friend or a senior manager, eventually somebody falls for clicking on a
dodgy link, typing in their password, or giving away some other information.

I was recently sent a phishing email, apparently frommyHead of Depart-
ment, saying he was in a meeting but needed an Amazon voucher to give to
a student as a prize. I like to be helpful, but if I’d sent “him” a voucher, I’d
have lost the money to the hackers who sent the email.

Hackers and criminals are devious, and they are not at all obliged to fol-
low my diagram (figure 17.2)! They may, for instance, send phishing emails
to the good staff on the right side of the diagram to trick them into breaching
security or causing other problems themselves. Or they might even put bugs
inside the digital healthcare system by planting devious software in it when
it was originally programmed — such bugs (or Trojan Horses) then will stay
hidden until the hacker wants to exploit them at a later date. This attack hap-
pens surprisingly often when disgruntled programmers try to get their own
back on their employers.

We would be being incompetent if we did nothing to defend ourselves
against hackers. Lots of money is therefore invested in cybersecurity, but
mostly at national level, as, for instance, in the UK National Cyber Security
Centre. We would still blame ourselves — or our staff — if we got attacked.

Thinking about security is completely different to thinking about safety.
In security, the obvious culture is that we need to fix the root causes of the
problems, namely we need to fix our software vulnerabilities quickly and
effectively. In contrast, the usual safety culture is that, instead of fixing the
problems, we rarely even notice them and thenwe blame the nurse or doctor.
Therefore, unlike security, there is nothing else to do!

WannaCry basically stopped systems working, and it attacked only old
versions ofMicrosoftWindows (such as ones runningMRI scanners), so that
many digital systems thankfully escaped its attack. In general, attacks can do
much worse damage — and eventually they will. They can directly change
the drug delivery rates on infusion pumps remotely, or even reprogram a
heart pacemaker actually inside a patient.

A cybervulnerability in a St Jude pacemaker led the FDA (the USmed-
ical device regulator) to require 465,000 pacemakers to be reprogrammed
to fix the bug. Nearly half a million patients therefore had to visit hospi-
tals for the procedure. Meanwhile, hackers would have been aware of the
pacemakers’ bugs and the patients’ vulnerability if they’d wanted to exploit
them.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

220 | CHAPTER 17

Figure 17.3. Drawing of a typical St Jude heart pacemaker implant, small enough
to fit in your hand, or inside your chest if needed.

What’s especially interesting, again, is the huge interest — and huge
amounts of money — in a cybersecurity vulnerability that threatened pa-
tients, but the widespread lack of interest in risky healthcare more generally.
We need to focus some of that technical energy into improving all of health-
care, not just cybersecurity.

It was a security company calledMedSec Holdings who found the cyber-
vulnerabilities in the St Jude pacemaker. However, instead of telling the FDA
or St Jude, MedSec revealed the flaws to Muddy Waters Capital, who then
sold St Jude shares short to profit from the anticipated fall in their share price
when the public learned of the bugs.225

In the end, about $1 billion5 was wiped off St Jude share values, which
made it vulnerable to takeover. Abbott (another medical device company)
then bought St Jude for a bargain $25 billion.

The short-selling activity, MedSec argued, was to fund their core busi-
ness of finding security flaws. It’s ingenious, dubious ethically, and certainly
shows disregard for patient well-being.

On the other hand, MedSec claims that if they had done the conventional
thing, which would have been to tell St Jude privately that they need to fix
their problems, then St Jude would have just swept the problems under the
carpet. That wouldn’t have helped patients. In the end, St Jude wasn’t able
to sweep anything under the carpet.

MedSec made huge profit while risking St Jude going bust, which would
have endangered at least 465,000 patients. MedSec also revealed therewere

SAFE AND SECURE | 221
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

bugs in the pacemaker, encouraging hackers to attack patients with St Jude
implants.

Behind all that, of course, are the questions like these:

Why does a pacemaker have a bug, in this case, not “just a bug” but a
serious cybervulnerability that makes the bug exploitable over the
internet or in some other way remotely?

If a pacemaker does have a bug, why it isn’t easy to fix? If the bug
can be exploited over the internet, why can’t St Jude patch it over the
internet?

Why doesn’t a pacemaker (at least for most problems) fail
gracefully,b so it isn’t an emergency to fix it?

Why didn’t St Jude work with effective cybersecurity laboratories so
bugs like this weren’t a surprise?

Hindsight is a wonderful thing, of course. But the St Jude pacemaker
wasn’t the first pacemaker ever. Where is the learning — where are
the open standards — so that pacemakers are improving? What other
companies have learned from St Jude and improved their practices?

If youwant to become an investigator, go to the FDA’s reporting database.
Their database is called MAUDE, the Manufacturer and User Facility Device
Experience.226 You’ll find stuff like this:

Event Description: It was reported that the patient expired.
There is no known allegation from a health care professional
that suggests the death was device related. The cause of death
was unknown. No additional information was available at this
time.

On the whole, these FDA incident reports aren’t very helpful, and com-
pared to, say, the detailed evidence around car and aviation crashes, themed-
ical reports are scandalously vague.

Why didn’t St Jude upload all the data from their device and know what
was going on? In aviation it is routine to analyze black box data. For any
medical device manufacturer to say to the FDA that “no additional infor-
mation is available at this time” is a euphemism for saying they don’t want
to disclose data or bother to collect it in the first place. In contrast, pub-
licly available, well-written, extensive reports are available for aviation ac-
cidents.227 One wonders why aviation is getting safer and digital healthcare
isn’t — we’ll look more closely at that story in another chapter.c

b See Chapter 21: Graceful degradation, page 292→
c See Chapter 26: Planes are safer, page 347→

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

222 | CHAPTER 17

In order to improve the risky digital systems, safety needs to be under-
stood and treated as seriously as cybersecurity. This involves financing digi-
tal safety research and hands-on digital safety in healthcare adequately, and
improving regulation to make it happen.

It’s obvious to everyone that consumer digital technologies are amazing,
so — the thinking goes —we just need to update healthcare to catch up. But,
no, we must stop thinking about the latest digital as an automatic improve-
ment, or even as an improvement over tired, obsolete, digital that’s years
behind the gadgets in our pockets.

Digital is only an improvement when it’s resourced properly, with “re-
sourced” meaning more than money to buy new stuff, or somebody on the
Board, or even some supportive politicians. Again, no. We must learn the
right lessons from WannaCry, Finland, Ireland, St Jude, and the too-many
other such stories.

Reliable and safe digital healthcare needs teams of people at the center,
who are properly qualified and professionally well-informed about how the
latest digital works, including having thorough knowledge of cybersecurity,
and all the other intricacies this book talks about.

Digital healthcare is not a job for enthusiasts.
It’s no good having an IT Department who are run off their feet.
Digital healthcare must be done by professionals and resourced prop-

erly, just like any other sort of engineering that lives depend on. Until that
happens, I think it’d be easier and quicker to set up formal two-way links
between healthcare and every university department of Computer Science.
After all, universities are already training the next generations of both hack-
ers and professional software engineers.

Until some ideas like that, or better, are taken seriously, this chapter on
cybersecurity disasters will just keep getting longer and longer.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

Who is profiting from our
data? Is Artificial Intelligence
(AI) the solution to better
healthcare?

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

18

Who profits?

Jack Singer faced a lawsuit. He had developed a new eye surgery technique
for removing cataracts, without needing any stitches, so it the surgery healed
faster. He had started teaching the method. And then the lawsuit came. It
wanted him to pay royalties to someone who’d patented the idea already.
Samuel Pallin was demanding $10,000 per year. Fighting the case cost Jack
his job, and his clinic, and left him a bill of over $500,000.

Jack’s case is not unique.228 He died in 2011, and will be remembered
as the doctor who, through his hard work (and the help of astonished col-
leagues), finally won the right for all doctors, particularly ophthalmologists
like him, to perform surgery without fear of interference from patent holders.

Things have changed a lot since Singer’s 1993 law suit.
Today, most of us willingly sign up to give away almost everything that

defines us. Google know where we are and what we are doing — they know
what we are interested in. Facebook and Twitter know all our friends and
interests. Amazon knows what we buy. All these companies, to varying de-
grees, make a living out of advertising and propaganda, selling our data, and
predicting what we’ll do next. Facebook is now notorious for the huge busi-
ness it has in forming people’s opinions — and influencing the outcomes of
national elections and referenda.

Contrary to privacy laws (such as Europe’s GDPR, the General Data Pro-
tection Regulation) we also give a lot away without noticing, let alone sign-
ing it away. Many medical websites, like WebMD, Healthline, Babycentre,
and Bupa, share our data when we browse them, generally with companies
like Facebook and DoubleClick, Google’s advertising subsidiary.229 These
companies argue that the amount of information we give away is “not sensi-
tive” (who defines what’s sensitive?) and that they don’t sell it (though they
must gain commercially from doing it, else why do it?). Yet even if our own
personal information is tiny, by the time the website aggregates millions of
users, the information has serious value.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

226 | CHAPTER 18

The business these companies really have is different and hidden from
the businesses we can see and think we’re experiencing. We think we have
a free and wonderful experience. After all, Facebook andWhatsApp and the
others are free to use. However, in thinking it’s free, we under-valuewhat we
areworth—where arewe, what products are next to us, what targeted adverts
will work best, who arewe talking to (andwhere are they, what shops are they
in …)?230 Indeed, Facebook is developing a new app, Preventive Health, to
leverage users’ health concerns, starting collecting data on— sorry, “helping”
— users with, flu jabs, cancer screenings, and blood pressure tests.231

Such are the features, subtle side effects, and monetization that very few
users expect to have. They create a privacy-destroying surveillance com-
mercial world that, if nothing else, has no place in healthcare that otherwise
respects confidentiality.

Of course, when we go to the doctors, a clinic or the hospital, our med-
ical information, what drugs we use, our diseases, and mental health, and
more, is recorded. That data, too, is widely shared. Of course, the health-
care system needs our medical records to treat us effectively, and it needs to
review its data to see how it can improve.232 Delays in adopting best practice
or unusual increases in deaths, for instance, need investigating. The data is
also used for medical research and developing drugs and other treatments.
Who owns this data? Naturally the doctors, the hospitals, and larger health
organizations, like the NHS, which has collected some of the largest medical
datasets in the world, want to profit from the data they have collected — and
they do. The NHS data alone is worth about £10 billion5 a year.233

Industry is pushing hard into a Wild West of unregulated territory. The
concepts are completely new, on an unimaginable scale, and years ahead
of the traditional concerns of medical regulators. In 2019, Facebook had
around 2.5 billion users,5 and the other popular apps have similarly huge
numbers, yet the regulations they work under were designed in a simple
world where the snake oil salesman had a hundred customers and sold things
you could see and take to a laboratory to test. The good news is we’ll discover
new cures andways of having a healthier population; the bad news is that the
motivation is to make money, and the global scale of the operations means
that the medical interventions — for that is what they are — are going under
the regulatory radars.

I’ve alreadymentioned the Practice Fusion scandal,a where awidely used
digital healthcare system raised advertising revenue, with a business model
more like a consumer product might have. But Practice Fusion crossed the
line from consumer advertising with consent (however vague) into secret,
manipulative advertising, nudging clinicians to prescribe opioid drugs that
gave Practice Fusion a significant additional revenue. We’ve already got an
opioid crisis, and Practice Fusion is making money promoting it.

a See Chapter 2: Practice Fusion’s nudging, page 18←

WHO PROFITS? | 227
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

We do want manufacturers to monitor how their products are working —
it’s called post-market surveillance. It’s an important part of detecting
bugs and improving the safety of medical systems. Yet if the manufacturers
are recording most of what you do, like where you are and each dose of ad-
dictive opioid or your blood glucose levels, this private medical data easily
gets into the hands of financial credit agencies, foreign states, andmore. And
when a system has bugs (as they do) or a cyberattack (as they will), all their
assurances about private data are void. If only digital healthcare had fewer
bugs!

The clash is that we want the power of new digital technologies to solve
healthcare’s various problems and inefficiencies, but we currently want it for
free to use, just like consumer products like WhatsApp that seem free at the
point of use.

Our medical data, which is what healthcare is based on, is — or should
be — worth more than our consumer data, which has driven Facebook into
world dominance in social media. Our data will lead to new treatments.
Those treatments, based on our data, including our genetic data, will be prof-
itable for the companies that own them.

This is new territory. Central to making it work smoothly are “big data”
and the digital technologies of Artificial Intelligence (AI) andMachine Learn-
ing (ML — not to be confused with mL, for milliliter). ML is a trendy type
of AI, generally associated with processing tons of data.

Google’s DeepMind Health is a cautionary tale.
An arrangement between Google DeepMind and Moorfields Eye Hospi-

tal gave DeepMind Health millions of patients’ eye images, for which Moor-
fields was paid £110,000.234 As a result of analyzing this data, DeepMind’s
AI can now, in principle, cut down on the time and cost of diagnosing over
50 eye conditions. This sort of technical advance may save the sight of thou-
sands of patients and may save the healthcare system a lot of money.

All diagnosticmethods have false positives (you are diagnosedwith the
disease, but you don’t have it) and false negatives (you are diagnosed as
free from the disease, but you do have it). Without basic information on the
false positive rate and the false negative rate, from which no diagnostic sys-
tem is immune, it is impossible to say anything specific other than that more
research is needed. Indeed, this AI for diagnosing eye conditions from data
is an unclassified medical device, though aspects might be a self-certified
device: yet its only purpose is to drive critical clinical decisions that need
more careful regulation. But it isn’t something like a textbook for teaching
a clinician who later exercises their clinical judgment; it’s a bespoke system
giving (apparently) precise patient-specific information that leads directly to
serious interventions.

There is a twist to all improved diagnosis, called lead-time bias. The
better we diagnose illnesses, the more treatment is demanded. Since treat-
ments have side effects, it’s possible that earlier diagnosis paradoxically in-

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

228 | CHAPTER 18

creases illness. Evenmore paradoxically, the earlier a condition is diagnosed,
the longer people apparently live with the condition: improved diagnosis
seems to make treatment more effective, yet the patient has to live with the
anxiety of knowing they have the disease for longer. Without more research,
we can only say this AI might cost healthcare a lot more money to perform
the required treatments, or it might improve people’s quality of life with bet-
ter sight, or it might cause increased anxiety in patients who are diagnosed
and have to wait for (or cannot afford) treatment. We don’t know — yet.

Clearly a lot more research needs doing, and in my view the priority
should be to do it scientifically. Science creates public knowledge, it creates
testable, reproducible knowledge that others can build on and improve. Sci-
ence — or, rather, the attitudes that underlie science — are why we have all
these fantastic things in the first place. To turn what should be science at this
stage into business, intellectual property, copyright, commercial confidence
is a travesty. Business can do that later, when we’ve worked out how to get
things to work. Indeed, isn’t that the core problem? Business has rushed
into digital healthcare when nobody really knows how to do it properly, but
business knows how to make money out of it in the meantime.

Moorfields was allowed by DeepMind to use their system for free for five
years. This seems like a short-sighted agreement, as it hands all the long-
term rights of the data and AI to DeepMind. DeepMind are surely making
similar agreements with other hospitals around the world, not least to avoid
training their AI systems on unrepresentative samples of the population.

In another project, a DeepMind app used at the Royal Free Hospital in
London is integrating 1.6 million patient medical records and test results.
This system saves some nurses around two hours a day each and costs the
hospital nothing.235 That sounds very useful—butwhat is Google’s business
model that makes it worthwhile for it to do all this technical work “for free”?
What will Google use the data for in the long term? How will the world
benefit?

The UK information commissioner ruled that the Royal Free allowed
DeepMind access to patient data without consent. It’s the start of a con-
troversy most people don’t begin to understand. For example, if a patient
decides they do not want their data to be given to DeepMind (why help a
commercial business with no payback to yourself?), it’s too late, as their
data was anonymized and DeepMind has already lost track of it.

An independent review of DeepMind said:

All companies that wish to operate in the area of healthcare
data ought to be held to high standards, but the onus is even
greater for a company such as DeepMind Health.236

That’s hardly likely to happen, as DeepMind itself has now disappeared
inside Google, and this critical report seems to have disappeared along with
it.237

WHO PROFITS? | 229
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Enjoying NCalc?

Tap a star to rate it on the
App Store.

Not Now

Figure 18.1. Rating dialogs like this pop up unexpectedly and obscure the screen
while you are using many medical apps. The dialog obscures the app’s screen and
makes it impossible to use until it is rated or you tap “Not Now” and postpone the
survey to interrupt you some time again in the future. The rating design here is
based on the NCalc 2.0 app for calculating early warning scores for patients, which
is not a task you can interrupt safely. In addition, using NCalc, adverts appear con-
tinually at the bottom of the screen. You have to pay to get rid of them.

In principle, the scientific value of this work is undoubted; in fact, it’s
amazing and could eventually help millions of people with sight problems
worldwide (assuming we can reach them all with appropriate digital tech-
nologies). On the other hand, as Dr Singer found out, commercial interests
take precedence, and when they do the scientific value is nil.

Apart from the big names, very few medical apps make money. If apps
aren’t charitable and don’t have any other business model, they need sub-
scriptions or must make money indirectly, typically by advertising or by
monetizing user data (like the user’s contact list), or by selling additional
features, like getting the user to pay to block disruptive adverts.

NEWS is the NHS’s National Early Warning Score, which helps identify
patient deterioration; it’s an important part of patient safety, particularly as
deterioration (say from sepsis) is easy to miss. There are two versions of the
NEWS score: the original NEWS (phased out in 2017) and the newer 2019
version, called NEWS2.

There is a “free” CE-marked app, NCalc 2.0, for NEWS scores, which
runs both versions of NEWS (figure 18.1). It doesn’t say which version it is
running, and the app’s Helpmenu option doesn’t explain either. Users may
be able to work it out by experimenting, because there is a menu to choose
the version it isn’t using, and if you select this menu option several times,
you’ll be able to work out that the menu showing NEWS or NEWS 2 means
you are using NEWS2 or NEWS, respectively.

The point of using a NEWS app is to get a reliable early warning score
quickly. So, why is it so hard to tell which NEWS score NCalc 2.0 is actually

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

230 | CHAPTER 18

measuring? The need to make a good business out the app seems to take
precedence. Indeed, the user is regularly blocked using the app while if col-
lects marketing information (figure 18.1). In contrast to the eagerness for
getting marketing data from users in the middle of trying to use it, the app
provides no way to report bugs or to help make it more reliable.

The NHS National Early Warning Score is only one type of early warn-
ing score (EWS) to help anticipate patient deterioration. There are many
other scoring systems. Interestingly, recent research shows that nurses can
be more reliable than early warning scores like NEWS, and that some mix of
nurse insight and algorithmic scoring may be better.238 And of course there’s
no point using an app if the person using it either makes errors or misses the
score or the significance of the score — it seems likely that nurse insight is
going to be more effective in a busy clinical environment. There is a lot more
work to do, in app development in what works best for patients, and in work-
ing out how to raise the funds to do the needed research, let alone in building
a successful business out of it that doesn’t compromise the value of the app.
NCalc 2.0, typical of many medical apps, seems to have a way to go.

When I tried to track down the NCalc developers, I got a warning: “This
website may be impersonating “www.lindummedical.co.uk” to steal your
personal or financial information.” Hmm. Their certificates aren’t up-to-
date.

A different app, the COVID Symptom Study by ZOE, like NCalc, took ad-
vantage of advertising to raise funds. Having access to users’ personal details,
ZOE sent an advertising email to users encouraging them to buy masks —
raising questions on how the app manages user privacy. Prof Tim Spec-
tor, an epidemiologist leading the research behind the app, apologized in a
follow-up email:

We thought selling donated masks for charity would be a
good opportunity to raise money for long Covid research,
however, we did not consider the implications of
working with a commercial company.239

My bold emphasis. Many users have said they will delete the app.

AI can solve problems that humans struggle with, and it can solve prob-
lems faster, repeatedly without tiring, and more cheaply. That’s very posi-
tive, but it may be a deal with the devil: to get the benefits, you (usually) sign
away your rights to private data, so companies can make profits out of things
you didn’t even know about yourself, and — a key concern of this book —
you lose scrutiny. When an AI system says a patient has a diagnosis, it gen-
erally can’t explain why. If the AI has bugs, as it surely will, then, generally,
you can’t tell. Indeed, AI has at least two sorts of bugs: it can have conven-
tional programming bugs in how it is implemented (so, under some circum-
stances, the AI will not work as intended); and AI can have bugs in its data

WHO PROFITS? | 231
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Box 18.1. Simpson’s Paradox

Analyzing data reliably is very complex. In the diagrams below, four data
points are used as a toy example to illustrate Simpson’s Paradox.

On the left, four data points— perhaps obtained frommeasuring patients
— obviously represent an increasing trend, which I’ve shown as a straight
line. On the right, exactly the same data, but now split by gender, shows that
male and female trends are in opposite directions.

For fun, I used a neural net to find the two regression lines below. Even
though this is overkill AI for this job, evidently the AI doesn’t help avoid the
difficulties of reliable analysis.

Female

♀

Female

♀

Male

♂

Male

♂

All data, ignoring gender Same data, split by gender

Simpson’s Paradox is relevant for both digital healthcare and medicine.
It’s been pointed out for a case where it affected the interpretation of a kidney
stone experiment,240 though in this case the problem was not the hidden
variable of gender, but the hidden variable of kidney stone diameter. It’s also
resulted in confusion on pandemic severity.241

(meaning the AI has been trained inadequately or incorrectly). For example,
an AI to recognize skin cancers from photographs may have a programming
bug that ignores parts of the color spectrum; it may have data bugs because
it was trained on white skin, so has not learned from samples of black skin
cancers.242 The final AI will have a mixture of both sorts of bugs, and it will
be hard to eliminate them all, particularly as they interact, as my skin color
example makes clear — moreover, the bugs may partly compensate for each
other, which makes them even more obscure.

Now’s a good time in this book to try to define Artificial Intelligence
(AI). AI is the deliberate approach to use data — patient data, financial data,
X-rays, blood results, speech instructions, and more — in ways that we oth-
erwise wouldn’t know how to program. The computer “learns” or other-
wise uses heuristics (a posh word for guesses) to solve problems in sophis-
ticated ways that can’t, or can’t easily, be programmed directly by humans.
It’s pointless to define AI more precisely, as there are lots of vested interests
trying to promote one exciting sort of AI over another.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

232 | CHAPTER 18

AI got going sorting out the challenges of playing chess. Chess, although
a hard game, is in principle easy for AI because everything is known about
the game: where the pieces are, whose move it is. All the rules are well
known and simple. However, healthcare applications of AI are much harder,
because we don’t know everything, and a lot of the data has errors in it, and
we have little idea about the rules because we don’t know the underlying
science well-enough.

Training AI to learn “the truth” is very hard, so proxies are used. For
instance: instead of training an AI how to recognize faces using data from
everyone, a smaller, much more convenient sample of faces is used. Unfor-
tunately, this proxy of the entire population has biases, which the AI then
faithfully reproduces (though it will be less than faithful to its faulty train-
ing if it has bugs as well). A clear example is training healthcare AI to make
decisions based on the cost of treatment, rather than the actual illness of the
patient — cost is very easy to measure and ends up being used as a conve-
nient proxy for the disease. Here’s how AI training can go wrong:

In the US, patients are assessed and given a risk score using AI, but it’s
now been found that black patients are much sicker than white patients as-
signed the same AI risk score. The problem arises because the AI doesn’t
measure how sick patients are, but bases its reasoning on how much they
pay — it’s using cost as an easy, but as it happens unreliable, proxy for mea-
suring disease. Since there is racially unequal access to healthcare in the
US, data based on cost of care underestimates how sick the low-paying —
predominantly black — patients are. This then leads to inequalities in pro-
gram screening: the AI misleads the healthcare providers into thinking black
people are less likely to require healthcare interventions.243

A further twist to this bias is that the AI system is a commercial system
whose program and data is commercially confidential, so distentanglingwhat
it is really doing, and uncovering that what it is doing is incorrect — and
leading to disproportionate harms to black patients — requires the suspicion
and followed up by hard sleuthing.

There are four bits of good news:

Although it is bad that any AI system is racist, at least we did notice
that it was racist. The more digital systems systematize healthcare,
and in so doing expose intrinsic problems such as racism (and
healthcare’s lack of interoperability, which we’ll talk about in the next
chapterb) the sooner these problems can be properly fixed. In the
case here, the US healthcare system is racist, and the AI conformed to
that culture, but at least its racism was exposed.

Race is only one sort of bias; age and gender are others. The good
news is that when a bias is recognized, we can automatically assess

b See Chapter 19: Interoperability, page 245→

WHO PROFITS? | 233
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

the system and decide how to manage the biases we find. For
example, the Babylon app is gender-biased, which appears as bugs,
and they could fix this bias automatically.c

Sometimes the biases are in the data, not just in the programs.
Anemia is a serious health condition, but its definitions are
gender-biased, so any app or digital system relying on standard
definitions inherits the errors. For example, the World Health
Organization’s definitions of anemia are hemoglobin concentration
less than 120 gram per liter for women and less than 130 gram
per liter for men, values based on limited data from the 1950s and
1960s. These biases have recently been questioned.244

The scientists doing the research243 are now collaborating with the AI
supplier to improve its fairness. They are giving their time for free.
They hope the idea will spread.

The biases of the AI training then reappear as subtle bugs when the AI
systems are used.

Sexism is another huge problem, as a lot of AI training data has more
male data — the data itself, then the AI using it, results in and perpetuates
invisible women.245

Although we now recognize the importance of diversity in training AI
systems, racism and sexism are only the simplest and most obvious of AI
bugs — and ones I hope we all acknowledge when they’re pointed out. In-
deed, it is a worrying thought that racism and sexism are rather basic biases
that we have names to describe and can recognize, which begs what other,
perhaps unfamiliar, even unnamed, biases can — does — AI have?

Many of these problems with AI are not conventional bugs — “just mis-
takes” — but are more like biases. As such, they raise very interesting ethical
issues, and ethics in AI has recently become a bit of a hot topic. Ultimately
all bugs are about a failure of trust, and AI needs good ethical thinking be-
hind it to ensure it’s trustworthy.246 The take-home insight is that if we have
bugs in our ethics, the digital systems we build will amplify and blindly ap-
ply those faulty ethics. We’ll then realize that debugging programs is trivially
easy compared to sorting out their ethics — hence the interest: preventing
bad ethics is better than curing it. Still, ethics should not be separated from
bugs. If a system makes a gender-based mistake, that raises some ethical
issues, certainly, but it’s still a bug.

We have no idea what other latent bugs lie inside AI systems. Worse, AI
has no notion of conscious ethics so that it can reason about what is right in
the same sort of way humans share and have built into their humanity. The
bugs in AI’s ethics — the inability of it to reason humanely about its failings

c See Chapter 25: Gender bias in Babylon, page 342→

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

234 | CHAPTER 18

— are going to be worse and have a bigger impact than AI’s straightforward
bugs.247

So if AI has bugs and learning bugs, why is everyone so excited about it,
especially in a field where there should be little tolerance for error? Two rea-
sons. First, the explicit reason is that AI can do complex things that cannot
be done without it; this is a game-changer, especially in a complex system
like healthcare. Secondly, the implicit reason is that as AI learns, what it
has learned (which will include patient data and how healthcare staff op-
erate) itself becomes exploitable and can make more money. The data and
the inferences from it are valuable, and this drives the hype. I think there
should be a Cat Thinking Quotient for the ratio between the excitement,
expectations, and hype, and the risks of anything going wrong.

Unfortunately the excitement and rush for AI in healthcare has, in my
view, overtaken sensible caution and proper scrutiny. Thanks to thalido-
mide, we would not approve unknown chemicals for the healthcare market,
because they may have unknown problems. We now regulate drugs very
carefully. Why, then, do we release AI onto the healthcare market when
we have no idea what it’s actually doing, and, generally, we even have no
idea how any AI is really working. As I’ve shown, this lack of open scrutiny
leads to unnecessary patient harm; indeed, it’s often worse: racist, sexist,
and other forms of unethical problems arise. We ought to be doing some-
thing about it. On the other hand, AI is causing lots of useful and deep ques-
tions to be asked — and it’s increasing the awareness of how risky digital
healthcare is. Indeed, AI has all the usual risks of bugs, plus new ones all of
its own.

While AI gets going — wherever it is going — we are going to have prob-
lemswith cultural and racial diversity, as well as economic diversity (perhaps
the AI is mostly trained on patients who need the money for their time or
samples). How will we get enough representative data into the training? If
we don’t solve this problem, healthcare AI will have biases we know nothing
about until we start seeing problems. People may take years to develop skin
cancer after a buggy negative diagnosis — so nobody will realize it’s wrong.
This is the well-known problem of algorithmic bias — and just like most
normal human biases, the digital systems are oblivious to the problems.248
And, of course, so are their users — if they were able to recognize the biases
in the data, they probably wouldn’t need to be using AI in the first place.

The sheer complexity of AI makes it unaccountable. Besides, the current
state of the art in AI and AI regulation and scientific rigor is way behind the
state of the art in chemistry and pharmaceuticals, even considering their state
at the time that thalidomide was developed.d

That sounds like a strong statement; but the fact is that by the time of
thalidomide, chemistry had been an increasingly mature science, at least

d See Chapter 8: The thalidomide story, page 81←

WHO PROFITS? | 235
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

since Mendeleev’s periodic table of the 1870s — so at least 80 years — and
had developed many sophisticated techniques, like mass spectroscopy. It is
public knowledge exactly what thalidomide is as a chemical, and any chemist
can perform experiments on it, and so on. In contrast, we are still learning
what AI is and developing new variants; almost all AIs used in healthcare are
proprietary, and their characteristics are unknown to and untestable by the
wider scientific community.

Ordinary digital systems do exactly what their developers tell them to do.
The developers write programs, which are basically lists of hopefully care-
fully pre-planned instructions. We’ve seen there will be bugs when things
go wrong, but on the whole the computers will obey the programs, including
the bugs. In contrast, the basic idea of AI is that the computer works out its
own programming. It can then do things that the programmers haven’t fully
worked out themselves. People get quite fussed over the exact definitions
of AI and ML, but the point is, if something could be done by an ordinary
computer program that we (or somebody) fully understood, that wouldn’t be
worth calling AI. Machine Learning (ML) is one way of getting this leverage.

For example, how would you diagnose skin cancer? Nobody knows how
to write a program to do that. Instead, we do know how to write programs
that learn to do that. The programs are shown hundreds of thousands of
pictures of skin problems, along with what dermatologists think of them.249
Gradually the program learns what features cancer has. After thousands of
examples, it should be able to learn to do as good a job as the best dermatolo-
gists. If so, we’ve got ourselves an AI that could be put in an app on a mobile
phone and could help anyone diagnose skin cancer from a photograph.

Unfortunately, we rarely know exactly what AI systems have actually
learned. In the skin cancer example, some AI systems were trained on real
images, and they learned that cancers often had rulers (to measure the size
of the cancer) next to them because dermatologists like to measure cancers
more often than they like to measure non-cancerous spots.250 Recognizing a
ruler in a photograph doesn’t help diagnose any cancers that dermatologists
haven’t seen and haven’t measured, but AI doesn’t know that.

Inevitably, AI was rushed in to help with the horrendous pressures of the
COVID-19 pandemic. Hundreds of AIs were specially developed. None of
them made a difference, and some were potentially harmful — worse, many
hospitals signed non-disclosure agreements with the AI developers, so we
have no idea what was used and whether it was safe.251

Chest scans seem like a good thing to train AI on to recognize a respira-
tory disease like COVID-19. Unfortunately for AI, many scans also include
the texts of radiographers’ interpretations. The AI then naturally learns the
obvious fact that a scan that a human says shows symptoms of COVID-19 is
likely to be COVID-19. The AI hasn’t learned how to diagnose COVID-19
as it’s learned to cheat by reading the notes! This is called incorporation
bias, because the AI’s training data incorporates test results or human diag-

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

236 | CHAPTER 18

noses as well — it isn’t learning from the data alone, but from the errors and
biases of the likely imperfect tests and diagnoses that are incorporated in the
data. It’s probably learning to pay more attention to the incorporated data
than the raw data it’s supposed to be learning from. In fact, AI generally has
an easier job than actually understanding anything: clinicians tend to write
more about interesting diagnoses, so the AI learns that longer annotations
(and pictures of dermatologists’ rulers for that matter) mean problems. The
reality, of course, is the other way around: diagnoses don’t cause disease.

We can train an AI system to recognize skin cancer because there are
libraries of thousands of already-classified pictures. (Even then, real diag-
nosis won’t rely just on images— there will be a biopsy and histopathological
examination, among others.) In many other health application areas, there
is very little existing data to go on, let alone data as well-organized as skin
cancer images. For instance, driverless cars use AI to understand how to
drive, but they have to be trained by many thousands of poorly paid work-
ers who classify road images.252 Where are the thousands of workers, poorly
paid or not, that are medically qualified and willing to classify medical data
or medical images reliably?

Understandably, the people who develop AI systems need to get them
out into the market. Why wait for lots of classified training data, when you
could start using the AI and let it train itself on the job? (This is how doctors
train, after all.)

Unfortunately, we have no idea how to use as-yet unreliable AI. How can
it be used safely when it hasn’t finished learning? Howwill we (or it?) know
when it “knows enough” and can be relied on to be safe? How will it justify
its decisions?

For a few amenable problems, like diagnosing from pictures of skin can-
cer, AI is amazing, but for the vast majority of clinical problems, we have
little idea how to make it effective. With humans, even a trainee doctor has
had twenty years education before becoming an effective healthcare profes-
sional, and of course all human doctors start off with a deep understanding
of what being human means; AI has no such luck. It will need to work out
these hard problems before it can be trustworthy in healthcare.

Humans have had millennia to evolve and develop social norms. Each
of us individually still takes a couple of decades to mature into adulthood.
So why do we expect AI running on a digital computer, which is very def-
initely not human and shares none of our social and biological heritage, to
understand human things in the space of days?

The more successful AI gets, the more intelligent it gets, the less obvious
it is who — or what — should be accountable for it working correctly. On
the other hand, AI by its nature will be full of huge amounts of valuable data
and will have money-spinning applications. Hospitals will probably pay for
AI with expensive subscriptions. AI will make a lot of money, so it’s going
to get better — if the regulation and accountability are worked out.

WHO PROFITS? | 237
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Box 18.2. Problems with spelling correction

Dr Rana Awdish (@RanaAwdish on Twitter) tweeted:

Worst autocorrect to date (sent to a patient): Your goat
would be best treated with asteroids (“fixed” both gout and
steroids).253

Naturally, spelling correction has attracted a lot of research. A research
paper by Kenneth Lai and colleagues254 is a good place to start. It takes a pro-
grammers’ AI approach to an abstract problem based on spelling correction:
they have a neat algorithm for correcting spelling mistakes and it “achieves
good performance on a variety of clinical documents.”

But they did not explore whether it actually helped anyone do a better
or safer job — which, surely, is the whole point. It corrected spellings, but
brought a risk of a misplaced certainty. They did no User Centered Design,
so while it is an interesting algorithm, it’s a very risky digital idea to rush into
healthcare without more work.

Worse, I think, is that the algorithm uses a Machine Learning approach.
It does not use a simple list of words, so it’s effectively impossible to check its
spelling corrections for accuracy. It isn’t as simple as checking a conventional
dictionary, which is relatively easy; there is no “dictionary” as such.

Imagine, a user starts to type phenobarbital, but in error it changes it
to pentobarbital without the user noticing. This is a dangerous error — one
drug is on the World Health Organization’s List of Essential Medicines; the
other is used in the US for executions.

I haven’t done the experiments, but I suspect a much better use of the
Lai algorithm would be to compose a list of confusable words like pheno-
barbital/pentobarbital and warn everyone — including digital systems — to
be extra vigilant when any of these words are used. (To add to the confu-
sion, drugs have different names in different countries, part of the problem
of internationalization discussed in box 25.1.)

AI magic works in a completely different way from human intelligence.
That means that when it goes wrong — as everything does from time to time
— it will go wrong in strange and unexpected ways.

A clear example of this is some experiments done with the AI used in
driverless cars.255 Driverless cars can read traffic signs — they have to be
able to, so that they can obey them. So when they see a “Stop” sign, they
should obey it. And indeed, driverless cars have been trained to be able to
do this apparently very well.

Yet it can go wrong in unexpected ways. Graffiti on signs, which humans
would ignore, can completely change the AI’s interpretation of the signs.
The experiments found very simple — apparently innocuous — graffiti that
confused AI into recognizing Stop signs as speed signs (figure 18.2). This is
a serious bug, and one wonders if the “driver” would be made responsible

http://twitter.com/RanaAwdish

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

238 | CHAPTER 18

Normal graffiti on a stop sign Adversarial graffiti
AI correctly reads AI buggily reads

the sign as “STOP” the sign as “45 mph”

Figure 18.2. Innocuous-looking graffiti on road signs shows how sensitive the AI
in driverless cars is to small problems. If AI can make these serious mistakes, what
mistakes does it make that are harder for us to notice?

for the problems that may follow.
An easier to understand, but no less serious, bug in AI was when a road

sign showing a speed limit of 35 mph had black tape put on it (just to the
left of the 3) so it looked a bit like 85 mph. A Tesla car then accelerated to
that speed.256 In other words, the car’s AI was completely unaware of the
context. To any human driver, the sign was obviously wrong, but to an AI
system, the sign-recognition AI read 85, no other context was considered,
and so that’s the speed the Tesla then accelerated to.

AI in healthcare will go wrong from time to time, perhaps due to a de-
liberate adversarial cyberattack, as with the speed signs, or just by accident.
When it goeswrong, the clinicianswill be blamed for the errors that originate
in the digital software.

Recent work has started to understand these problems with AI.257 That’s
promising, of course, but it does rather highlight that the AI “solutions” pro-
moted for healthcare are still having their problems sorted out.

AI isn’t so much unproven technology, as technology that doesn’t (yet)
work reliably enough for healthcare. If we were thinking about promoting
exciting drugs to cure a disease, wewouldn’t want to use new drugs that were
still being fixed to get rid of their side effects.

Eric Umansky has sleep apnea. He uses a CPAP (Continuous Positive
Airway Pressure) machine to help him sleep. Without it, his airways might

WHO PROFITS? | 239
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

close, and he’d wake up repeatedly throughout the night and then fall asleep
during the day. It’s an essential device. His doctor prescribed him a new
mask for it. But his insurance company, UnitedHealthcare (www.uhc.com),
would not pay for the mask because of what they knew from the data they
were collecting from it. Eric knew nothing about the data collection, but
UnitedHealthcare thought he’d been using the machine for under three and
a half hours a night. Actually, he hadn’t been using the machine all night be-
cause he needed a newmask! Nevertheless, his insurance companywouldn’t
pay until he could prove hewas using themachine all night.258 It’s a Catch 22.
UnitedHealthcare’s “reasoning” doesn’t help Eric’s health, which is the point
of having the insurance. What it does help with is giving the insurance com-
pany excuses to reduce their costs — and of course, they can sell the data on
to third parties to make more money.

Digital healthcare promises financially rewarding innovation. Certainly,
if manufacturers don’t makemoney, wewon’t have any technology. Without
technology, healthcare will be stuck (an argument I’ve heard many times).
Therefore, the argument goes, it is essential to relax regulation to free tech
companies to innovate and provide new solutions. After all, they claim, cur-
rent regulation is almost entirely based in a pre-digital world, and is un-
necessarily restrictive for digital innovators. Those arguments wouldn’t gain
muster in, say, aviation.

The UK Government handed Amazon rights to NHS data. It’s interesting
reading these extracts:259

Licensor hereby grants to Amazon and its Affiliates, a
non-exclusive, worldwide, perpetual, irrevocable and
royalty-free license to (a) access and use Licensor’s
application program interfaces, which will enable Amazon to
obtain Licensor Content (the “Licensor API”), (b) access and
use any systems, programs or software made available
through Licensor APIs, and (c) use, copy, cache, store and
make backup and archival copies of all tools and
documentation related to the Licensor API …
Additionally, Licensor hereby grants Amazon and its Affiliates
a non-exclusive, worldwide, perpetual, irrevocable and
royalty-free license to make, have made, promote, market,
advertise, publicize, distribute, offer for sale and sell Solutions
and any products or services that use a Solution and the right
to sublicense the foregoing rights to manufacturers of AVS
Products and Amazon Associated Properties.

When Privacy International tested Amazon’s Alexa with health queries,
such as “Alexa, my period is late, what should I do?” Alexa would often give
answers that did not come from NHS data. The Mayo Clinic was one of the

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

240 | CHAPTER 18

alternative sources of information Alexa relied on, for example. This raises
questions about the nature and relevance of an NHS contract when Amazon
already has other health data.

The UK Secretary of State for Health, Matt Hancock, says the NHS must
embrace technology and that the services Amazon provide could cut pressure
on the NHS. Yet it has been reported that the deal gives Amazon free access
to NHS data, as well as using the NHS logo, but the NHS gets no benefits if
Amazon develops apps, and Amazon isn’t paying anything for the benefits
it’s getting.260 Whatever the Government’s motivation, it’s strange to give all
the benefits to an international company and provide no help for the NHS.
If the NHS set up a subsidiary, it could have done even better than Amazon
— and the NHS data would stay in the UK inside the NHS. It seems to me
that Amazon’s much better understanding of AI and digital technologies has
run circles around the NHS and the UK Government.

Somuch for today’s problems. How arewe going to have effective regula-
tion that can handle new technologies like blockchain? Blockchain has been
promoted widely — and wildly — for its uses in healthcare. It is, many argue,
the solution for everything. I went to amedical workshop on blockchain, and
heard from an excited doctor that it will solve the problem of having to log
in lots of times. It won’t.

Blockchainwas originally developed for transferringmoney between par-
ties who did not know each other and without using trusted institutions like
banks.261 It is therefore ideal for activities like exchanging money with peo-
ple in foreign countries, particularly ones that have repressive governments
(as their banks are unreliable or may be spying on their citizens). It’s also
ideal for illegal activities like extortion and drug dealing, for exactly the same
reasons. Indeed, blockchain was used to support the Bitcoin payments de-
manded by the WannaCry malware.e

I maywant to transfermoney frommy account to somebody I don’t know
so I can buy something over the internet; I do not want to get into an argu-
ment over whether I trust them or whether they trust the bank I use. I want
it to work. Conventional trusted bank systems do this, and blockchain does
it without banks.

On the other hand, none of healthcare is “untrusted.” I never want to
transfer my patient records to somebody I don’t trust. I want to keep them,
and I want doctors and nurses I know to have full access to them. If I trans-
fer money, my bank account loses value accordingly by simple arithmetic.
Blockchain handles that. If I transfer my neuropathy problems to a neurol-
ogy consultant, I’ve still got my problems. My medical record works in a
completely different way to a bank account. (An exception to trusted actors
in healthcare is humanitarian work undertaken in oppressive states, where

e See Chapter 17: WannaCry warning screen, page 212←

WHO PROFITS? | 241
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Box 18.3. Digital and pharmaceutical development costs

Digital healthcare manufacturers complain that developing systems is costly,
and they suffer from regulatory burden so asking them to do more to im-
prove their systems is a step too far. Yet digital systems are cheap to develop
in comparison to drug development. To research and develop a drug costs
billions,5 but a medical app can be developed in a few weeks by one person.

Thinking more about how the pharmaceutical industry achieves quality
will help improve digital healthcare. The business incentives are very differ-
ent. If a drug causes patient harm, this is a disaster for the manufacturer and
there’s an incentive to improve it. If a digital system causes harm, it’s likely
to be blamed on the clinical staff. Patient harm is not as serious a business
concern as it is in pharmaceuticals.

Digital systems are continually updated after release, often charging cus-
tomers for bug fixes. In other words, unfinished products are the way digital
business works. Potentially some of the bugs that should have been fixed are
never detected in the field, so the manufacturer saves the costs of fixing rare
bugs. In contrast, a changed drug is a different drug, and needs new evidence
of clinical effectiveness.

Drugs are well understood and relatively easy to regulate. In contrast
digital systems are complex and cover a huge variety of applications and uses.
There aremedical apps on handheld devices, many PC applications, they can
be embedded inside medical devices like infusion pumps, anything with a
Wi-Fi connection, and they are even inside rechargeable batteries. Digital
systems are harder to regulate.

There is a lot of competition in drugs. Several manufacturers can make
drugs for the same diseases, and they compete with each other. They may
be biosimilars: drugs that work in similar ways but do not infringe patents.
In contrast, how digital systems work (apart from a few open systems) is
proprietary knowledge, and competition is much harder.

it isn’t possible to establish with certainty that relief workers are who they
claim to be, or that even genuine healthcare workers and their data are not
being monitored for political purposes.)

Of course blockchain can do more than this — it’s certainly acting as a
stimulus for new ideas in healthcare. But it’s sobering that a recent sur-
vey of 43 blockchain developments showed that none of them worked.262
The systems were originally described in glowing contracts like “operational
costs … reduced up to 90%,” or “accurate and secure data capture and stor-
age.” The survey found no evidence that blockchain achieved any of these
claims. Worryingly, the survey did not find any lessons learned or practical
insights, something you’d expect for any technologies in development. Fi-
nally, not one manufacturer or developer was willing to share data on their
results or processes. The industry is opaque.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

242 | CHAPTER 18

We haven’t yet worked out the technical or the business models to sus-
tainably support the healthier digital future we dream about. While we fail
to think through digital carefully, the legal precedents — like manufacturers
requiring us to indemnify themf — build up and set precedents at our ex-
pense. They encourage a blind faith in digital that benefits the investors and
not the patients. We buy into it because it’s exciting, not because it makes
sense.

Here’s a typical problem. Until recently, the NHS shared patient data
with the Government Home Office, which used the data to help trace people
who had, perhaps, breached immigration rules. This has now been stopped
after a lot of pressure from doctors,263 but it’s an example of the questionable
way people just start using data and digital “because they can” in ways that
would be completely unacceptable if we spent a moment thinking about it
more carefully.

In other words, the regulations (and our thinking about them) are being
out-paced by digital.

In the UK, general practice doctors are paid based on the number of pa-
tients registered with them. In a geographical world, this means that doctors
are paid in a predictable way, proportional to the size of the local population
who live near the doctors.264 Along comes a digital innovator, such as Baby-
lon, which provides a digital doctor’s surgery and an app to access it. In a
short space of time Babylon had registered 40,000 patients from across the
whole country, most of whom, of course, must use it remotely. It achieved
this phenomenal growth in just two years.

Most of Babylon’s patients come fromoutside the region. Babylon’s huge
patient pool means that the local NHS funding body where Babylon is based,
the LondonHammersmith and FulhamClinical Commissioning Group, now
has a £26 million deficit.

Of course, Babylon has taken patients away from other areas, which you
might have thought would save themmoney. However, the national funding
system does not respond immediately, and the savings elsewhere are not
used to subsidize Hammersmith and Fulham, since each area gets its funding
set centrally.

There are more issues. Babylon is tending to register young technology
adopters from across the country who like its service. This cherry-picking
leaves behind the other patients who, being generally older, are less healthy.
Because these left-behind patients tend to be sicker, this increases the health-
care costs per patient if you are a conventional doctor treating patients in
person rather than virtually.

Cherry-picking also skews the funding in other directions.
Babylon’s local, geographical, NHS funding body loses money paying

Babylon for patients at the standard rate, because it assumes an average mix
f See Chapter 15: Mersey Burns app warranty, page 193←

WHO PROFITS? | 243
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

of patient needs. But as Babylon’s patients tend to be unusually healthy,
Babylon gets relatively more money than it needs to treat its digital patients.

Funding models (as well as insurance models) will take time to respond
to these rapid digitally-driven changes. By the time it’s worked out a fairer
solution, the digital innovators will be on to the next idea to make money out
of the system.

Again and again, we see that digital health regulation is not fit for pur-
pose, as the purpose is changing so fast. Old assumptions about healthcare
are changing too rapidly for regulators. Digital start-ups can innovate to cir-
cumvent the intentions of the original regulation, and they can make huge
returns on investment.

The standards and regulations we need are public goods, and — for the
time being — our governments are so driven by the multi-national lobbying
of Cat Thinking excitementg that we risk losing sight of what it’s all about.

The traditional oath, “first do no harm,” based, as it is, on Hippocratic
wisdom dating back 2,500 years,106 urgently needs updating to accommo-
date the newdigital issues and challengeswe face today and tomorrow. While
we still think of harm primarily in terms of disease, we ignore the social de-
terminants of health, such as wealth, education, politics, and religion,265 as
well as access to reliable digital healthcare information. In particular, we
gloss over the serious harms caused by loss of privacy, loss of confidential-
ity, the loss of genetic data, financial exploitation, and more. These things
form the whole basis of our own identity. Digital businesses are increasingly
developing disruptive business models that are challenging the assumptions
of healthcare. This is understandable, as there is much money to be made
through innovation in these areas, but until there are clear cases made out
that AI, blockchain, and other digital innovations, actually improve health
(rather than, say, make apparently impressive diagnoses), it’s more likely
they will first be improving profit, which ultimately will be at our expense.
Why fix bugs when it’s more profitable not to bother?

The global scale of the digital healthcare market has disrupted centuries
of thinking about healthcare. The scale and the technological innovations
live in the loopholes of conventional regulation. There are astronomical fi-
nancial incentives, so it’s inevitable there will be new forms of criminal ac-
tivity, as well as normal sharp practice in business exploiting the regulatory
loopholes.

We need very careful national and international intervention to ensure
proper safeguards for this very rapidly developing area. We need interna-
tional collaboration, andwe should start todaywith international think-tanks
to work through these challenging issues — not least to find ways to for reg-
ulation to be sustainable — we don’t need solutions that work for today but
which will be obsolete after the next digital innovation.

g See Chapter 3: Cat Thinking, page 25←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

Interoperability — or,
rather, lack of interoperability
— is a besetting problem in
healthcare. We need digital
to work seamlessly — to
interoperate — across all
specialties, disciplines, and
healthcare institutions
(taking due account of
privacy, cybersecurity, and so
on). It requires new thinking
to get there.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

19

Interoperability

Healthcare has developed over centuries, and most of it is not doing any-
thing that’s particularly easy to computerize. For example, one reason the
singer Michael Jackson died is that he played off various doctors to feed his
drug addictions, but none of them knew what the others were prescribing.
So, if we just automate what doctors do, we don’t solve another problem —
doctors don’t share patient records, and they don’t share information effec-
tively. Whether Jackson had a right to keep his full medical history secret
from his doctors is one question, but if we digitize exactly what doctors do,
we inevitably end up with what are called interoperability problems.266

Interoperability is of course a good thing. The opposite of interoper-
ability is fragmentation, though it’s a word that’s rarely used. Whatever it’s
called, when systems don’t work well together, it’s a mess. Programmers, at
least ones in the US, call them stovepipe systems, evoking the image of
chimneystacks and stovepipes rising high above a town, each separately and
independently belching its own plume of polluting smoke.

A typical example of a stovepipe system is a system that requires its own
user names and passwords, instead of relying on a commonuser ID and pass-
word shared with all the other systems. It was easier for the programmers to
build it like that when they developed it, but it makes it much harder for the
users every time they use it.7

In contrast, a good example of interoperability would be email. You can
use any type of email system to send email, and your email can be read by
anyone else. You could send email with any old app that you just fancy using.
It can be read on a website using a Firefox browser made by Mozilla, or read
with Google mail, Microsoft Exchange, on a big PC or on a small iPhone,
whatever. It all works. The reason is, email has standards, and all these
systems work with those standards.

Once you’ve got something to interoperate, it’s tempting to add extra
features. We must all have received an email with an attachment that we

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

246 | CHAPTER 19

can’t read at some point! The email works, but we haven’t got interopera-
ble standards for whatever the attachment is. Sometimes that’s a problem;
sometimes it’s essential — as in getting encrypted emails about human rights
issues out of oppressive states, where you really don’t want some people to
read them. The problem lies in getting the right balance.

I had aminor operation in hospital. I’ve never seen somuch unnecessary
paper that could have been easily digitized away!

I had a couple of inches of the radial nerve in my left hand removed for a
biopsy. My local anesthetic had hardly worn off when the hospital gave me
my discharge letter, a paper letter for me to take to my local doctor so he’d
know what had happened to me.

Naturally, I opened the letter and read it. It was a photocopy of a paper
form that the ward nurses had filled in by hand. No doubt the original was
already on its way to be filed away in the basement of the hospital. For my
own interest, I photographed the letter on my iPhone.

Once out of the hospital, I dropped off the paper letter at my GP surgery,
as I had been told to.

When I later went to the surgery to have my wound checked. I’d been
told to do this as it might have got infected, but the nurses knew nothing
about it.

The surgery had lost the letter. Worse, until I asked, their systems didn’t
know they’d lost a letter. Maybe they lose letters all the time.

It took me a moment to realize I could solve the problem. As I had pho-
tographed it, the letter was available in paperless form on my iPhone, which
I had with me.

Fortunately, my hand healed well, and I’m typing this without any prob-
lem. The NHS is amazing — it got the actual surgery done efficiently — but
the digital side of the NHS is a mess. Ironically, by photographing it on my
iPhone, not only did I hint at some future paperless healthcare world, but I
actually solved a problem.

If the hospital and GP surgery shared their information, if their databases
were shared and interoperated, the hospital nurses needn’t have filled in and
photocopied a paper form, and they need not have wasted any time find-
ing my GP’s address and writing it by hand on the envelope. The hospital
needn’t have relied on a patient carrying the paper letter to their GP. The
letter would not have got lost (by the GP), and two surgery nurses (and the
patient!) would not have wasted 15 minutes looking for it. The paper letter
need never have existed in the first place. What a lot of wasted time and
opportunities for errors.

How many of these unnecessary paper steps raise potential errors, and
how much more efficient and cost-effective would a decent digital paperless
approach be?95

INTEROPERABILITY | 247
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

We’ve already seen how Denise Melanson died from a calculation er-
ror.a The pharmacy’s drug bag label could have been printed with the clear
answer, or better still the pharmacy or even the bag could have programmed
the infusion pump directly — that is, interoperably, perhaps with a barcode,
an RFID tag in the bag, or a wireless connection to the pump267 — then
there would have been no calculation errors. Typically, nurses scribble down
the doctor’s instructions for the drug infusion from one computer screen or
from the drug bag, do the calculations to find the right dose, and then walk
to the infusion pump and enter the numbers into it. For high-risk drugs,
like Denise’s fluorouracil chemo, a second nurse must double-check that the
pump is programmed correctly.

The cost? Johns Hopkins Hospital’s Peter Pronovost worked out that,
on a 12-bed intensive care unit, manual double-checks together add up to
two full-time nursing positions.268 It’s not just time, though: having more
staff time freed-up through interoperable systemswould reduce errors— and
when you reduce errors, you also reduce the staff time needed to sort them
out and investigate them. Interoperability drives a virtuous circle.

Lack of interoperability is not just a problem within wards or within hos-
pitals; it affects whole countries. Patients often attend two or more hospitals,
typically to get specialized care; in the UK, patients often attend two or more
hospital trusts (groups of hospitals). A study in England showed that most
trusts that commonly share patients cannot share patient records.269

Here’s a simple example of an interoperability problem. Consider some
date written down, say 4/8/12. Unfortunately, this can mean at least six
different dates (12 August 2004, 8 December 2004, 12 April 2008, 4 De-
cember 2008, 8 April 2012, or 4 August 2012) — assuming the date only
refers to some date in the twenty-first century, an assumption which would
repeat the mistake that led to the Millennium Bug. Indeed, there are more
alternatives if we allow other centuries. A computer needs to know exactly
what we mean; it’ll just assume one of these meanings — and it may not as-
sume the same date that was intended by the user, nor need it assume the
same date as another computer would from the same input. That would be
a serious interoperability problem.

The international standard, ISO 8601, requires a date like 4 August 2012
to be written as 2012-08-04 (when it is written without words). This makes
sense, as it puts the biggest unit, the year, first, although few people do that
(though many in China do). Indeed, date formats in the UK and in the US
are different — internationalization and interoperability aren’t just computer
problems, but cultural problems.

The main solution is better programming, and improving healthcare so
better programming is possible — programming, done properly, makes many
problems in healthcare visible. The user interface should validate and dis-

a See Chapter 5: Denise Melanson’s fatal overdose, page 49←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

248 | CHAPTER 19

ambiguate dates before they even get into any computer, and then everything
in the computer should be handled as a standard timestamp. There should
never be any need for programmers to convert dates, nor for different sys-
tems to get into problems over interoperability. Unfortunately, solving the
problem is not as easy as getting every manufacturer to agree, let alone fix,
the old systems that have already been badly built.23

That’s just date interoperability confusions!
Interoperability as a whole is a huge trans-national problem — patients

don’t stay in one country, and their medical records ought to follow them
around the world. Until we sort things out, it’s very likely all their dates (at
least) will get mixed up.

Dr Marie Moe is a patient who travels the world. She has a heart pace-
maker. (We’ve already met her before in this book.b)

Her pacemaker malfunctioned when she was on an international flight.
After the plane landed, she was rushed to hospital. They rolled in a trol-
ley with four different pacemaker programming devices from four different
manufacturers (figure 19.1): pacemaker programming devices are all differ-
ent, thanks to interoperability problems. Luckily the hospital had the correct
pacemaker programming device.

The problem with the pacemaker needed diagnosing, but the hospital
technicians could not read its settings because it was an unfamiliar make of
pacemaker. Indeed, theywould not even have knownwhat sort of pacemaker
it was if Marie had been unconscious! There ought, surely, to be a set of
international standards for interoperability of medical implants so that any
hospital can access the relevant data? Indeed, if there were such standards,
the safety of implants would be easier to check when manufacturers were
seeking approval, and it’d be much easier for hospitals to check implants
were safe.

Marie’s pacemaker malfunctioned because of cosmic rays. (There are
more cosmic rays high up where planes fly.) Although such a malfunction
is strictly a bug,270 at least the pacemaker detected the error and went into a
safety mode.

The safety mode switched to an old type of pacing in case the leads used
inside the patient were of the “old type.” Often when they do pacemaker
replacements, they keep the old leads in the patient if they are still working,
to avoid disturbing them, to have a less risky surgical procedure. However,
Marie did not have those types of leads.

Fortunately, the wiring configuration error made it obvious to her that
the pacemaker was malfunctioning. She survived again, and even went on
to successfully run in the New York Marathon.c

Why is interoperability such a problem? Surely fixing it should be a no-
brainer, and something built into national strategies? Unfortunately, non-

b See Chapter 4: Marie Moe’s pacemaker bug, page 46←
c See Chapter 30: Marie Moe runs New York Marathon, page 427→

INTEROPERABILITY | 249
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Figure 19.1. Dr Marie Moe getting checked up after her pacemaker problems. In
front of her is a trolley of four different types of pacemaker programming device.

interoperability makes a strange sort of sense, for all the wrong reasons.
Let’s explore some of these reasons for failing interoperability:

Most computer systems are proprietary — that is, they are developed
by companies which make money out of providing them and
servicing them. No company wants to manage patient data and let
another company benefit from all their hard work. So every company
has proprietary “standards” which are their intellectual property that
nobody else can use — at least not without paying licensing fees, if at
all. These are new problems that computers have created, and at least
in digital healthcare I don’t think we have yet found the happy
medium.

Hospital procurement rarely requires interoperability as a contractual
requirement — it’d be too tedious to spell out all the details of all the
systems that must interoperate. So the hospital ends up acquiring
non-interoperable systems and often signing away its rights to free

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

250 | CHAPTER 19

and easy access to all patient data because the new systems don’t
fully interoperate with everything else. (It would cost more if a new
system was interoperable — and as nobody has costed
interoperability failure, why ask for it?)

Because computer systems are expensive, healthcare systems end up
buying lots of smaller, cheaper, systems that don’t do everything.
This saves money, and also avoids reliance on one supplier (who
might go bust, or suffer a cyberattack), but ends up with real
interoperability issues. Again this is a new digital problem, unlike the
sorts of supply problems that might affect other forms of healthcare.

There are lots of wonderful people in hospitals who want to fix
problems. Most hospitals have hundreds of spreadsheets and other
systems knocked up to solve real problems — unfortunately, quite
independently.

The problem has been going on for years, and getting worse as each
“solution” is brought in for part of the problem. Fixing or upgrading
the digital healthcare in one area — say, radiography — doesn’t
improve interoperability; in fact, it almost certainly makes it worse.

There are international standards (called SNOMED-CT, HL7, …) but
they are still evolving. We need to acknowledge that digital
healthcare is still a new idea, that healthcare is amazingly complex,
and we are solving this amazing problem for the first time. We
haven’t finished yet. Worse, every week somebody announces a new
healthcare intervention (say, genomics), and this changes everything
that needs standards. We haven’t even got standards for standards,
and they will be continually evolving for the foreseeable future.

When things go wrong, the lack of interoperability makes
investigations a nightmare, as nothing works reliably with anything
else. It’s rarely anybody’s responsibility to make things interoperable.

Copyright, privacy, commercial confidentiality, software licensing,
patents, digital rights management (DRM), and many other routine
digital business ideas conspire to make interoperability harder. These
ideas, and more, make sense in the commercial world, but they do
not make as much sense in healthcare — mainly because some or all
of a digital solution remains owned and controlled by a company
rather than being able to be freely used and modified by the
healthcare system. Consider that a non-digital medical device would
not constrain how it is used, or require its use to share patient or
other data. How much a digital device should share data needs
debating; so far, the balance has fallen in the manufacturer’s favor.

INTEROPERABILITY | 251
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Box 19.1. Adding value or managing risk?

Organizations have two sorts of people. Some people — like doctors and
nurses, cleaners and sterilizers — add value to the organization: in hospi-
tals, these people work with patients. But some people — like financial di-
rectors — worry about risk. Since adding value sometimes runs risks and
may create incidents, you need both types of people to run an organization.

Managing risk tends to be done by managers, and their managers, all
the way to the top. Hence strategic people, at the top of the management
pyramid, tend to spend a lot of their time thinking about risk and damage
limitation. John Seddon’s insight271 is that these risk-averse people at the top
of an organization are the very people who authorize and buy the computer
systems.

Hence hospital computer systems tend to be designed and purchased in
the first place for managing risks, such as asking to confirm that various pro-
cedural steps have been taken so that the organization cannot be sued. Help-
ing patients or clinicians comes in second place.

For example, having the wrong people access patient data is a risk that
managerial thinking wants to avoid. The priority is to stop the risk of the
wrong people using data, rather than to help anybody to use the data. Result:
lots of logins and passwords to do anything, and interoperability fails.

All of these reasons for interoperability problems make sense. Together
they create a culture. When you go to any experts on the issue — say, the
manufacturers — they think within that culture. Change is going to be diffi-
cult. Unfortunately, digital healthcare will remain risky until the problem is
addressed from the top, particularly by tighter regulations that require inter-
operability.

A more mature approach is to think about how to solve problems first,
using Computational Thinking.d This of course relies on admitting and
seeing that there is a problem to solve in the first place, and that of the many
ways of solving problems some may be better or worse than others. Compu-
tational Thinking is very clear that different forms of thinking are required
for different forms of problem.

Hill climbing is a popular way to solve simple problems: if you are
climbing a hill, obviously, you need to go upwards. This is what mountain
railways do — they have no choice but to climb hills! (Hill climbing is also
called the greedy method— just choose what seems to be the biggest and
best thing first. Climb the highest hill.)

Let’s say, some years ago when everything was simpler, you wanted to
digitalize healthcare. Hill climbing would decide what was easiest or cheap-
est to do first, do it — climb the closest or most visible hill — then see what to
do next. Sometimes, this strategy works. Sometimes, though, you discover

d See Chapter 13: Computational Thinking, page 151←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

252 | CHAPTER 19

Figure 19.2. Lack of interoperability forces a doctor to photograph patient records
with a mobile phone app. While this may help get things done, let’s hope it doesn’t
cause problems. What if they take several photographs of different patient data and
get them mixed up? What if they lose their phone or have it stolen? Bad guys could
get patient details.

you’ve climbed the wrong hill, and then you need to climb the better hill
you can see somewhere else. To get to your new goal, you first need to go
downhill — your earlier decisions have turned out to be wrong. For exam-
ple, you might decide the first thing to do, and indeed the easiest to do, is to
get all the financial services computerized. You then look at pharmacy and
physiotherapy, and see they need billing to work in different ways. You now
have a conflict, and either way, the earlier financial system is a big system to
change. It’s hard to avoid an interoperability problem.

Mountain railways are a lot easier to visualize than healthcare problems.
Given a hill, put a mountain railway (or a computer system, or …) on it, and
you can get to the top of that mountain much more easily and quickly than
climbing it yourself — just as digitalizing a problemmakes it easier, all things
being well. But what if you aren’t climbing the right hill? What happens if
you should have got rid of the hill instead? What happens if you are in the
wrong area altogether and should be exploring a different mountain range
where the mountains are higher? What happens if your passengers need to
connect with other transport? Regardless, now that you’ve got a mountain
railway, you’re left with an investment that is now holding you back. Not
only is it holding you back, but you’ve got all sorts of maintenance issues,
staff, and consumables to sort out every day to make your wrong solution

INTEROPERABILITY | 253
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Figure 19.3. Hill climbing seems to solve problems but doesn’t always find the
best solution. The train here is climbing hard and will get to the top of the Gorner-
grat. It will finish nowhere near theMatterhorn, despite theMatterhorn being nearly
1,500 m higher: so hill climbing gets to the top of a hill, but never connects to the
next hill even if it’s higher.

work as best it can. You’ll be tempted to advertise your mountain railway
to attract more use, ignoring all its inconveniences. Basically you started off
with an exciting, greedy, idea and now you’ve just got a white elephant that
needs maintaining. The point is, you wanted to climb a hill, but now that
achieved goal restricts what you can do. You can’t so easily climb other hills.

Hill climbing is a very simple AI technique for solving simple problems,
mainly ones that only have “one hill” to climb, so “up” solves the problem.
Many problems can be solved by hill climbing, andmanymore problems can
be quickly, but only approximately, solved by hill climbing. AI also offers lots
of more sophisticated ways to solve more complex problems better. Viewed
like this, what AI can offer healthcare are powerful ways of thinking about
and solving problems that aren’t as easy to solve as you might at first think.
Indeed, AI is only one area of Computer Science; there are many others to
choose from. Using Computer Science to help solve problems by thinking
clearly is exactly what Computational Thinking is.e So if this sounds far-
fetched, how, in more detail would AI help? First, any AI developer would
ask about exactly what do you want to achieve and what data have you got?
In contrast, many people just run into solving problems without planning —

e See Chapter 13: Computational Thinking, page 151←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

254 | CHAPTER 19

Box 19.2. Interoperability isn’t just a digital problem

Interoperability is usually thought of as a goal for digital systems, and in-
teroperability, or, rather, the lack of interoperability is seen as a specifically
digital problem. Not so. The hill climbing analogy makes it clear that lack of
interoperability is a symptom of a particular, limited way of thinking applied
to problems that need a more general approach.

Take the naming of drugs.
Drug names are often confusing. The drugs called clonidine and

klonopin are typical examples. These two real drugs have very similar-
sounding names, and they are too easily confused. You may want to find
clonidine for your patient, but you misread and picked up klonopin. Or the
other way around.

How do these naming conflicts happen? Each manufacturer was climb-
ing their own hill, determinedly following the path of their own drug-naming
process. Managing drug names centrally would mean limiting the creativity
of drug manufacturers and limit their freedom of expression. So, each man-
ufacturer invents a drug name pretty much without reference to anyone else,
as long as it doesn’t conflict with patents or drug names already registered.

Every so often, then, two or more different drugs will end up with very
similar names. If those drugs ever end up in the same room, eventually some-
body will pick up one, thinking it’s the other; after all, the names are practi-
cally the same.

another example of the greedy approach. Often it works well-enough, but
some times the landscape is too complicated, and you only find out that your
quick approach doesn’t work well enough when you’re already committed to
delivering it.

One of our repeated errors in thinking about digital is that we expect easy
solutions to healthcare problems — we want to be greedy. Indeed, we see
amazing digital solutions everywhere, like WhatsApp, so we think it should
be easy to get healthcare to work if such amazing things were quickly brought
in.

WhatsApp is very popular in healthcare. About a third of hospital clini-
cians use WhatsApp or a similar tool.272

The error is thinking that WhatsApp solved a problem; no, it created a
“solution” to something that we now realize we were all missing, after the
fact. It wasn’t a defined problem beforehand. Nobody had specified what
doctors want, and then set out to build it. WhatsApp did not so much climb
a hill as build its own new hill.

If you want to solve an existing problem, such as anything in healthcare,
you can’t ignore history, standard operating procedures, regulations, and
lots of other very tedious and complex constraints on your creativity. Instead,
WhatsApp got lucky and happened to build a hill doctors wanted to climb —

INTEROPERABILITY | 255
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

a hill of exciting apps. The conventional alternative, trying to build the hill
you think the doctors are on, is much harder.

In my view,WhatsApp should not be being used in healthcare. It doesn’t
even have a CE marking. Why do you think it’s free? Its business model
means that it collects data that healthcare should not be giving away with-
out proper information governance. Their legal information includes these
points:

You provide us with the phone numbers in your address book
on a regular basis … we collect information about your
activity how you interact with others … we collect information
when we you access our services … we collect device location
information … we receive information about you from other
services … businesses you interact with provide us with
information … a business on WhatsApp may use another
company to assist in storing your messages … we help
businesses who use WhatsApp measure their effectiveness
and understand how people interact with them … we share
information with Facebook Companies … we may transfer
your information to any of our affiliates, successor entities, or
new owner …

None of that fits very well with information governance best practice.
WhatsApp and many other apps let you use them to disclose all sorts of in-
formation inappropriately for healthcare (figure 19.2). Worse, WhatsApp
has bugs that can be used to send you fake information and deceive you into
revealing sensitive information to third parties: you’ve already agreed you’re
happy to lose your information, and your faith in the app can be further ex-
ploited by hackers.273

Now, back to interoperability. Interoperability problems are not all due
to poor digital systems, bugs, and poor programming. Interoperability prob-
lems arise primarily because of independent development of “solutions” that
seem fine on their own in isolation — in other words, they arise because of
hill climbing being used, when hill climbing is not the right way to correctly
solve the problem.

A core, critical reason for interoperability problems is that nurses, radio-
therapists, psychiatrists, neurologists, general practitioners … all work dif-
ferently — they are all working on different hills. Connected digital sys-
tems then make these differences very visible, as a lack of interoperability.
The lack of interoperability, the different cultures, different procedures, they
were all there before digital, but nobody had noticed or, at least, nobody had
worried about it too much.

In the old days, everyone exchanged paper (or faxes) and the human
brain converted everything. In contrast, in the new digital age, specialties hit
problems when they try to share patient or other data, since they separately

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

256 | CHAPTER 19

developed their own digital systems to suit what they did, not to suit other
specialties. Worse, what people do even in the same specialties varies from
hospital to hospital.

Many hospitals had already started developing their own digital solutions
as early as the 1970s. All these systems were polished in their own separate
ways. Today, now networks connect everything, the fundamental lack of
interoperability in healthcare has become visible. It’s become an embarrass-
ment — but it’s as much to do with what clinicians wanted as with manu-
facturers never delivering total solutions for an entire country. It’s a tough
nettle to grasp, because interoperability means that some people have to give
up the ways they have been working.

One lesson to learn from all these problems is that healthcare should not
buy digital “solutions” as such. It should not bring in a solution and expect
it to work. There should be a period of testing and polishing to get rid of
the snags, and this has to be done across the country, not just in individual
regions or hospitals. It also has to be done across specialities to make sure it
interoperates within hospitals as well as between them.

Healthcare should procure systems, and pay for them only when or as
they meet (or exceed) defined performance criteria. If something turns out
not to be interoperable and impacts effective healthcare, then if nobody had
paid for it fully in advance, the manufacturer would soon put the problems
right.

If anyone could demonstrate that harm had decreased and staff across all
disciplines were happier, that would be a landmark achievement, regardless
of whether it was paperless, or used AI, precision data, Internet of Things,
blockchain or anything else trendy.

Yet people have shown improving interoperability reduces harms and
generates other improvements, such as working faster and more efficiently.
The internationally agreed barcode standard, GS1, which is used for mark-
ing and tracking everyday products from cans of beans to drugs, is so use-
ful because it is an interoperable standard. When hospitals adopt it, errors
are reduced. The Royal Cornwall Hospitals reduced error rates in pharmacy
dispensing by 76% thanks to using barcodes which were already there.274
Somehow these sorts of achievement don’t get built on, because people are
so keen on piecemeal solutions.

We are going to have to wait for SNOMED-CT and the related clini-
cal standards to settle down and be widely adopted, both by manufacturers
and by healthcare professionals. There will then be a huge legacy of patient
notes, on paper and digitized, that will need sorting out. This is a problem
that will take mature thinking and will take years to achieve. Until we are
more strategic, every day is postponing the ideal world of full interoperabil-
ity.

Lack of interoperability is a symptom of poor systems thinking, a symp-
tom of letting systems just grow regardless of standards. The cure isn’t just

INTEROPERABILITY | 257
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

“better” digital — it involves improving health systems and health system
thinking too, so that we are clear what we want the digital to do.

Improving things alsomeans reconsideringwhether failing interoperabil-
ity is, in some cases at least, a symptom that healthcare itself needs improv-
ing — it’s far easier to make successful digital systems interoperate when the
healthcare they are supporting itself is interoperable!

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

Understanding how humans
make mistakes in predictable
ways is the first step towards
making fewer mistakes. This
applies to clinicians, and
most especially to
programmers — whose
mistakes end up as bugs
affecting thousands of users.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

20

Human Factors

We all like to think we are better than we actually are. We make mistakes
from time to time, but often we don’t notice them. In fact, if we noticed
them, we either wouldn’t make the mistake, or we’d correct them immedi-
ately. Furthermore, when we do make a mistake, our pride makes us dimin-
ish our role or deny the error, or even blame somebody else.

I’d certainly rather imagine that I am perfect. Like most people, I like
to think I’m above average.275 If I knock a glass off the table, my immediate
reaction is to shout, “Who left the glass there?” I knocked it off only because
somebody else left it there!

My wife and I make a good team. When I am driving, Prue sometimes
shouts, “look out …” and of course I immediately deny I’ve made a mis-
take or that I could possibly be about to make a mistake and hit somebody.
Fortunately, our mature relationship takes priority a millisecond later, and I
apologize. When I think about it, I’d much rather she shouted at me than
that I run somebody over.

That’s just my personal “culture of success.” But in both healthcare and
programming we are in understandable, but unhelpful, social cultures of
success. Obviously we don’t want to harm patients. To become profession-
als, we’ve had to pass exams, sowe knowwe are good. We are surrounded by
equally excellent colleagues … and so on, and sometimes these things grow a
culture of infallibility where we undervalue teamwork and even questioning
whether we might be making mistakes. Why do we need teamwork when
we know we are good?

There’s another twist. In almost all jobs, people are working at their lim-
its. Nurses are overrun with too much to do, and surgeons have to focus
on complex procedures that, if they went even slightly wrong, could kill
patients. Programmers, too, have to solve problems at their mental lim-
its; if they didn’t, their products would not be competitive in the business
world. Everyone’s work therefore requires full attention, which then in-

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

260 | CHAPTER 20

evitably leaves little or no head space for being aware of their own limitations
and the errors they may be making.

Human Factors gives us an explicit toolkit to help make systems better
fit in with our true human skills and limitations. It reminds us, for instance,
that we naturally overlook things, but we do so in predictable ways. When
I am fatigued, when I am cross, or when I am under pressure I will make
predictable types of mistake.

Some organizations explain away incidents by blaming “the human fac-
tor,” really meaning that some user or operator made a mistake and really
they are to blame. This is totally inappropriate. Everybody makes slips and
mistakes. If you ever hear somebody blaming “the human factor,” tell them
no, what failed was the system design that allowed a predictable problem to
happen.

In healthcare, it has become popular to talk about Human Factors and pa-
tient safety in one breath; Human Factors failings led to some patient harm,
and now this or that needs doing. This focuses the insights of Human Fac-
tors onto the clinicians most closely involved with the incident, those at the
sharp-end. But everyone — even, and most especially those not in the room
at the time— laid the context down for the harm to happen or, at all the other
times, for the successes to happen.

Clinicians, managers, administrators, designers of standard operating
procedures (SOPs), people who procure equipment, people who design
and implement the digital systems, the politicians who get excited about
certain sorts of “solutions” … and so on: all these people and roles are, of
course, human, and all of them, without exception, will fall into certain sorts
of traps, traps of thinking, traps of doing, oversights, misplaced certainties,
unknown ignorances, over-confidences, and more, that create the circum-
stances where over-worked, pressurized carers and patients have to work to-
gether. Things will, from time to time, go wrong, and what Human Factors
teaches is that things go wrong (and things go right) in predictable ways.

We used to think that bad humans cause errors and problems. Human
Factors is the study of how people work, and since we now know from Hu-
man Factors that humans do things in predictable ways, we now see error
as a symptom of poor system design. Systems — especially digital systems
— should be designed for human error, to block it where possible, to warn
when it happens, and to helpmanage recovery from it when it has happened.
Emphasizing the role of Human Factors in designing and creating systems is
called Human Factors Engineering, or HFE for short.

What are some of these predictable Human Factors issues? We know
that we have limited brain space — everything has to fit inside our skull.
When we focus on a problem, we inevitably lose awareness of some other
things that are going on, because our brains can only do so much. If we paid
attention to everything, we would be utterly distracted. So, we get tunnel
vision. Our attention tunnels into what we are doing, and it inevitably loses

HUMAN FACTORS | 261
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

track of everything else. We are built like this, and often for important prob-
lems our hormones get involved too, and we end up with no choice but to be
carried along by the excitement of the problem at hand. It’s not a deliberate
choice to become unaware of everything else, it’s something predictable and
happens to everyone.

Some people call tunnel vision loss of situational awareness or inat-
tentional blindness, emphasizing how we blindly lose track of parts of the
wider context of what we are doing. The important point is that you become
unaware — you have lost awareness of parts of your situation. You are too
busy doing something to take in any more information. When something
happens in that situation that affects what you are doing, you very likely
don’t notice and then bad things can happen.

For me, there are problems with the term “situational awareness.” It is
never obvious at the time what the “situation” is that we’re supposed to have
lost track of. Criticizing somebody for losing situational awareness is easy,
because after an incident, in hindsight, it’s “obvious” what the full situation
was supposed to be. In hindsight it therefore appears that it must be the
nurse’s or pilot’s fault, as they lost track of the full situation. But it wasn’t
obvious at the time what the critical bits of the situation were — if it had
been, they would have tried to avoid the incident! So, by definition, using
the term situational awareness starts off implicitly blaming the person at the
sharp-end, the person nearest the incident.

Tunnel vision and loss of situational awareness, whatever we call it, is
something that happens to people. The point is, it happens predictably when
toomany things are going on and need to be dealt with at once. It is therefore
much more productive to focus on the causes rather than the consequences.
Task saturation is a better term; it emphasizes the role of asking people
to do too much. Their work becomes too demanding, and they respond by
focusingmore on themain task that needs doing. They cut out of conscious-
ness the distractions and the less important tasks. The problem is that some-
times some of these secondary tasks that are not being attended to turn out
to be critical.

A familiar example of task saturation happens when people get glued
to their mobile phones as they walk around town. They cross roads while
still reading their phones and happily texting away. Lost in thought, they are
most likely unaware that they have lost critical awareness of road safety. For-
tunately, this task saturation usually doesn’t matter: they cross roads safely
most of the time, and so they are unaware of the risks they are running. But
one day, they may become casualties because they didn’t notice a danger.

Similarly, car drivers can get lost in using their phones: they don’t realize
how unaware they are of the road, and then they become a risk to them-
selves and other road users. This is why use of mobile phones (particularly
by young or newly qualified drivers) while driving is banned in many coun-
tries: they are distracting. As you get sucked into the phone conversation (or

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

262 | CHAPTER 20

Box 20.1. Magic makes digital healthcare safer

The magician and computer scientist Prof Paul Curzon offered to show me a
card trick. I picked a card at random from a pack he’d shuffled, and then —
without looking at it — he knew what it was. I was amazed.

He did it again. I was amazed again. He did it again and again. I had
no idea how he was doing it. People started coming over and watching us.
They started laughing. Paul was distracting me, but they could see how I was
being tricked. I was feeling increasingly stupid, as I had no idea what Paul
was doing.

Tricks rely on misdirection, getting the audience’s eyes to follow the
wrong things. It’s the magician saturating you with distracting tasks you
don’t notice, and your tunnel vision being misled into concentrating on the
wrong thing and not seeing how the trick works.

In the normal Human Factors of tunnel vision, errors are unintentional
accidents, but with magic, the Human Factors are shamelessly exploited.276

I can reveal one of Paul’s techniques. He had several tricks up his sleeve
(see the Good reading chapter for some of his ideasa). As soon as I thought
I’d worked out how he was doing the trick, he would use another trick. So
whatever I guessed — I think he’s changing the pack of cards to one that is
all Queen of Hearts??? — he’d do the trick again but in a different way and
make my guess wrong! (I’d no idea he was so devious.) I was fooled even
when he did it slowly so I could watch each step very carefully. Somehow I
was missing something, but I had no idea what.

The connectionwith digital healthcare is that digital systems accidentally
trick us into making mistakes we don’t notice. Understanding how magic
deliberately tricks us into making mistakes can help us make safer digital
systems!

a See Chapter 13: Computational Thinking, page 151←

working out how to use your phone!) your tunnel vision helps concentrate
better on what you think you are trying to do, and inevitably you lose track
of everything else. You don’t even realize that you are no longer aware of
the rest of the world. You stop driving safely, and, worse, you aren’t even
aware that you aren’t driving safely. Using the phone is demanding all your
attention, and the road awareness you’ve lost is not noticed.

Many airplanes have crashed because of task saturation. Here are two
key stories that helped aviation wake up to the importance of Human Factors
issues:

In 1969, Scandinavian Airlines System Flight 933 flying from
Denmark to the US crashed into the sea near Los Angeles. The pilots
were so preoccupied with the nose gear light not going green that
they lost track of their altitude. Fifteen people died.

HUMAN FACTORS | 263
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

In a similar story, in 1972, Eastern Airlines Flight 401 crashed,
killing 101 people. When the pilot came in to land, the front wheel
down light did not come on; was that because the light had failed, or
the wheels weren’t down? The pilot put the plane into a holding
pattern while he sorted it out. Unfortunately, nobody noticed that the
autopilot disengaged as they worked on solving the landing light
problem. With no autopilot, the plane slowly descended, nobody
noticed, and the plane crashed in the Everglades.

In December 1978, the United Airlines Flight 173 crew was starting
to land at Portland International Airport when it had a problem with
the landing gear. The captain decided to fly in a holding pattern so
they could sort out the problem. The captain worked on the problem
for an hour, and ignored hints from the crew that they were running
out of fuel. Only when the engines ran out of fuel did he notice this
far more serious problem. The plane crashed on landing. Ten people
died.

Although these are clear examples of task saturation, there are two re-
markable things to point out here. These are old airplane crashes. Aviation
has improved a lot since then. Secondly, the details of the crashes are easy
to find out. Many are collated on Wikipedia and in lots of other places. Avi-
ation is getting safer,a and it’s open about its accidents and investigations. It
wants to learn from them. It clearly has.

Here’s the thing. When you have task saturation you don’t know that
you don’t knowwhat you are unaware of. If you were aware you didn’t know
something, you’d know it — and you’d need awareness to know that, some-
thing you don’t have spare capacity to notice because you are focused on
doing your job. This is why good teamwork helps: other people may notice
what you don’t notice, and if they point this out successfully, you may be
rescued from your unawareness.

In March 2005, Elaine Bromiley, a 37-year-old wife and mother, went
in for a routine, elective operation on her sinuses.277 As soon as she was
anesthetized, there were problems with her airway. Staff in the operating
room tried hard to sort out the problem. The nurses watching, seeing the
problems, brought equipment for a tracheostomy and cricothyrotomy278 and
booked a bed in the intensive care unit to help her recovery. But the doctors
were too intent focussing on the technicalities of the airway problem, so they
didn’t notice that the situation was rapidly deteriorating into an emergency.
Elainewas short of oxygen. They struggled for about 20minutes. The nurses
who did spot the problem did not speak up, because the doctors were “in
charge.”

a See Chapter 26: Planes are safer, page 347→

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

264 | CHAPTER 20

Elaine died from brain damage caused by lack of oxygen.
Martin Bromiley, Elaine’s husband, has turned this tragedy around. As

an airline pilot, he is familiar with Human Factors and how teams in air-
craft cockpits work safely together. Aviation has had its share of disasters,
but it has learned from them, and aviation safety is continually improving.
Central to this is a positive attitude to Human Factors, and a willingness to
recognize and learn frommistakes and near mistakes — incidents that would
have happened but for some successful defense stopping them.279

Martin’s Human Factors insights — plus his amazing humanity — turned
around the disaster of losing hiswife into a powerful lesson. The very power-
ful story is available as a video, and it is already saving lives. Martin founded
the Clinical Human Factors Group, CHFG, which makes the broader case
for Human Factors in healthcare, and it is already transforming daily prac-
tice and saving lives. The CHFG has a great website — chfg.org—which has
many useful pointers (including the video) and lots of resources. I strongly
recommend it.

Martin saw Elaine’s preventable death through the lens of his profes-
sional experience as a pilot, and this enabled him to turn it around. Later in
this book, we’ll discuss the successful way aviation has improved safety, pri-
marily by having an open, non-blame, and inquisitive attitude to failure.280
Indeed, Human Factors was brought into aviation as a response to inquiries
into several major accidents. In contrast, healthcare seems to prefer to treat
incidents as unfortunate, isolated events that do not have any systematic ba-
sis that would be worth exploring.281 Human Factors belies that. People —
whether pilots, clinicians, or programmers — all succeed and fail in the same
ways.

Teamwork is a special case of redundancy: critical information may get
lost or corrupted for all sorts of reasons, but humans aremore reliable at han-
dling the same thing when it is presented in multiple different ways, and that
can be done by involving different people (and computers) in the team, even
when the original task itself doesn’t have much redundancy. However, de-
signing systems to be redundant, which (if you didn’t know Human Factors)
might seem pointless, reduces the chances of error. For example, wrong
patient errors are hard to avoid, but the more ways the patient’s identity is
presented (their name, their date of birth, their address, their clinical condi-
tion, their identifying number, their photograph), the easier it is to identify
errors and correct them before harm happens. Hence computer systems, and
indeed any systems, including paper systems, should be designed to increase
redundancy.

There is always a trade-off, however. If you designed a system with a
million items of information to redundantly double-check against the patient
identity (what if they are a twin?), you might be very certain the patient in
front of you is the right patient, but you’d run out of time to do anything else.

http://chfg.org

HUMAN FACTORS | 265
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

After an incident, such as operating on the wrong patient, the point of
the investigators’ job is to uncover what the people caught up in an incident
were not aware of at the time. This is one of the logical problems for accident
investigations, because the investigators themselves aren’t doing the same
job as the people were when the accident happened. They therefore have a
very different point of view than the people had at the time of the incident.
Maybe they are sitting back in their offices, relaxed and comfortable, with as
much time as they want to do their job. Maybe they have all of the incident
details laid out in front of them. It’s then a short step to blame the pilots or
clinicians for not having known what is now obvious.

Evolution gave us tunnel vision because it can be a very useful thing.
All complex tasks require proper and full attention to be done well. You
must ignore distractions, and tunnel vision does this for you automatically.
Occasionally, though, for some random reason, something horrible happens
outside your conscious attention and you ignore it because you are focusing
on the “more important” job at hand. If the horrible thing then escalates into
patient harm or an aircraft crashing, you may become aware of the problem
too late to do much about it.

There are many solutions to task saturation.

Train people to be calm, to have team colleagues who watch their
backs.

Have computer systems that help by spotting errors, patient
deterioration or some other unusual behavior. Computers should be
designed to be part of the team.

Design better systems and procedures to reduce task saturation. Note
that good system design also enables having better and safer
procedures to use those systems.

Stress, fatigue, uncomfortable working conditions, hunger, being late,
and in a rush … all of these reduce performance and increase error.
Most of them create a vicious cycle: stress causes error, and errors
increase stress. Deliberate techniques to manage stress help,282 but
the techniques are not just the responsibility of the sharp-end people
— the design of the work, the management, the building design, the
computer systems that have to be used, even the car parking, are all
part of the parcel.

Of course, to design anything first requires doing experiments to find out
what the real problems are, and to assess whether our planned interventions
will really work. Ideas that seem obvious may not be as effective as expected
in the reality of pressurized clinical work, for instance.

Having clear checklists (which mechanically make us go through things
we may otherwise unintentionally miss out) is one of the simplest things

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

266 | CHAPTER 20

to do. For instance, the WHO Surgical Checklist283 takes people through a
list of essential checks, such as checking we have the right patient in front
of us, before commencing surgery. The checklist significantly reduces task
saturation, because the task is driven by a simple list rather than trying to
remember things while performing a complex task.

As recently as 2019, Lourdes Hospital Transplant Center had two pa-
tients in the hospital with the same names and similar ages, and they per-
formed a kidney transplant on the wrong patient.284 Surely, every hospi-
tal’s computer systems should be part of the team and automatically warn
when treating any such patients: you’ve got some patients with confusable
names — be doubly careful!

The executive vice president of the hospital, Reginald Blaber, said the
incident was “unprecedented.” No, no, no, the confusion was not unprece-
dented. The “unprecedented” confusion happened seventeen years after Sir
LiamDonaldson, theUK’s then ChiefMedical Officer, highlighted that name
confusions are well known causes of errors in his widely reported article, “An
organisation with a memory.”285 Blaber evidently wasn’t in charge of an or-
ganization with a memory.

Blaber also said that measures had been taken to ensure the problem
would not happen again in his hospital. Why hadn’t those measures been
in place at least since the WHO checklist of 2008, or since Sir Liam’s high-
profile work? Why are we only improving safety after an incident in a hospi-
tal, rather than using general Human Factors knowledge for all healthcare?
Why are we always improving safety case by case, one hospital at a time?

As using the WHO checklist is patchy, why not have all digital systems
programmed to help with it in every hospital? If digital systems took some
initiative to improve safety, executive vice presidents needn’t worry about
understanding the details.

Unfortunately, so far, computers have generally been the source ofmush-
rooming workload.286 The frustration and pressures on users exacerbate task
saturation and tunnel vision, and contribute to stress and, in the long run,
to mental health issues. Poor design and bugs create pressures that reduce
people’s effectiveness; essentially, bugs become contagious by making other
systems harder to use.

A very common problem of this type is alarm fatigue (I mentioned
Jenny Lucca and Pablo Garcia’s story earlierb). It’s interesting to see the dif-
ferent sides to the story:

From the nurse’s point of view, the device alarms when it notices
something has gone wrong. Often so many alarms are going off, and
often for trivial reasons, that the nurse ignores them. Then, one day,
an alarm goes off that matters, and something bad happens. The
nurse is blamed for ignoring the alarm.

b See Chapter 10: Alarm fatigue, page 126←

HUMAN FACTORS | 267
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

When a developer builds a device, they focus on that device and
what it needs to detect and alarm for. This is tunnel vision — the
developer is (understandably) ignoring the wider situation. In fact,
the developer has no real awareness of the rest of the ward where the
device will eventually be used.

The result is that devices alarm independently, and often
overwhelmingly. It’s then natural for nurses to ignore them, thanks to
tunnel vision. Often nurses will just turn them off to reduce
distraction.

We know that busy nurses can only pay attention to so many alarms,
and any more alarms is counter-productive. Blaming a nurse for
missing an alarm does not improve the system or make it safer. Doing
the research so we know how to design systems to avoid alarms that
will get ignored because of tunnel vision would make systems safer;
after the research, the results could then be turned into a standard or
a regulation. Then there’d wide uptake of the better approach.

Standards or regulation could dictate a maximum number of alarms,
but the real art of regulation is to require the improvement in safety,
and let manufacturers work out the best way to do it. This, in fact, is
just good Computational Thinking, avoiding implementation bias and
over-specificity on how to do it.

There is nothing special about bad programming creating bad design in
digital healthcare— it’s just poor HFE. Tunnel vision leading to error is what
happens to everyone, especially when faced with complex problems under
pressure. Human Factors applies to pilots, car drivers, patients, clinicians,
and programmers alike, it isn’t just an “end user,” nurse, or doctor thing.
Indeed, Human Factors applies upwards through management, building de-
sign, digital system design, and even into the design of standard operating
procedures (institutionalized as SOPs) and regulations. Human Factors is
everywhere. Equally, opportunities to make strategic improvements is ev-
erywhere. It isn’t ever a matter of blaming the end user for “failing,” when
the system led them astray.

Here are some core Human Factors ideas and issues. As usual, I’ve put
technical terms and the first use of standard phrases in bold.

Ignorance and unawareness. We don’t know anything until we do an
experiment to measure it. This is a more general observation than that we
don’t notice our own errors; we don’t notice much at all. Careful experi-
mentation is always required to figure out the true facts from our (usually
over-simplified) imagination. The cure for ignorance, even deliberate igno-
rance, is evidence. Unconscious incompetence, a special case of igno-
rance, arises when we are ignorant of our lack of skill and competence in
some area.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

268 | CHAPTER 20

Box 20.2. Simplistic Human Factors backfires

It’s possible for naïve Human Factors to backfire: there is a mistaken inter-
pretation where the nurse or doctor is blamed for not using Human Factors
properly. “They should have used their Human Factors knowhow to avoid
the problems.”

Hospitals have projects to “design out error” — even the name of which
creates a false belief that errors aren’t or shouldn’t be possible because
they’ve been designed out. So when errors happen, as they eventually do,
the staff must be to blame again.

First it was that they just made mistakes; now they’ve had the Human
Factors training, they’re making mistakes because they aren’t using their
training properly. They’re still to blame. If they moan, then it’s because
they aren’t being resilient, something else they’ve been trained about and
“should” be able to do.

While it is certainly helpful to be resilient,287 these views of resilience
and designing out error are often manipulated to reduce the system’s respon-
sibility.

It’s important to be clear what Human Factors resilience really means.
Sometimes it is worth calling it, more precisely, risk resilience, to empha-
size its wider meaning.

We say risk resilience because it is a wider resilience than the everyday
sense of staff being individually “resilient.” That sort of resilience means
things like not being stressed when things go wrong.

Risk resilience, more usefully, means providing a system that is resilient
to errors: errors are often avoided, but if errors happen, they are rescued and
recovered from. A team is better at risk resilience because it can detect, block,
and manage errors in lots of ways — there are many pairs of eyes watching
out. Risk resilience means learning and working out how to provide an in-
creasingly resilient environment — and increasingly resilient digital systems.

Unconscious incompetence sounds critical, if not rude. But I myself am
unconsciously incompetent about lots of things — the point is, I don’t know
what I am unconsciously incompetent about! So I have opinions about all
sorts of things. Worse, because these are strong opinions ofmine, andwhich
make sense to me, why should I even think to check them? It’s only when
better-informed people around me challenge my ideas that I realize I am ig-
norant, despite previously having strong views. Unconscious incompetence
is why people don’t know they are not good at digital healthcare, despite,
most likely, having a lot of experience of consumer digital innovations and
strong views on what they like.

At the moment, then, any enthusiast can pass themselves off, to them-
selves and to other people, as a digital expert. Until we have training, qualifi-
cations, and regulations on who can practice digital healthcare development,
we will continue with the problems of unconscious incompetence.

HUMAN FACTORS | 269
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Biases, or cognitive biases, are ways in which unconscious processes in
all of us affect our decisions and thinking — without us realizing. For ex-
ample, the fundamental attribution error is our bias towards explaining
people’s behavior by their personality. Thus, if somebody does something
bad, we are biased to think that they are bad. In reality, when bad things
happen, there are usually lots of explanations — the Swiss Cheese Model
again.c

In healthcare, an important bias is hindsight bias — after an incident
happens, like a patient being harmed, we now know more than anyone did
while the incident was happening. We therefore judge everyone involved in
the incident harshly because, surely, they should have known what we now
think is obvious. It’s too easy to over-emphasize what we now think people
should have known or should have been able to anticipate at the time: we
let the insights we’ve learned knowing the outcome to rewrite how people
should have behaved at the time.

In healthcare, almost everyone is wonderful, and bad things rarely hap-
pen because anyone is actually bad; rather, bad things happen because of
complex system problems, bugs, task saturation, under-resourcing, and so
on. But with hindsight bias, we think we can see reasons why the nurse or
doctor failed: things went wrong, surely, because the nurse was inattentive?
We prefer this simple human story of betrayal by a bad person. Next, hav-
ing started to think about how bad somebody is thanks to hindsight bias and
the fundamental attribution error, we then suffer from confirmation bias:
we tend to seek out more reasons why we are right, and we discount other
explanations for the problem, such as the system problems. We rarely seek
out evidence that we are wrong! Soon we have collected so much evidence
that the person is bad, that we are convinced there are no mitigating circum-
stances. We stop listening to the important role of other factors.

In healthcare in particular, the mass media exploit our weakness for con-
firmation bias. I’ve already mentioned the Daily Mail story of a “blundering
nurse”d that goes on to tell us how the nurse blundered. The alternative ex-
planations get no serious consideration; why should they, if we think the
nurse is blundering? We are primed (to use the technical term) to think the
nurse is a blundering nurse, and confirmation bias means we get stuck look-
ing for reasons to support our growing suspicions, and we ignore any contra-
dictory information. The reason confirmation bias is an important Human
Factors issue is that we are unaware we are thinking so selectively.

It gets worse.
Confirmation bias is what we do to ourselves, why we must take spe-

cial care not to jump to conclusions and then just seek reasons to justify
ourselves. But we also start talking more to the people who have the same
beliefs as we do. Naturally, they help us entrench our views. In other words,

c See Chapter 6: Swiss Cheese Model, page 61←
d See Chapter 7: “Blundering” nurse, page 71←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

270 | CHAPTER 20

we start imposing and drawing on confirmation bias in the people around us.
In turn, they do it too, and it creates an avalanche of what is really narrow-
mindedness. This effect is well known in social media, where people tend
to live in echo chambers with people who agree with them and who don’t
try to seek out contradictory views.288

The surprising disciplinary action against 73 nurses I described earliere
was (I think) the echo chamber effect in action: everybody inside the dis-
ciplinary process paid attention to people who agreed with the gist of the
allegations. Moderating or dissenting voices were not sought out. (The ex-
pensive court case that followed pitted the prosecution and defense teams
against each other: a formal process, indeed a very expensive formal pro-
cess, that tries to manage the Human Factors limitations of jumping to con-
clusions.)

When a group of people or a company develops a new digital interven-
tion, like a medical app, they too inevitably suffer from the echo chamber
effect. Again, it’s not their fault, but part of the human condition we all
share. The developers believe their product is great (else they wouldn’t be
developing it!). They then naturally collect supportive people around them.
They build their own echo chamber. Soon, they cannot believe there may
be any problems to fix or any bits to improve. This is why we have to put real
effort into User Centered Designf and FormalMethodsg in digital healthcare:
both techniques bring outside and objective perspectives into the process to
compensate for our Human Factors weaknesses.

I mentioned cognitive dissonance earlier;h it’s another of our cogni-
tive biases.14 The idea is: if we find several ideas about ourselves that are
inconsistent — dissonant — we’ll try to resolve the dissonance in favor of
bolstering our self-image. There are many ways to do this, but an easy one
is to dismiss any negative ideas. So if we have spent years learning and using
a programming language—why did we spend all that time on it?— it’s much
more preferable to convince ourselves and everyone around us that, we being
sensible, it must be a really good language. Other explanations, that it took
us a long time because it’s an over-complicated language or (an even worse
thought) that we are bad programmers, are too dissonant to contemplate.

It cannot go without being mentioned, but there is an important substi-
tution rule.289 If somebody else under the same circumstances would have
made the same mistake, then it is not their fault, but it’s the system that let
them down.

The substitution rule isn’t conventional Human Factors (though it cap-
tures some Swiss Cheese thinking), it’s more like an axiom underlying all
Human Factors thinking. In important ways, people are the same. Human

e See Chapter 8: Disciplinary action against 73 nurses, page 92←
f See Chapter 22: User Centered Design, page 301→
g See Chapter 27: Formal Methods, page 379→
h See Chapter 3: Cognitive dissonance, page 28←

HUMAN FACTORS | 271
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Factors literally factors out this “sameness” and sorts out how it’s organized
and applied. The substitution rule says that, to the extent that people are the
same, we cannot blame them for what they do, for anybody would do it —
and we should know that, and find out why.

Overcoming ormitigating biases is very difficult, because we all suffer
from them and they are deeply embedded in how we think — they are very
hard to acknowledge, let alone to see. Human Factors provides a range of
solutions, from training to anticipate when biases influence us, to effective
teamwork particularly to encourage other people to stand back and help cri-
tique our biased thinking. An important technique is to have somebody in
the team as an observer who is critically watching what is happening with-
out getting too involved in it; they are outside the stress and tunnel vision
of the raw action, and therefore have more cognitive capacity to spot things
going awry. Effective multi-disciplinary teamwork fixes many problems —
especially if the team includes a Human Factors specialist who knows what
to look out for.

“Effective” is the keyword here — it is so easy to have ineffective, even
counter-productive teams, and nobody will notice or try to fix the dysfunc-
tional problems because they don’t see them and, even if they do, they are
not empowered to intervene.

Finally, and perhaps the central Human Factors trade-off is, despite the
fact that in many ways people are all the same, people have individual dif-
ferences. We are all different, and we are different in different, subtle ways.

It’s fairly obvious that we are all different when we think about it, but
when we design and build digital healthcare systems it’s easy to overlook.

The classic mistake is that people developing systems do not realize that
their users are different from them: users have different skill sets, they think
differently, and they are working under different conditions. It’s easy to
overlook when we design any systems, from digital systems to standard pro-
cedures to follow: our ideas look obvious to us, but we— thanks to individual
differences — are not the same as other people. What’s obvious to us, espe-
cially as we’ve spent a week on our pet project, is not going to be so obvious
to other people, especially when they are working under pressure.

Gender is an important individual difference, but it’s easy to overlook,
as we are whatever gender we are; we take it for granted much of the time,
especially when doing complex tasks like programming.

Female doctors are faster and more satisfied with hospital digital sys-
tems than their male colleagues.290 The research suggested that developing a
greater understanding of the differences could help reduce staff burnout and
help improve performance more generally — because men and women burn
out differently, and if this isn’t taken into account, we jump to the wrong
conclusions about it. Such understanding could surely help developers build
more effective and pleasurable digital systems, which would then be more
effective for everyone.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

272 | CHAPTER 20

Most programmers are male; perhaps as high a proportion as 90% (de-
pending on what you count as a “programmer”291). One of the things that’s
obvious to them is that they are men. I’m one too, and I can say we don’t
go around continually reminding ourselves we are men. Similarly, program-
mers don’t go around reminding themselves they are programmers, or men,
or young, or whatever; they just are — it doesn’t need saying.

Gender has a high profile — but there are other individual differences
issues, such as race and culture. Knowing, as we do, that gender matters
should drive wider appreciation of these other differences.

What teams do is help individual differences to be balanced out, and— at
least when the teams work effectively — for team members to complement
each other.

Color vision is another example of individual differences that is easy to
overlook. About 4.5% of the population is color blind — and people can be
color blind in many different ways. So, although color coding might be obvi-
ous to you, never rely on color; always add monochromatic cues, lightness,
texture, or symbols— and do large enough experiments with a representative
range of people with different visual abilities to check your idea works.

In healthcare it’s natural to think Human Factors is the concern of people
at the sharp-end: the doctors and nurses and other healthcare professionals,
so that they can learn how to have fewer accidents and harm fewer patients.
That’s a helpful point of view, of course, but everyone in the system is sus-
ceptible too. The line managers. The people in procurement who buy new
systems. The people who write standard operating procedures. The pro-
grammers who design and develop the digital systems. The regulators who
devise the final rules. Human Factors is a universal human concern.

How do we defend against our built-in (and usually overlooked) Human
Factors weaknesses? Of course, we know about Human Factors, and we
know the terminology, so that problems can be called out and recognized —
and discussed constructively in a non-defensive, non-argumentative way.

But real life is complex and demanding, and, certainly in healthcare,
requires reliable performance under pressure. Teamwork, at least when it
works, breaks up the load, and each person has a role mitigating others’ Hu-
man Factors weaknesses. If one person is task saturated, another has their
eye open for issues that person overlooks.

Cultural issues are part of Human Factors. Another person will not point
out a problem if they feel what they say will be taken as unwelcome criticism,
especially if the person in charge of the problem has “authority.”

The WHO Surgical Checklist starts off by getting people to say their
names, as this reduces the power hierarchy: it’s much easier to help someone
when you know their name.

Diversity, too, can make teams far more effective because different types
of people see different things and respond in different ways — of course,
some diversity can reinforce power hierarchies that make co-operation hard.

HUMAN FACTORS | 273
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Box 20.3. Risks of international code and poor code review

On 21 July 2020, a TUI Airways Boeing 737 flight from Birmingham In-
ternational to Palma de Mallorca airport had a serious incident after under-
estimating the plane’s weight before take-off.

The incident occurred due to a simple flaw in the
programming of the IT system, which was due to the
meaning of the title ‘Miss’ being interpreted by the system as
a child and not an adult female. This was because in the
country where the system was programmed, Miss is a child
and Ms is an adult female. This issue had not been identified
as part of the initial risk analysis and did not manifest itself
during the trial simulations.292

TUI assumes any passenger checking-in as “Miss” weighs 35 kg,
whereas a “Ms,” who they assume is an adult, weighs 69 kg. It’s a very un-
reliable approach, out-of-sight, and hard to scrutinize — and unnecessary
when TUI already keeps track of whether passengers are infants, children or
adults.

Since an explicit change was made to some code, somebody must have
decided to do it. In a development culture where there is code review, some-
body else would have reviewed the code and documentation, and asked,
“why?” In a mature international development culture, the code reviewer
would be aware of cultural differences, and ask why changes were made
based on local cultural assumptions. If it was a “simple flaw,” as the ex-
tract from the formal report above says, it should have been simple enough
for a code reviewer to spot — if effective code reviewers had been used.

Following the incident, TUI introduced a daily manual workaround to
ensure adult female passengers were referred to asMs on the documentation.
Of course, a manual workaround — to be repeated for every passenger on
every flight — to fix a bug is much less reliable than fixing the program.

Computers should be part of the team too — by double-checking, asking for
confirmation, warning before potentially unsafe acts, and more.

Code review is a special case of organized teamwork for developers. It
is a formalized processwhere programmers challenge each other— “Why did
you do that? What are your assumptions?” Code review uses one person’s
questions to probe into the areas another has possibly overlooked. In par-
ticular, ensuring teams are more diverse and using techniques such as code
review, are practical ways to spread Human Factors insights across develop-
ment teams. Users would then benefit from using safer and more effective
systems.

Some aspects of good teamwork have become formalized on a much
larger scale, changing our culture, and the way we approach problems. Sci-
ence is perhaps the best example.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

274 | CHAPTER 20

The reason why science has been so successful is that it encourages a
belief in evidence, searching for reasons we may be wrong, searching for
clear reasons, and then spreading the best ideas as widely as possible. Sci-
ence encourages a culture of criticism — there is a formal role of referee, a
person whose job it is to find mistakes. Sometimes referees are destructive
in their criticism, but at least they stop erroneous science being published
(which would perpetuate errors in the community); better referees identify
problems, and sometimes solutions, to help the science get better before it is
published. “What would a scientist do?” is always a good question.293 Sci-
ence’s goal has been described as reaching consensus,294 which is exactly
how we might describe successful teamwork.

At its best, science also cultivates humility. We don’t know what we
don’t know, and we don’t notice we don’t know things, so we have a natural
tendency to succumb to our Human Factors weaknesses. Humility means
not just seeking new ideas, but actively worrying that our Human Factors
means those ideas may be flawed. We then devise ways to check whether
they work. We’ll see lateri that good programmers deliberately fill their pro-
grams with things to check their assumptions all the time, and they use pow-
erful computer tools to help — they know computers “think differently” to
them (doing type checking, analysis, theorem proving, and more — things
people don’t do well on their own), so the computer’s insights complement
their own. Bad programmers just expect their programs to work.

If you thought Human Factors was straightforward, there is a theory of
irony to complicate things.295 If I ask you not to think of a cat, ironically
you can’t do that without thinking of a cat. Similarly, if you try hard to avoid
an error, especially under stress, you are slightly more likely to make it. If
you are in a team, trying to avoid an error makes you especially resent any-
one pointing out that you are about to make the very error you knew you
wanted to avoid. The ironic effect is counter-productive. Fortunately, previ-
ous practice as a team, especially when the practice has been part of explicit
Human Factors training, helps appreciate the positive goals of the person
interrupting you.

Human Factors is not just about human “problems” (like tunnel vision)
but also celebrates human powers.j Humans are remarkable at human things
— intuition, recognition, caring, talking, listening — solving complex, ill-
defined problems efficiently. Our skills complement what computers can do,
particularly whenwe are well matched to the computers. In particular, as I’ve
emphasized, we work better in teams — this chapter’s opening example of
howmywife helpsme drivemore safely is a nice example of this— especially
when those teams know and follow Human Factors principles.

i See Chapter 21: Computer Factors, page 277→
j See Chapter 12: Safety One & Safety Two, page 145←

HUMAN FACTORS | 275
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Jacob Braude made a career out of collecting good quotes. He once said,
though possibly quoting somebody else:

Consider how hard it is to change yourself and you’ll
understand what little chance you have in trying to change
others.296

Chip and Dan Heath have written a powerful book, Switch,297 on how to
achieve change. When we want to change things, whether in ourselves or,
more often in other people, we are often torn between our rational, logical
reasons, and our emotional, intuitive feelings. Now visualize the process
of our rational, logical selves as like riding an elephant. When we want to
go somewhere, we tell the elephant to go there. However, if the elephant
— representing our feelings (including our hormone-driven feelings I called
Cat Thinkingk) — doesn’t want to, it’s actually so large and powerful it can
do what it likes, regardless of what the intelligent rider wants it to do. The
elephant is a good model of why change is unlikely when our feelings and
habits overrule it. But the Heaths add a nice twist: whatever the elephant
wants, it will still walk down the path in front of it. Therefore, changing the
path is the best way of getting the elephant to do what you want.

Here’s a concrete example of the elephant model in action. You may
want to lose weight, but when there’s a plate of food in front of you, literally
your gut feelings take over. Why not replace your plates with smaller plates?
You’ve changed the path, and you no longer have to fight your feelings every
mealtime.

In other words, since it is so hard to change ourselves and other people,
a better way of improving the effectiveness and safety of healthcare is in-
stead to improve the systems, and today that means designing better digital
healthcare systems. Every bit of technology imposes a way of doing work
regardless of the knowledge, habits, feelings, and abilities of its users. Good
digital technology grounded in Human Factors can improve healthcare faster
than any other intervention.

That insight also applies to system developers: it’s hard to program better
and more safely just by wanting to, but changing the tools and languages
we use will have an immediate effect. This idea may seem like a burden
for programmers, but for every programmer who becomes safer, potentially
millions of patients benefit, so it’s worth taking the idea very seriously. I’ll
talk more about this later.l

Of course there’s much more to Human Factors than this brief chapter
can cover. I hope I’ve got you fascinated. There are some suggestions on
what to read if you want to find out more in the Good reading chapter.m

k See Chapter 3: Cat Thinking, page 25←
l See Chapter 27: Stories for developers, page 367→
m See Chapter 33: Human Factors reading, page 483→

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

Understanding how
computers can avoid bugs
and mistakes is the first step
toward programming safer
and more dependable
systems. This chapter
introduces some important
software engineering ideas
that can help make safer
digital systems.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

21

Computer Factors

Since we have Human Factors as the common and predictable ways that hu-
mans work, I’ve invented the term Computer Factors for the features of
digital systems that critically affect how reliable they are. Analogous to Hu-
man Factors, Computer Factors are the systematic, regular ways that com-
puter bugs appear and influence reliable work. Bugs are to Computer Factors
as preventable errors are to Human Factors.

When something goes wrong — when an incident is being analyzed —
it’s routine to ask what Human Factors “went wrong” and what Human Fac-
tors lessons should be learned. There’s even a nice introductory book called
Brain Bugs: How the Brain’s Flaws Shape Our Lives.298 Of course, it’s even
better to use Human Factors first, to improve design, to help avoid things
going wrong in the first place.

Equally, we ought to be analyzing all the digital systems and asking what
Computer Factors are relevant, what things can go wrong, what can be im-
proved, what factors we should look out for when we get new systems, and
so on. Like Human Factors, Computer Factors focus our minds on critical
issues that are otherwise easy to overlook and often result in bugs and other
problems.

Just as Human Factors are features of humans that lead to specific sorts of
behavior, often causing problems, Computer Factors are features of programs
that often lead to bugs or other unexpected behavior. Like Human Factors,
there is an interesting mix of whether a Computer Factor is the computer’s
problem or some programmer’s fault. Often bad Computer Factors cause
problems because the developers made poor design decisions a long time
ago, and it’s now too difficult to disentangle the facts.

Here’s an alphabetical list of a few illustrative Computer Factors. The
interesting thing is to get the ideas, and then use the ideas to seek out and
manage other problems that may arise during development. In particular,
I’m sure you can think of some more ideas — give your Computer Factors

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

278 | CHAPTER 21

Box 21.1. The etymology and entomology of bugs

In everyday English the word bug means an insect, or to annoy or to irritate
— perhaps drawing on what bedbugs and other pests do. In computing and
engineering, more specifically, bug means an unwanted or preventable prob-
lem. The engineering usage may well be traced back to the old Welsh word
bwg, meaning a ghost or goblin.

Thomas Edison first used bug meaning a problem in an engineering de-
sign in 1876, and it was rapidly popularized. In 1878 he wrote what is now
one of the classic quotes about the inventive process:299

The first step is an intuition — and comes with a burst, then
difficulties arise. […] “Bugs,” as such little faults and
difficulties are called, show themselves and months of
anxious watching, study and labor are requisite before
commercial success — or failure — is certainly reached.

In 1945, Rear Admiral Grace Murray Hopper found a moth inside Har-
vard University’s Mark II electromechanical computer. She taped the moth,
probably the first victim of electrocution by computer, into her lab notebook.
She famously wrote, “First actual case of bug being found.”

This, the first bug you could actually see, has gone down in history.

names so that you can call them out and help others to understand and use
them effectively.

Antipattern. I promised a list of factors that lead to specific sorts of
unfortunate behavior, and thanks to choosing an alphabetical list of
the factors, I have to start off with one that doesn’t cause specific
behavior!
Antipatterns are the evil twin of patterns.300 Patterns are good
ideas for programming and building systems, whereas antipatterns
are good ideas that are wrong and inappropriate in the current
context. Every good pattern therefore has an antipattern — the
temptation is to use an old solution as an easy fix because it had
previously been a good idea in another place and time. Unfortunately,
the antipattern gives the programmer unjustified confidence in the
(wrong) solution, and they race ahead without proper checks. A
specific example of an antipattern is given below, in its alphabetical

COMPUTER FACTORS | 279
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

place, at premature optimization; another example is the
spreadsheet program Excel, which is amazing at doing many things,
but this very power makes it a prime candidate to be an antipattern.a

Bad comment. After a program has been written, people will have
to come back to maintain it, modify it, or fix its bugs. Comments are
essential human-readable explanations of what the program is
supposed to do and how it does it. Often comments are inaccurate or
just aspirational, and then the next programmer will misunderstand
the program and make a mess of it.
Bad comment is a good example of a Computer Factor. There is no
bug-as-such in a program that corresponds to bad comments: after
all, computers ignore comments, as comments are only intended for
humans. Instead, bad comments mislead programmers, who then
introduce bugs and other problems.

Buffer overflows. Computers have a limited amount of memory,
and the programmer has to allocate it wisely, trying to anticipate how
everything will be used. If the programmer makes a mistake and the
actual use of the program needs more memory, things will go wrong.
Once a program has run out of memory, it is not obvious how to
recover and do what the user wants.

Corruption. Programs obviously use a lot of data, and sometimes
bugs in the program (or cyber attacks) change the data. Then the
program may do anything, and perhaps do anything under the control
of some cyber attacker (or somebody accidentally behaving like a
cyber attacker). Obviously programs should continually check data
for integrity, so that any unwanted changes are blocked by
assertions and guards immediately (I’ll discuss these ideas more
fully below), and thus not lead to problems.

Deadlocks. Computers do many things concurrently, such as
showing numbers on an infusion pump display, scanning for the user
pressing buttons, and simultaneously pumping a drug into a patient
at the same time. A simple deadlock happens when A is waiting for B
and B is waiting for A, and then nothing happens! It’s helpful to have
awatch-dog that notices when nothing is happening, but the
problem is that the watch-dog may not know what to do next, apart
from barking to draw someone’s attention to the problem.

Defensive programming — or failure to use defensive
programming. Programming involves human work, and therefore it
is subject to error, and unfortunately some errors aren’t noticed

a See Chapter 31: Using Excel in Test and Trace, page 440→

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

280 | CHAPTER 21

without special effort. Therefore good programmers use defensive
programming— using many techniques to help them (or help their
programs) spot, and block or recover, from errors.
I think all programming should be defensive, so it shouldn’t really
need a special term — except it is useful when you ask a programmer
how they’re doing defensive programming, and you discover they
don’t have a good answer!

Division by zero. A computer can’t divide by zero, so if a number is
zero (perhaps because somebody set up a treatment forgetting to
enter all the data) the computer crashes when it does what should
have been a routine calculation (say, to work out how long the
treatment will take).

Infinite loops. If a computer keeps on trying to do the same thing
again and again, a so-called infinite loop happens. In the worst case,
the computer won’t pay attention to anything else, and it will appear
to have frozen. (They aren’t really infinite, just that there’s nothing in
the software to stop them.)

Null pointers. Rather than keeping lots of copies of data (and
keeping track of changes) it is good practice to point to data —
keeping track of its location. The pointer is then used as an efficient
proxy for the actual data. Hours or days later, the program may try to
use the pointer when it’s wrong, perhaps even pointing nowhere. It’s
then a null pointer. Null pointers also happen when the programmer
forgets to initialize a pointer to point to something in particular;
again, it’s then a null pointer. Many computer programs crash when
they try to use a null pointer — note that the bug isn’t the null pointer
as such, but trying to use it is a bug. Modern programming languages
make it very difficult or impossible to have null pointers.

Out by one errors. Often called fencepost errors (figure 21.1),
out by one errors happen when the programmer has made a counting
mistake in designing their program. Out by one errors usually result
in corruption or crashing. Undetected out by one errors mean a
program will carry on making more and more of a mess of things.

Overloading. In good programming, it is always clear what
everything means. When anything is overloaded it is being used in
more than one way, and sometimes — worryingly often — it may not
be clear what it means. For example, the user is asked to enter a
number that will be stored in the program variable n. A common, and
problematic, overloading of n is that if it is zero, this is supposed to
indicate that the user entered nothing, otherwise it’s the value that
the user entered. So what does it mean when the user enters zero?

COMPUTER FACTORS | 281
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Figure 21.1. If you build a fence 10 meters long with posts 2 meters apart, how
many posts will you need? Although it’s obvious that 10÷ 2 = 5, the answer’s not
5 posts, but 6 posts — you need one more post than there are panels.

A computer program may need to do several things, here represented by the
fenceposts. But should it do as many things as there are panels or as many things as
there are posts? Programming to solve problems without thinking carefully often
leads to out by one errors, otherwise known as fencepost errors. (For short
lengths of fencing, as shown here, the problem seems pretty easy because you can
do it in your head. For fences you can’t see — which is how programs work — it’s
much harder. Indeed, if you look closely at my simple diagram, even here you’ll
see I’ve got a different sort of error in the measurements: you can’t give an exact
answer without knowing how wide the posts are.)

Premature optimization. Optimizing programs is a good idea —
we want programs to run quickly and effectively. We certainly want
to know where a program is “wasting time” so we can fix problems.
But premature optimization is optimization’s seductive
antipattern. Here, we do the optimization too soon, before the
program is finished and stable. Optimization always makes programs
more obscure, as the programmers strain to squeeze seconds out of
loops or calculations — but the original intent gets lost. Instead of
doing it right, the emphasis has become doing it faster. The problem
is, as a rule, speeded-up code is much harder to understand.
A much better way to do optimization is to get tools to do it — such as
getting a better compiler — and then the programmers can program
clearly, and leave the intricacies of optimization up to their automatic
tools.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

282 | CHAPTER 21

Timeouts. Many problems are “solved” by timeouts. If nothing
happens for a while (like 30 seconds) the computer program assumes
something else needs doing — perhaps a motor has got stuck, or the
user has walked away. We can’t do nothing forever, so the timeout
triggers something else to happen. Sometimes, because actually the
computer has no idea what’s happening, what is automatically
triggered is the wrong thing, and that’s the timeout bug.

Type errors. Having types means you can’t do some things — you
can’t do bad things by accident.
Types are the sorts of values used in programs. By naming the types,
we can define what programs are allowed to do with those sorts of
value because we named them. For example: “number” is a type of
value you can add one to, or multiply by ten, and so on; or “string” is
a type of value you can find characters in or make longer by joining
with other strings. Types are usually related to each other, so they
inherit properties; for example, an integer is a type of number, but it
only allows whole numbers. It doesn’t really make sense to add one
to a string — this is almost always a bug you want to avoid: it’s a type
error. In typed programming languages you cannot freely mix up
types, but in untyped languages you can make unnoticed errors
(which a typed language would have caught) that then cause
unexpected problems, perhaps only appearing years after the
program was developed.301

Unpropagated updates. A programmer makes changes here but
often forgets to make the corresponding updates there. Often, when
there are many programmers involved in a project — possibly the
programmers are spread out all over the world and work in different
time zones — all the updates don’t get made, because people lose
track of everything that needs doing. Indeed, incompatible updates
may be made simultaneously in different places.

Use error. The program gets a number or other data from the user
and just assumes it is correct (see defensive programming, above). If
the user makes an error that the computer ignores, then the bad data
goes on to cause chaos, generally triggering an avalanche of further
bugs.
Note: the correct terminology “use error” (not “user error”) was
explained in box 10.1.

Wrong operators. A very common problem in programs is that the
programmer meant to write + but wrote *, or –, or = instead of == (all
these examples just one keystroke wrong). Then wrong things will
happen every time this bit of code is run. Unfortunately, it may be

COMPUTER FACTORS | 283
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

some time before this precise bit of code is run, and even longer
before anybody notices anything going wrong. For example, x+0 and
x–0 always have the same result, despite mixing up + and –. All bugs
can hide themselves for a long time; they are then called latent bugs
or latent errors.

There are very many more ways programs can go wrong — this brief list
is by no means a complete list of Computer Factors and bugs.302

The key question is: how do you protect your programs from unhelpful
Computer Factors? What, then, are examples of helpful Computer Factors?
Here are some suggestions …

The simplest idea is redundancy—which I also mentioned as a way to
help in Human Factors.b Redundancy certainly helps humans, but redun-
dancy is also a very good idea in digital systems.303 Since our programming
is unreliable, do everything in several different ways, preferably even by in-
volving different programming teams. Then each way, although it seems
redundant, can check the other ways. Different programming teams will
have different assumptions and they’ll make different mistakes. Redundancy
works because the chances you all make exactly the same mistakes is very
low, so when one part of a redundant system fails, other parts either recog-
nize the problem and can stop things getting worse, or they can recover and
keep the system working.

A special case of redundancy is guards. Guards explicitly confirm code
will work and they make sure assumptions are met. Guards in computing
are like the real-life guards that say “who goes there?” and if you haven’t
got the expected answer, you get stopped (or you’re shot) before you can do
anything you’re not supposed to do.

Guards and assertions overlap; see box 21.2. Guards and assertions can
be done in quite ordinary programming; they are basically just nameswe give
to styles of programming so that we, as programmers, can think more clearly
— in particular, so that we can remember to think more clearly, and talk to
each other using shared ideas we all understand. Where are the assertions?
Where are the guards? Are they clear? Do they cover everything that could
happen?

Basically, guards protect specific code, and are a normal part of program-
ming to handle different expected cases — though in much programming,
the guards are often not laid out very clearly.

In contrast, assertions protect everything, and are there to detect and
protect against bugs.

So, for example, a program might assert that a patient’s BMI (body mass
index) is defined and positive, since it doesn’tmake any sense for a program’s
variable BMI to be undefined, zero or negative. However, if we know the
program doesn’t have that bug, because it passed the assertion defined(BMI)

b See Chapter 20: Redundancy, page 264←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

284 | CHAPTER 21

and BMI > 0, then — and only then — a BMI less than 18.5 would be an
indication of anorexia — reporting that case could then be safely guarded by
simply checking that BMI< 18.5. However, just guarding some code with
the obvious if(BMI < 18.5) ... without any such assertion would cause chaos
as the BMI variable might be, for some reason, undefined, zero, negative,
or even somehow true or false.304 If the BMI is bad, undefined or what-
ever, then there must be bugs of some sort, and the assertion will fail, so the
programmer knows to fix the bugs, leaving the user to deal only with valid
BMIs.

Interestingly, thinking as a programmer about assertions and guards im-
mediately raises interesting clinical questions that may not have been ad-
dressed. First, if the variable BMI is undefined, is that actually an error:
should it be trapped as an error with an assertion, or should it be handled
as a problem for the user to fix with a guard? Has the program not made a
clear enough distinction between the user not providing a BMI at all (yet),
and the program not knowing what the BMI is? Obviously having a defined
BMI≤ 0would be incorrect, and we have been told to guard for a BMI< 18.5
for possible anorexia, but this begs the question: what is the lowest a BMI
can be and still be a legitimate value? So, asking these sorts of question,
the programmer will be inspired to go to a clinician and ask: what sort of
warnings do you need when the BMI is < min, and what is min? A BMI
< 13 can be fatal for males, and less than 11 for females,305 so those cases
need guards and a clear warning — and, to program that, we would also have
uncovered that we need to ask whether the program should track gender as
well. Programming problems with larger BMIs were discussed in box 13.3.

In a perfect world, neither might be necessary. It’s too easy to forget we
don’t live in a perfect world, and things will go wrong for all sorts of reasons.
Guards and assertions help stop the problems.

Good software has guards and assertions.

It’s interesting to reflect why they are a such good idea for helping tomake
programs more reliable.

Most computer programming is imperative—we instruct the computer
to make changes to things. Programming languages have commands— it’s
imperative the computer does what we command!

Imagine a program for handling the user entering a drug dose. Each time
the user presses a digit key, the number the user is entering changes. Fur-
thermore, it changes in quite a complicated way. If you want the details, it’s
like this: the number is multiplied by ten and the key is converted to a value
which is then added to that number — except if the user has already pressed
the decimal point; then the number is not multiplied by ten, but the value
of the key is divided by a power of ten, depending on how many digits have
been pressed since the decimal point. And if the user presses delete, then …
well, it becomes even more complicated.

COMPUTER FACTORS | 285
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

As you can see, everything turns into an instruction to change something,
and hopefully after all these changes the number is what the user wanted.
Then there are the edge cases: What do you do if the decimal point is pressed
more than once? What happens when the number is being entered into a
window (such as the display on an infusion pump) which isn’t big enough
to display all its digits? What happens if the user presses lots of digits, so
the number itself overflows? What if the user presses 0 when the number
is already zero, should it display 0 or 00, as both choices make some sense?
And so on.55

However it’s programmed, almost everything the user does leads to some
sort of change in the number’s state. It isn’t always obvious what to tell the
computer to do, and often programmers accidentally overlook some of the
tricky cases, so the computer may not end up in a well-defined, safe, in-
tended state when it’s finished. It’s rarely totally clear what the cumulative
effect, in every case, of all the changes is, especially when handling use error.

In contrast, assertions and guards are declarative. They declare some-
thing that must be true at all times. They say what is wanted, not how it
has to be achieved. This makes them very much simpler than imperative in-
structions. They need not depend on previous instructions (like whether we
have already handled the decimal point, and, if so, exactly how many digits
ago) and then what do we do?

Declarative programming is simpler than imperative programming, but,
more importantly, it is different — we express what we want the program to
achieve in a very different way.

The point is: it’ll be unlikely that the two contrasting styles of program-
ming, when they are combined, will have exactly the same blindspots, so
they won’t have the same unnoticed bugs. Therefore, assertions or guards,
which are declarative, will (very often) detect an imperative program’s bugs.

For example, going back to reading numbers from a user’s keystrokes, we
can assert (that is, declare) the relationship between the keys the user has
already pressed, KeysBefore, the latest key pressed, Key, and the outcome,
KeysAfter, that must always be true as follows:

Key is a digit KeysAfter is one key longer than KeysBefore
Key is delete KeysAfter is one key shorter than KeysBefore
Key is decimal point . . .?
Key is anything else KeysAfter = KeysBefore
Key was not pressed KeysAfter = KeysBefore

Already, as you can see, I’m asking questions about the decimal point
case. It’s trickier than it looks — it begs the question what should be done
if the number already has a decimal point and this is another, if it’s a new
one, and whether we want to make the decimal point clearer by displaying
a zero after it. If I’d been programming imperatively, these subcases would

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

286 | CHAPTER 21

typically have been handled by getting on and just writing the code to do
stuff. Trying to use assertions is getting me to be more thoughtful!

Even these very simple and very clear assertions will catch many bugs.
We can already use these assertions, just as they stand, even before we’ve
decided exactly what decimal points should do — the rest of the assertions
are already helpful. This is a very remarkable fact: even partial and buggy
assertions can reduce bugs in programs. Furthermore, we get these benefits
without changing the rest of the program — which is a common source of
unnecessary bugs.

When South Australia’s hospitals using the Sunrise EMR upgraded their
MicrosoftWindows systems in 2021, they found that drug doses were being
corrupted by duplicating the last digit.

Here are a couple of examples: a 15mg drug dose became a 155mg dose,
and a 100 mg dose turned into a 1,000 mg dose. Yet if the Sunrise system
had had simple assertions, these bugs would’ve been highlighted as soon as
they happened. More to the point, the bugs would very likely have been
highlighted during development and would have been fixed before the soft-
ware was distributed. If the assertions had been written properly, standard
bug logs would have been time-stamped and would have given a detailed
breakdown of the scale and details of the problems. But, clearly, the system
was not programmed very well.

The hospitals weren’t even sure how many patients had been affected.
When asked how long the problem had gone unnoticed, South Australia

Health’s Chief Executive, Chris McGowan, said that it wasn’t known.306
For hospitals, it’s a no-win situation. It’s worrying that updating an op-

erating system breaks applications that patients depend on, but if you don’t
upgrade you may get cyberattacked because you haven’t installed the latest
security features. It’s a no-win situation because digital healthcare is buggy.

The buggy Down syndrome program, which I talked about as an example
of the Millennium Bug,c was written in the totally inappropriate, obsolete
programming language Basic;24 even so, its serious bug would have been
detected and fixed long before it had done any harm if there’d been the simple
and obvious assertion that a mother’s ages must be a positive number.

If a human had been doing the Down risk calculations, instead of a com-
puter, that simple assertionwould have been totally obvious. Even if humans
don’t state all sensible assertions explicitly, it’d certainly have been obvious
to anyone that a negative mother’s age was an error! Why wasn’t it obvious
for the programmer to program the same basic check — especially after an
earlier bug in the same program, which they’d fixed, involved not checking
for a patient weight of zero?

c See Chapter 4: Millennium Bug (Y2K problem), page 33←

COMPUTER FACTORS | 287
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

A Mr W updated the software in 1994,22 which begs the question: why
wasn’t it already a habit to use assertions in any clinical program? Subse-
quently, 6,996 tests were carried out during the “reign” of the Millennium
Bug. Why wasn’t it obvious in the investigation of the Down bug that the
program wasn’t just wrong, which could have been an oversight, but wrong
to the extent of incompetence because it had no assertions to detect its own
serious bugs?

Assertions can be used in any programming language.
In JavaScript, taking it as an example of a popular, more modern pro-

gramming language, a simple assertion might be written like

if(...) alert(Assertion ... failed)

Then you’d do lots of testing to check that the assertion never fails with all
the test cases you can think of. You’d then bring in users and let themdo their
worst, testing that no use error or bug slips unnoticed past your assertions.
But if you programmed in a language like SPARK Ada, the compiler itself
would check your assertions were correct, even before the program was ever
run.

In other words, ordinary programming at its best can detect bugs, but
Formal Methods can detect bugs before programs are run, before there is
any possibility of patient harm. Even better, your program doesn’t need to
knowwhat to dowhen an assertion fails— because in SPARKAda it wouldn’t
even get as far as being allowed to run in the first place.

Recall the Panama fiasco, where Olivia Saldaña González and her col-
leagues went to prison for manslaughter due to a radiotherapy machine’s
bugs:d the machine allowed the user to enter more than four blocks, but the
program could only cope with at most four blocks. What Olivia did made
no sense to the buggy program. It then failed, and overdosed the patients.
Given themachine as it was, as we discussed earlier, themachine’s program-
mer should have explicitly programmed some assertions and guards.

Here’s how some very simple guards could have been used to check that
what a user was doing in Panama made sense to the program:

Guards What to do

if(
︷ ︸︸ ︷

number-of-blocks undefined)
︷ ︸︸ ︷
intercepted a bug!

if(number-of-blocks< 0) intercepted a bug!
if(0≤ number-of-blocks≤ 4) treat the patient
if(number-of-blocks> 4) this is an error; warn the user!

d See Chapter 7: National Cancer Institute of Panama problems, page 73←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

288 | CHAPTER 21

Notice that these guards make sense. They also make explicit that I think
you treat the patient when there are zero blocks. To be honest, I’m not sure
what to dowith zero blocks— as I said above, thinking clearly with assertions
and guards directly leads to asking important clinical questions that will need
addressing.

Theses few guards are easy to understand regardless of how the rest of
the program works. How the program worked out — or failed to work out —
the number of blocks isn’t mentioned, and doesn’t distract us from thinking
through what is correct. Clearly, the original programmers failed to think
through the consequences of some possible bugs, perhaps because they fo-
cused on programming how to change the values, not on checking the values
were within safe ranges.

As is good practice, these guards explicitly check all possible values that
values, here number-of-blocks, can take, even ones that are apparently quite
silly.307 It’s programs that don’t handle “silly” and unexpected cases that go
wrong and crash.

Here’s an interesting question: why do the guards say 4 explicitly? As
soon as you see the 4, you wonder why not 5 or 16, or some other number?
Four seems a restrictively small guard to impose. Why is there any limit
at all? Of course, it’s possible that the radiotherapy machine only has four
metal blocks (so that’s where the 4 comes from), but clearly the programmer
needs to have a chat with the engineer to find out. Possibly the end of that
conversation will be that the machine is redesigned to have more blocks,
or — the cheaper, hill climbing, solution — the programmer works out how
to correctly handle the case if the user ever tries to use more blocks than
there actually are. Either way: fewer bugs.

Instead, probably because they never wrote any guards and never noticed
that their program had an issue with more than 4 blocks, the Multidata pro-
grammers didn’t think (or think sufficiently) about the problem, and then
the lawyers took over, arguing that it was the users’ responsibility to check
everything. This ensures the bugs “didn’t matter,” because the final respon-
sibility was, or at least legally was, the radiotherapists’ problem. Patients
died because of bugs, but by this legal reasoning the clinicians had to go to
prison — which doesn’t fix bugs.

In a different world, the software would have been designed more care-
fully with assertions and guards in the first place. The radiotherapists would
not be blamed, and they’d carry on treating patients, because the errors they
made would have been blocked (or, better, correctly interpreted). With bet-
ter software, the radiotherapists would have been even more successful in
treating patients — there would have been no story for this book, and some
people would have lived to tell different stories with happy endings.

In another world, following the problem, the manufacturer would admit
that their programming made a critical contribution to the incident, and that
they would fix the bugs as quickly and as safely as they could. Then, with

COMPUTER FACTORS | 289
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

better software, the radiotherapists would be even more successful treating
patients in the future.

It’s regrettable therewas a bug, but surelywewant to live in aworldwhere
we can learn from our mistakes and improve software? Even if we make
mistakes, we want future patients to be better off — and we needn’t lose
good staff to prison. Sending staff to prison rarely solves any of the causes
of the problems, and always increases workload pressures on the hospital,
which itself will increase errors.

While guards help make programs more dependable, they are a waste of
time if the programming language itself is not safe.

To illustrate this critical point about the need to use safe programming
languages, here’s a simple bit of JavaScript that you could imagine being
somewhere inside some digital health system, like the Panama radiotherapy
machine’s program:

// user has asked for one more block …
// check there aren’t too many blocks already, then add the new block
if(blocks < 4) {

newblocks = blocks + 1;
if(newblocks > 4) ERROR! – surely can’t happen?

}

Imagine that this piece of program is run when the user has asked for
one more block. The idea is that after confirming that the current number
of blocks is less than four, which we do with the line “if(blocks < 4)…,” we
then would want to add one more block, as the user requested, and set the
variable newblocks to be blocks+1, which will be the new number of blocks
the machine is to use. Seems easy enough.

Surely, blocks+1 can never be more than 4 if we’ve already checked that
blocks is less than 4? Well, you haven’t take account of the very strange
ways that some programming languages work.

Perhaps you are assuming the number of blocks is a whole number, as
there can only be 0, 1, 2, 3, or 4 blocks in use in these radiotherapy sessions.
Many programming languages could force that to be so, by using types, and
thus they’d enforce that blocks and newblocks are integers (or even small
non-negative integers in programming languages with better type systems).
However, JavaScript doesn’t care. It could be, due to a bug somewhere else
in the program, that blocks has been set to 3.5, say. Unfortunately, while
3.5 is less than 4, unfortunately 3.5 plus 1 is 4.5, which is more blocks than
the machine has. This would be an error.

You may now be thinking that the guard should be stricter: it should
require that blocks is a whole number between 0 and 3. Unfortunately, in
JavaScript (or any other unsafe programming languages) this still won’t be
sufficient.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

290 | CHAPTER 21

If for some reason blocks has been set to 3 (which is less than 4, as the
first guard will confirm), then newblocks will be made 31 and the second
guard will fail. The problem here is that JavaScript is designed to make 3
and for 3 to be the same sometimes but not always — sometimes ignoring
types is a deceptively convenient feature that makes programming easier, but
other times it’s a trap for the unwary. A mix-up could happen miles away,
say in code written by a different person somewhere else in the world. The
confusion may never be noticed until patients start being harmed, perhaps
years later.

The result of these problems and the many other curious features of
JavaScript is that JavaScript isn’t suitable for use in healthcare — or in any
other safety-critical area for that matter. Writing a guard that checks all the
necessary conditions properly becomes so complicated that the guard itself
becomes a source of bugs. The underlying problem is that JavaScript was
designed to be easy to program in; it was not designed to be safe to program
in. This serious criticism of JavaScript can be leveled at a lot of other popular
programming languages used in healthcare.

Tools are special programs that check or help build more reliable pro-
grams. Fortunately JavaScript, being so popular, has lots of useful tools avail-
able, like Closure, DeepScan, ESLint, Flow, and PureScript. These tools are
programs that read programs and look for common errors, and hence enor-
mously improve the quality of projects. By the time you read this book, there
will be other, no doubt even better, tools. Good programmers always build
and use tools for their projects, as the tools encapsulate best practice in one
place, and they can be reused time and time again with no further work.

I must add a warning: many apparently attractive tools do not help de-
velopers make safer or more secure systems. For example, NHS Digital has
started using Nunjucks,309 which makes rapid JavaScript and HTML devel-
opment “a doddle,” but it introduces new risks — the easier you make pro-
gramming, generally the easier it is to overlook problems.

In addition, Nunjucks is itself rapidly developing (Nunjucks version 1
was released in October 2013; as of 2020 it’s got to version 3.2.2), so, very
likely, programs using Nunjucks will frequently change their meaning or stop
working altogether as Nunjucks is updated. So far as I can see, there is noth-
ing in Nunjucks to help check, let alone maintain, backwards compatibility
to preserve things working as intended. Indeed, there are no tools to help
ensure safe Nunjucks use — it’s so recent. I’ve found no formal definition of
Nunjucks, so I can’t see how reliable tools for it could possibly be built.

The largest combined collections of research in Computer Science in ex-
istence, the ACMDigital Library and the IEEE Xplore Library,310 have noth-
ing on Nunjucks as of 2019. It would be easy to conclude that there is no
research behind Nunjucks, or at least that there is no research behind it that
has had the benefit of being peer-reviewed (that is, assessed by experts in

COMPUTER FACTORS | 291
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Box 21.2. Good programs have assertions

Guards—when used in good programming languages— aren’t the only good
programming idea for improving safety. Good software also has assertions.
Assertions let the programmer check the right things are happening. The
computer should use assertions to double-check its own calculations; ideally
a different programmer will write the assertions, so they are as good as an
independent check. It seems that Multidata used neither guards nor asser-
tions.

Assertions stop your program making mistakes, but what if there are
more profound problems? If your program is confused, the assertions might
be confused too. The solution is to do some of the assertions in a completely
different place, with a different programming teamwhose only job is to make
your system safer.

Assertions have been around a very long time, and should therefore be
standard practice. Alan Turing was already using them back in 1947:308

The programming should be done in such a way that the
ACE [Automatic Computing Engine, a 1945 computer] is
frequently investigating identities which should be satisfied if
all is as it should be.

In modern programming, using Formal Methods, both assertions and
guards can be found and checked by the tools, by the computer itself both
before and while a program is being run. Formal Methods makes the com-
puter part of the safe programming team when the systems are designed.
Formal Methods thinks faster and differently to slow, error-prone humans:
in other words, Formal Methods are essential to help avoid bugs. Using For-
mal Methods can also find problems with assertions before a program is ever
run; this is, of course, a huge advantage over having an assertion fail while
running a live program!

the field). By way of comparison, SPARK Ada has over 100,000 entries in
the ACM digital library alone — it is a programming language with a lot of
worldwide expertise behind it.

It’s always hard to get the right balance between rigor and safety, and
power and wide appeal, but using the latest will always carry new risks. For
example, whatever benefits Nunjucks is thought to bring, it introduces a new
cross site scripting vulnerability (XSS) — XSS are bugs that allow hack-
ers to bypass security checks, and hence compromise patient safety or con-
fidentiality.

Programming languages such as SPARK Ada are intrinsically much safer
than popular languages and environments like JavaScript and Nunjucks, and
hence their tools are able to bemuchmore powerful — andmuchmore help-

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

292 | CHAPTER 21

ful to developers. Interestingly, none of the JavaScript tools listed above de-
tect the guard problems we discussed, but SPARK Ada would not even allow
a programmer to write code with those problems in the first place.

SPARK Ada is a much safer language to use, albeit somewhat harder to
work with. But a very beneficial side effect of using SPARK Ada, or simi-
lar rigorous programming languages, is that, because they’re harder to use,
you have to employ better trained and more skillful programmers — which
improves everything.

In safety-critical programming — which includes digital healthcare, but
also aviation software, driverless cars, nuclear power stations — the program
can’t just stop when there’s a bug. The program has to recover sufficiently
from the error to continue; specifically, it has to fail gracefully. For exam-
ple, in radiation treatment, you cannot just ignore an error or just say, hey,
there’s an error — the programmust also stay sufficiently in control to switch
off the radiation so the system is left in a safe state. That means the com-
puter — preferably another computer that is at no risk of being corrupted by
the error — has to take over control to shut down or otherwise manage the
failure conditions.

Unfortunately, even with the best programming with the best program-
ming languages and best tools, problems can still arise. Perhaps the device
has been dropped and a wire has come loose, or a sensor has got clogged
up. Under these circumstances even a correct program will struggle to do
the right thing. One solution to fail gracefully is to have a failsafe.

It’s important that systems fail safely rather than cause more problems
when things go wrong (it’s called graceful degradation). Failsafes are sys-
tems that are built to intervene when things go awry. Often failsafes are
completely independent computers, so they don’t get affected by the bugs
that have brought down the main systems. In particular, failsafes should be
simple computers.

Traffic lights control traffic at a road junction or crossing, and they’re
complicated, so it’s convenient and cost-effective to control them with a
computer. It’s then very easy to configure the same computer hardware to
work for any junction, or to change it for new needs like adding pedestrian
phases, to add special overrides, like when a fire engine wants to rush across
the junction. (Set all traffic lights to red, so the junction is clear of traffic.)

An obvious assertion for a traffic light system is that there should never
be conflicting green lights, yet if that assertion fails, things must have gone
so wrong that you probably can’t rely on anything including the assertion.
Therefore traffic light systems — and all safe computer systems — use a dif-
ferent piece of hardware to do the safety checks. It’s called a failsafe.

Here’s a traffic light control box (figure 21.2), photographed in down-
town Minneapolis, USA. The big box with a screen on it is a full-blown PC,
running Linux. The small box next to it is a very simple thing, the failsafe,

COMPUTER FACTORS | 293
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Figure 21.2. A roadside traffic light control box, with its door open showing its
main computer and failsafe device. The failsafe is physically separate from the main
computer, and of a completely different design; it also has a different job— to ensure
any failure is made safe. The key thing is if the main computer fails you do not want
the failsafe to fail for any of the same reasons.

whose only job is to stop the traffic lights going all green. If that ever hap-
pens, it takes over and makes the lights flash red in every direction.

If having a failsafe is routine for traffic lights, do your medical devices
and systems have failsafes in them (do you know)?

Since we know medical systems have a pretty rough life, if they don’t
have failsafes, you can be pretty sure they are not safe to use. If things go
wrong (say, the battery briefly comes loose), without failsafes the device
won’t know, and it won’t take appropriate steps to recover gracefully or warn
you that it’s got a problem.

Failsafes are a good way to introduce invariants.
An assertion checks an assumption is true, a guard blocks something

happening if an assertion fails, and an invariant checks something is true
all the time. Failsafes are like guards that always keep checking the ques-
tions, and therefore failsafes check invariants. Moreover, failsafes don’t just
check invariants, but they are run in some separate hardware — if an invari-
ant fails, there’s generally something badly wrong, and you therefore really
can’t rely on any checks that aren’t independent of the failing software.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

294 | CHAPTER 21

In the Mersey Burns app there is a guard. The guard checks that no pre-
scription calculation is made if the patient’s weight is more than 30% out
from a standard weight for that age of patient, unless the user confirms the
unusual values. This is a guard because the app allows the unusual weights
and ages until the step just before calculating the prescription when it checks
them. The app’s design assumes a discrepancy of up to 30% is more likely
to be a use error, but as it could also be a real patient, the guards force the
program to prompt the user to reconsider.

If it was an invariant— an explicit invariant that’s checked— thenMersey
Burns would always be checking it. Currently, you can enter an outlandish
age and you have no idea until you try to get a prescription; that is, you have
no idea until the guard warns you. If it was an invariant, you’d know straight
away. It isn’t obvious which is the right design. If an invariant calls out a
strange weight, it might be that the use error is in the strange age, not the
weight — for instance, the user is entering an age for a new patient, but the
age has been left over from the last patient. The guard might first report the
problem with the weight, but the problem is actually with the age.

You could do experiments to decide which design is better, but there is a
third choice: the app should know when it doesn’t know the age or weight.
Indeed, a problem with the app is that the last patient’s weight and age are
automatically carried over to the next patient; it would be better if they reset
to “don’t know” and then you couldn’t have a weight out by 30% if the age
was “don’t know.”

This diversion into details of Mersey Burns makes a nice example of how
thinking carefully through guards, assertions, and invariants helps make dig-
ital healthcare safer and easier to use reliably. Indeed, as I keep emphasizing,
thinking through guards, assertions and invariants helps make any program
safer and better.

A powerful way to reduce bugs is to use a domain-specific language.
“Domain” means some intended application area — for instance, you could
have a domain-specific language designed specifically to make it easier to
program radiation machines. And, unlike a general purpose language, a
domain-specific language is aimed at solving problems in a specific area or
domain — it’s limited in what it can do, but what it does, it does really well.
As domain-specific languages are used so frequently, the idea is abbreviated
DSL.e

Normal programming uses a general purpose language (such as C, Java,
or JavaScript), and general purpose languages are designed to do anything.
That is their power and their curse. A general purpose language allows the
programmer to do exactly what they want to do, but, equally, it allows the
programmer to accidentally do things they didn’t intend to do! General pur-

e See Chapter 33: If you are a developer, page 484→

COMPUTER FACTORS | 295
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

pose languages therefore encourage bugs. In contrast, DSLs only do the sorts
of things the domain needs. Even if a programmer using a DSL introduces
bugs, the DSL, by design, can only do what makes sense in the domain for
that DSL. (In contrast, a bug accidentally programmed in a general purpose
language can do anything, even things that make no sense in the domain.)

The spreadsheet system Microsoft Excel provides a familiar example of
a simple DSL. Excel has a simple language that allows the user to program
spreadsheets to do useful things. To add a column of numbers, you might
write =SUM(A1:A10). This conveniently adds the cells A1, A2 … to A10.
The colon notation makes it very easy to specify rectangular areas (usually
rows or columns) and very difficult to specifywhat are almost certainly buggy
areas that are not rectangular.

If you used a general purpose language, taking the sum of random cells
in the spreadsheet would be easy — and usually wrong. Instead, the DSL
makes it easier to do what you want, and much harder to do things that are
buggy. In particular, the Excel DSLmakes it impossible to refer to data that is
not in the spreadsheet at all — this eliminates at a stroke one of the common
causes of corrupt data we talked about above.

Let’s say we develop a DSL for infusion pumps. We can now allow peo-
ple to program their infusion pumps, confident in the knowledge they cannot
cause basic bugs in the pump’s operation. The “infusion DSL” doesn’t al-
low anything to happen that an infusion pump cannot do — but of course
the computer program that provides the DSL is running on a computer chip
that can do anything. The DSL ensures the programmers can’t do anything
now except sensible infusion pump type things.

The standard example of using a DSL is to make it easier to internation-
alize systems correctly— to help get them towork appropriately in any coun-
try. The main software development is done in one country, but the product
is shipped around the world. Programmers in other countries can customize
the device (or app, etc) to work in their countries, using their own language
and idioms, but the basic operation of the device cannot be changed — so
new bugs are unlikely to be introduced — as the DSL doesn’t allow the in-
ternational programmers to change the basics.

An important example of DSLs in healthcare is dose error reduction
software (DERS). Here the DSL is very simple: it only allows people to
program about drugs and dose limits — a good DSL would structure and
simplify the task so much it’d barely be recognized as programming. The
idea is that a hospital buying a system, like an infusion pump, can program
anything allowed in the DERS DSL, and it will (probably) be safe. If a gen-
eral purpose programming language had been used instead, then program-
ming “anything” could really do anything at all, including completely unsafe
things, like maybe crashing the system so nothing works. The DERS DSL al-
lows only plausible drug dose limits to be specified, so it automatically avoids
a lot of bugs that could happen without it.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

296 | CHAPTER 21

The point is, a DERS DSL “knows” about drug dosing, whereas the un-
derlying general purpose languages have no idea, and would allow anything
to happen. A very simple example a DERS DSL can enforce is that all drug
doses must (obviously) be at least zero; the DSL knows this and can enforce
it, but the general purpose programming language it was programmed in has
no idea about drugs or doses — it would happily allow negative drug doses to
be programmed! The DSL (if it’s well designed) simply doesn’t allow such
silly bugs.

Before the invention of DERS, nobody would have countenanced a mere
hospital reprogramming infusion pumps, because it would have opened a
can of worms. DERS also nicely show a common advantage of DSLs: that
is, DSLs are generally much simpler than general purpose languages. You
do not need to be trained as a programmer to use DERS safely (of course,
some DSLs are very sophisticated and do require specialist expertise to use
safely).

It is critical that programming languages used in healthcare are safe and
dependable, otherwise programs written in them won’t be safe and suit-
able for use in healthcare. For example, SPARK Ada is (and it’s used in
defense, aviation, air traffic management, and so on), but JavaScript isn’t.
Here’s a curious thing: a safe language such as SPARK Ada can be used to
implement a DSL that isn’t safe. Ada could, for example, be used to imple-
ment JavaScript — JavaScript is much more popular and widely known than
SPARK Ada, so this might seem to make sense. It opens your “safe” SPARK
Ada world up to all the advantages of JavaScript, like being able to run web
applications, but also to all its unsafe pitfalls.

The problem is, however safe you might think SPARK Ada is, now the
JavaScript DSL means it is implementing JavaScript. Therefore SPARK Ada
is potentially as unsafe as JavaScript. SPARK Ada might correctly implement
JavaScript, but JavaScript isn’t a sensible thing to implement. More generally,
just because Ada (or some other safe language) is used to implement a DSL
does not mean the DSL is safe. The DSL has to be designed to be safe.

Most software is proprietary (it belongs to the person or company that
wrote it), confidential, and secret, so nobody can run off with the ideas it
embodies — at least, not without paying first.

Open source software is very different: everybody can see it, use it,
look for problems, and improve it. Open source therefore brings potentially
worldwide teamwork to everything it does. As a result, open source software
is generally much more reliable than proprietary software — and if things
go wrong (as they always eventually do!) — then open source communities
will fix the problem. Often, bugs in open source systems are being fixed
somewhere in the world while you are still fast asleep. With conventional
proprietary systems, the manufacturers and their few programmers are often
far too busy to help you.

COMPUTER FACTORS | 297
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Open source is a Computer Factor, so …

Ask to see the program code of any product you want to buy or use.
Very likely, the manufacturer will refuse. You ought to ask, what are
they frightened of you discovering?

On the other hand, if a manufacturer uses open source software, their
answer might well be, “thousands of the world’s best programmers
have already had a look … here it is if you want to fix it.”

Open source programs are developed over the internet so that many
programmers can scrutinize the code and contribute to it. Quality,
security, and speed all improve enormously.

One downside of open source is that making a financial return on
programming costs is harder for the manufacturer. Instead, open
source manufacturers provide other useful services, such as training
and support.

A worry lots of people have with open source is that, in principle, it
allows hackers to inspect code for weaknesses, which they can then
exploit — or, worse, they could insert their own bugs, Trojans, Easter
Eggs and other problems directly into the code. Actually, these are
risks of any software development — how do you know a company’s
employees are all good people? On the other hand, open source
exposes the software to far more good people, and bugs and
problems are found faster. Furthermore, code, if necessary, can be
corrected very quickly after a hack if there is an international
community of open source developers to help.

We can combine the best of Human Factors insights with the best of
Computer Factors insights: programmers should work in teams — which is
exactly what open source achieves. The idea is that other programmers in the
team review what is being programmed, and spot errors and inefficiencies
that one programmer would miss had they been working alone.

I visited one infusion pump manufacturer who did their programming
in-house. They had just one programmer. I asked him how he did code
review,f and he didn’t know what it was. If the company’s programmer does
not know how to program safely, as he’s “the expert,” nobody else is going
to realize the risks the company is running. Just one programmer is certainly
asking for trouble, and programmers working in isolation without a formal
process for code review is a disaster waiting to happen. If the manufacturer
had been using open source, they’d have had lots of people helping them.
Instead, working alone, they have no idea how risky their approach is.

f See Chapter 20: Code review, page 273←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

298 | CHAPTER 21

Box 21.3. Newer Computer Factors

There is a lot more to Computer Factors than what is widely known. For
example, digital cryptography has transformed every area of IT, though
much of it is invisible, hidden behindwebsites, streaming videos, bank trans-
actions, and much more. Cryptography might be invisible, but it’s founda-
tional to everything in healthcare, from patient confidentiality to managing
log-in passwords and providing cybersecurity.

Newer ideas like public key encryption (PKE), and zero knowledge
are completely counter-intuitive. For example, you’d expect you’d want your
passwords to be kept secret, but in a public key system, the passwords are
made public — you can then do some very interesting and useful things. All
the — partly justified — excitement behind blockchain and bitcoin is based
on these ideas.

It’s beyond the scope of this book, unfortunately, to explore how digital
cryptography could help transform many aspects of healthcare. However, it
is in scope to point out that many of the conceptual bugs we have at present,
for instance with slow log-ins and multiple passwords,7 arise because these
newer Computer Factors are not being explored and fully exploited.

There are many more useful Computer Factors in modern programming,
including:

Version control. Many computer tools are available to manage
program development, including testing, documentation, and quality
control. Version control tools like Git311 also support open source
development.
If you program and you don’t know what Git is, it isn’t the only
version control software out there, but it is the best known system.
It’s time you found out and started using it or something that better
fits your development processes — or, better, change your
development processes to rely on Git.

Iterative design. Computer programs are hard to get right, but they
are very easy to change. Iterative designg makes this official —
acknowledging it’s not possible to be right first time, test designs, see
how well they work, and improve. The international standard ISO
9241-210 provides an official process for this (as well as having a lot
of helpful ideas and good reading advice).

Automated development. Why do something when you can get a
computer to do it?

g See Chapter 23: Iterative design, page 313→

COMPUTER FACTORS | 299
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

For example, why do all the hard work of testing when a computer
can do it faster? I’ll briefly discuss fuzzing later,h which is a fast,
repeatable, and effective form of computerized testing.

Formal Methods. Formal Methods sounds sophisticated,312 but
really it’s doing no more than using math to help program more
rigorously. I think that using Formal Methods in programming
should be no more unusual than using math to check that bridges,
planes, or power stations are safely engineered. I’ll talk more about
this fundamental programming topic later.i

Conceptual Design. Overarching everything are the concepts, the
deep ideas behind all the software and programming. If the concepts
aren’t right, really nothing matters. Not even the bugs, because the
bugs may be relative to inadequate concepts, and then the
foundations of the whole design need fixing not just the bugs — many
of which will be just symptoms of the conceptual mismatch.313

Edsger Dijkstra wrote powerful essays about computing and program-
ming.314 They are required reading for all programmers. Fortunately, his
essays are now really quite easy to read because he wrote them mostly back
in the 1970s, an age where all programming was a lot simpler than what we
are used to now.

Dijkstra made some very nice links between Human Factors and Com-
puter Factors:

If I start to analyze the thinking habits of myself and of my
fellow human beings, I come, whether I like it or not, to a
completely different conclusion, viz. […] the recognition that,
by now, brainpower is by far our scarcest resource […] The
competent programmer is fully aware of the strictly limited
size of his own skull; therefore he approaches the
programming task in full humility […]315

As a slow-witted human being I have a very small head, and I
had better learn to live with it and to respect my limitations
and give them full credit, rather than try to ignore them, for
the latter vain effort will be punished by failure.316

Of course there’s much more to Computer Factors than this brief chapter
can cover. I hope I’ve got you fascinated, now you’ve got the idea, and started
off on thinking up your own Computers Factors, perhaps more relevant to
your needs.

h See Chapter 28: Testing and fuzzing, page 389→
i See Chapter 27: Stories for developers, page 367→

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

However good a computer
system is, it still needs to do
what’s needed — not what we
think is needed. User
Centered Design finds out
how people really use
systems, and how to improve
their experience and
reliability.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

22

User Centered Design

Healthcare is a complex and messy place, but when we design a digital sys-
tem, we must have a clear and precise idea of what we want, so that a com-
puter can be programmed. Here are just a few of the inevitable problems
that follow from this clash of precision with reality:

Any “clear and precise” ideas will over-simplify lots of things.

What the designers (developers, managers, politicians, …) want may
not be what the people (nurses, doctors, lab technicians, patients, …)
who’ll use the system will want or find helpful.

The developers, who program the systems, may not really understand
the implications of their decisions, because they don’t have the
experience and expertise of the users.

When people start working with a digital system, its “clear and
precise” ideas will expose differences between what the computer
makes them do with what they want to do. Indeed, especially when
inspired by struggling with computers, what people want to do
frequently changes — digital systems become wrong, merely by being
used. People want to improve patient care, not answer to computers.

Users may not know or they may misunderstand how a system is
supposed to work — so features the developers thought were obvious
may not be used, or may be used inefficiently or incorrectly.

In an attempt to avoid these problems, systems are often designed so
that they can be configured or customized by users themselves.
Unfortunately, customizations may introduce new problems. Excel,
mentioned several times in this book,a is a classic example: it allows

a See Chapter 31: Using Excel in Test and Trace, page 440→

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

302 | CHAPTER 22

users to do anything, which may seem helpful, until you notice that
being able to do anything necessarily includes the possibility of doing
wrong things — bugs. Worse, bugs are all the more likely because
most users don’t know how to program safely.

Fortunately, there are powerful ways to help improve systems.
User Centered Design (UCD) is the part of developing digital health-

care systems to ensure that what you want to do is the right thing for your
users.

UCD is usually thought of as an important process to help make a design
easy and safe to use. Unfortunately, most manufacturers and developers are
so familiar with their own ideas that they cannot imagine their ideas would
be hard for other people to use. Indeed, manufacturers and developers are a
very particular sort of people who have a unique view of digital systems, as
they are the people who plan and develop them, and they think it’s obvious
their systems are easy to use. Conversely, politicians, managers and leaders
in organizations that buy digital systems usually expect them to be effective
— which is why they want them! — yet they can’t possibly know until they
check. There’s a sort of inevitable conspiracy that UCD isn’t necessary. Yet
UCD is a powerful method to put diversity into digital system development,
purchasing, and use, getting everyone to learn about the real lives of the other
stakeholders. In short, you should always do UCD to find out how effective
your systems really are and how to improve them for the people who use
them in real life — whether you are a developer, vendor, or a purchaser, such
as a hospital.

An important reason for using UCD is that many medical products fail in
the market. Something like only a percent of medical ideas make it to regular
use. UCD can help: it provides a way to test your idea with real users in real
situations.317 If nothing else, UCD quickly and efficiently helps you find out
design problems that could make your product unsuccessful.

Another good reason for UCD is that it finds problems early. It is expen-
sive to fix problems after a product is in production or is in use — it has to be
recalled and fixed, and it’s a loss of brand image. It’s even worse to end up
fighting legal battles caused by design errors — to say nothing of causing pa-
tient harm. UCD means you make better things that better suit what people
need.

Arguing the case for UCD is made easier with these two very useful
terms:318

Work as done— abbreviatedWAD. This is what people actually do.
▷ Users stick post-it notes on equipment to remember essential
things, like their passwords.319

Work as imagined— abbreviatedWAI. This is what managers and
others imagine is being done. Often, for all sorts of reasons, people

USER CENTERED DESIGN | 303
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

don’t quite tell the whole truth to their managers. Unfortunately,
computer systems are often specified on what managers imagine is
being done, often some “perfected” story passed up to them, and it
may not be at all what the actual work as done, the WAD, is.
▷ Users fill in computer forms, and can only provide the details asked
for. Often, things are made up just so that the forms can be
completed. So management thinks things are happening as the forms
say, but the forms aren’t truthful.

The underlying concept behind these ideas is the user’s task. What is
the user’s task? What task are they actually doing? What task do they want
to do? What tasks does the digital system support? What’s the difference
between what the user thinks their task is and what the management thinks
their task is? Has a task analysis been done,320 so we really know the
answers?

The WAD–WAI gap creates a vicious cycle of divergence. A computer
system is brought in, which of coursematchesWAI, because that’s why it was
bought. Soon users start experiencing hindrances in getting their job done
with the computer, so they start creating workarounds. They need to get
their job done — generally helping patients — and theWAI system obstructs
them. The simplest workaround will be that they lie to the computer. Then
the management starts getting data that confirms their incorrect WAI view
of the world! WAI and WAD diverge, so the next computer system will be
even worse.

In contrast, UCD researchers go to the workplace (or sometimes a sim-
ulated workplace) and carefully find out what is really going on, the WAD,
and hence how to design the computer systems to narrow the gap between
WAI and WAD — to help make the computers work better in reality. Note
that it isn’t just that WAD is “right” and the WAI that is “wrong,” it’s also
that the people doing the WAD do not understand the WAI point of view.
It’s a two-way understanding problem.

One example of the WAD–WAI divergence I’ve already mentioned is
Seddon’s ideas of value adding and risk-averse work:b value adding is work
as done, but the work as imagined is worrying primarily about risk manage-
ment. This different view twists the WAI perspective and takes it further
away from the coal face WAD.

For a developer or manufacturer building systems that impact how peo-
ple work, it’s very important to be clear where on the WAD–WAI spec-
trum every idea lies. Given these very different cultures influencing the per-
spectives, it’s even more vital to take UCD seriously. You need scientific
evidence-based facts about what is actually done.

WAD–WAI is a very productive idea. Of course, there’s lots more to it
than we can cover here if you’d like to follow it up.321

b See Chapter 19: Managing value or risk?, page 251←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

304 | CHAPTER 22

Box 22.1. How many users is enough for safe design?

If you happen to pick on a user who is color blind, then that one user will
give you very useful insights — about color blindness. Even one user is then
a useful input into an iterative design process: fix the color schemes, but you
then have to test the next version on more users. The question is raised: how
many users are required for an effective UCD study?

Widely quoted research suggests five is a good number of participants for
user studies.322 There are many flaws with this, including:

Finding out what people prefer is easy and doesn’t need many users;
finding out what makes a system unsafe or safer requires systematic
studies that you cannot achieve with five users.

Most digital healthcare systems and patient care pathways are very
complex, and five test users won’t begin to explore enough of the
system or how it is really going to be used.

The number of users isn’t a useful factor to measure; it’s coverage
multiplied by representativeness. Have you studied all of the system,
do the users statistically represent the target population of users, and
do your studies represent real use?

Unless the studies are ecologically valid, you learn nothing about
how the system will actually work under real clinical pressure.

Note that UCD studies don’t much help in early design, since you need
some sort of concrete design before UCD can get going. Once you have a
concrete design, you’ve already made a lot of assumptions that users then
take for granted, which then limits how constructive UCD can be. Instead,
use expert designers to sketch the design, then use UCD to improve it.323

There’s an interesting twist.
Before there were computers, there was paper, and lots of it. Just like

digital systems, paper creates and imposes processes and procedures: instead
of having to fill in things on a screen, you have to fill in things on paper forms.
Paper formswere developed beforeUCDhad been invented, and therefore—
and this is the twist — the paper forms, although very familiar and seemingly
central to everything, are very unlikely to be a good way of doing anything.
So, if we go into an organization and do the WAD–WAI analysis, ask people
what theywant, unfortunately everyone is living in a culture steeped in paper
rituals, and their ideas and wishes are almost certainly about improving the
paper models, not about finding the best way for a new digital culture.

Computers can do things paper hasn’t dreamed of. Obvious examples in-
clude digital signatures, passwords, email, default values, data validation, …
and lots more. Digital is different.

This is one reason why UCD emphasizes building digital prototypes to

USER CENTERED DESIGN | 305
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

evaluate, so that users can give feedback based on the new system ideas —
and the new ideas will need improving! — rather than just focused on im-
proving the old systems.

The same problem happens when UCD is done to help replace some ob-
solete digital system with a great new system: many of the UCD ideas will
tend to focus on fixing the old digital system’s problems.

Given WAD and WAI are well-known terms that make a useful — and
thought-provoking — distinction: the twist might be called WAT — work
as twisted. Work twisted by some obsolete, paper or digital, system. In
other words, WAT emphasizes thatWAD is oftenWAT, and we need to work
out theWAG— thework to achieve the real goals. The goals of work are
not using computers or filling in forms, and not even doing that better, the
real goal — the WAG — is about improving patient outcomes. It’s too easy
for UCD to focus on what user are doing now, rather than on where users are
trying to get to.

The goal of digitization is never to “go paperless” but to remove the
twisted WAI and WAD that led to wanting all that paper in the first place.

If the first question is, “are you using UCD?” the second question is,
“who are the users?”324 Not being clear who the users are (and how they
actually work, Work As Done) is the quickest way of making a mess of any
digital system.

VirginiaMason, Seattle, is a hospital that asked itself what it was doing. It
had adopted the Toyota Production System (TPS, a type of quality manage-
ment), which says if you want to improve quality, the first question to ask,
obviously, is what are you trying to do? They realized that their hospital was
not doing what they really wanted it to do. If they had computerized what
they were doing then, they would therefore have computerized the wrong
things, and just done the wrong things faster, and maybe more cheaply.

But, instead, they realized they were there to make patients healthy, and
to provide as pleasant an experience as possible for patients, families, and
carers.

Therefore, the patients (and family) are the users.
Not the clinicians. Not the finance department. Not the government and

its performance targets. Not the insurers. Not the digital system vendors.
Design systems to make healthcare systems better at what they are really

for: making patients healthier (including not getting unhealthy in the first
place), faster, more effectively, and, as often as possible, more enjoyably.

Happy and active ten-year-oldMaisha Najeeb had an arteriovenous mal-
formation (an AVM), which for her meant a red mark on her cheek. She
had had the AVM treated successfully several times before at Great Ormond
Street Hospital for Children in London.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

306 | CHAPTER 22

In June 2010,MaishaNajeeb ended upwith brain damagewhen polymer
was mistakenly injected by a radiologist during surgery.325

The operating room had two identical-looking 10 mL syringes; one for
the X-ray contrast, which is used for guiding the injection of the polymer,
and one for the polymer itself. Neither was labeled.

The syringes were mixed up, unfortunately leading to the polymer being
injected and getting into her brain. Maisha is now in a wheelchair and needs
full-time care. The NHS faces a £24 million payment over her lifetime. At
the time, it was the largest compensation in a UK case of medical negligence.

Typically, clinicians make up drugs, fill syringes, label them, then put
them into syringe drivers or give a bolus by hand. There are lots of steps in
this sequence where errors can occur — and drug errors are among the most
frequently reported incidents. Maybe computers, so often badly designed,
just make the need for UCD very obvious, but note that UCD helps with all
design, not just digital design.

Instead, manufacturers can and do pre-fill syringes (in quality-controlled
processes at the factory) and barcode the filled syringes automatically. Then,
when a syringe is used with a patient, a syringe driver can check and record
that the right drug is being administered,326 perhaps using a “dose error re-
duction system” or DERS.

If there isn’t a suitable pre-filled syringe available in the operating room,
as happens from time to time, the clinician will have to fill an empty syringe
and barcode it themselves. The computer system, reading the barcode, will
still think everything is working perfectly fine: scanning the barcode will
confirm the right drug preparation is being used for the right patient. Unfor-
tunately, if the clinician makes an error in the syringe preparation, say using
the wrong drug but sticking the “right” label on it, the computer will still
think it’s correct, because it doesn’t know any better.

The computer’s assumption that the barcode is correct now positively
conceals errors it was supposed to detect and block.

Clearly, there’s a huge gap betweenwork as imagined (what the computer
is reporting) andwork as done (what the clinician is doing). Some basic UCD
work in the operating room is needed, and it will uncover the very reasonable
everyday practice that shows that the computer system is not working.

In fact, the digital systemhas created a false sense of certainty. If a patient
safety incident happens following a wrong drug error, the wrong lessons will
be learned, and things will just get worse. UCD has huge benefits, especially
in uncovering what we don’t know we don’t know.

The processes need improving, but you wouldn’t have known that with-
out the UCD step that took the trouble to carefully model real clinical prac-
tice.

But what is real clinical practice?
It’s tempting to think that the problemswith digital systems arise because

USER CENTERED DESIGN | 307
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

developers just don’t spend enough time listening to clinicians and getting
to understand the complexities of healthcare.

That’s partly true, and may well be completely true in some cases, but
the fact is, healthcare is actually about patients. Patients are the real users.

Even when patients are unconscious, they are still a proper part of the
system that UCD has to address.

Any work in healthcare systems UCD must include some patient repre-
sentatives and carers, selected to be representative of the areas the systems
are being designed for. Digital systems designed for supporting patients with
infectious diseases are going to be different from computer systems for sup-
porting palliative care, and central records must be able to cope with every-
thing. If you don’t ask the questions about users, you won’t design systems
that properly support patients for all conditions.

Computers tend to treat patients as either male or female, often down to
just a choice of M or F labels, but in reality people are on a spectrum.

Thinking in terms of onlyM or F is bad enough, but when the computers
get in theway and refuse to handle the reality of human experience, unavoid-
able bugs, errors, and potential harms get built into healthcare. For instance,
in the UK, when a patient has transitioned to male, their medical records
are updated as male. Yet their body may still be partly female. They may
still have a cervix, but the computer systems, believing them to be male, will
never call them in for a cervical smear. Then their blood levels make them
anemic, because “the right” levels for a male body are higher than for a fe-
male body. Converse problems happen for transfemales.

Trans patients have reported that they have been refused tests because
their recorded gender didn’t match the test requested, despite blood samples
being sent.

One transmale had their referral to gynecology for a hysterectomy refused
on the basis they were male, so it was assumed to be a mistake. In another
alarming case, labor was missed as a cause for abdominal pain in a pregnant
transmale who was assumed to be obese. The baby died.327

It is a complex issue (with complex legal constraints too), but the root of
the problem is that computer systems were originally designed for patients
fitting a simplistic binary gender model. The problems highlight how UCD
was not done adequately: designers just assumed patients had binary gen-
der and they did not explore design issues with a representative group of
patients. There is a now a serious legacy problem, catching up increasing
numbers of patients in the simplistic binary gender categories. Given that
healthcare IT systems should be designed to support all patients, it’s a hor-
rendous oversight.

Facebook allows users to choose from71 gender options, including asex-
ual, polygender, and two-spirit person, as well as “custom.”328 A user can
also choose their preferred pronoun, so that Facebook can automatically gen-
erate appropriate text.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

308 | CHAPTER 22

There’s no reason why healthcare systems couldn’t do something simi-
lar — but, and it’s a big but, however obvious it sounds, it still needs very
carefully checking out. There are two obvious problems, for instance: there
may be some people for whom these choices don’t work, or may cause clin-
ical problems; secondly, the more complex the choices become, the more
likely people — whether patients or clinicians — will choose or misread “the
wrong one” and cause harms.

So here’s what I think is a good idea (with the proviso that I have not
tested it with anyone): instead of just the usual (and unfortunately danger-
ousc) binary F andM options, computers should show an additional text field
where the patient can say what they like. This text should be visible when-
ever gender identity is relevant. UCD needs to be done to find the right
balance.

However, there is a core idea here that could be really useful in addition to
helping with the gender issues. It’s now standard practice to teach clinicians:
instead of asking “what’s thematterwith you?” you should ask “whatmatters
to you?”

So why don’t we ensure all digital systems, where it’s relevant, have a
field that allows patients to show what matters to them, including covering
their gender identity and any other issues? It could be a tab on the screen so
that it doesn’t take up much space when other things need to be displayed,
and it could provide not just text but audio or pictures that the patient sup-
plies. Indeed, experiments have shown that patients pre-recording text saves
time for the doctors and benefits the patients.329

It’s nice that solving one problem could solve another problem at the
same time. This binary gender mess gets solved, but the too-frequent dehu-
manizing effect that computers have on healthcare gets addressed too.

Thinking further ahead, asking “what matters to you?” could also help
systems get future-proofed too (a bit) — say, for when patients start getting
enhanced with implants and bits of robots and AI, or want to be able to say
things about using theirmobile phones— soon, patients will have interesting
digital needs that are new to everyone. So a “what matters to me” box would
help future-proof healthcare for when it becomes a whole different game
(perhaps); it makes healthcare more human, and it gives patients a voice
to say what matters to them. Every computer should know — and tell all
healthcare professionals — what matters to their patients.

There is a very common design problem that UCD can sort out, which
I’ll illustrate with a user interface design issue with the Babylon app.

The Babylon app requires personal details from the patient: it needs the
patient’s date of birth, height, and weight. The screenshots show the form
where this data is entered (figure 22.1).

c See Chapter 29: M/F abbreviation for mother/father or male/female?, page 413→

USER CENTERED DESIGN | 309
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Figure 22.1. A common user interface design problem, here redrawn from the
Babylon app (version 4.3.0). If you try tapping Send on the left-hand screen with-
out providing all the data — perhaps because you don’t know your weight and need
to go off and weigh yourself — you get a warning, as well as a hard-to-read screen.
You may lose everything you’ve done. As a workaround to avoid losing all the valid
data you’ve already entered, a fake weight can be entered to keep the app happy
(in the right-hand screen, I entered 1 kg). The app accepts the error of a non-
sense weight (given my age and height!) but, so far, I haven’t found any way the
workaround weight can be corrected.

Without UCD, the personal details form will always seem to work: the
patient always either fills in the form or cancels. It seems to work — so long
as you never go and find out how it is actually used.

With UCD, though, finding out what users actually do, you discover a
problem (provided you test enough users in enough scenarios). Shown on
the left in figure 22.1, the patient has started to fill in their details, but ap-
parently they weren’t sure of their weight. But now Babylon’s design stops
them leaving the form partly filled in, which means they can’t go and find
out their weight without likely losing the other data they’ve already entered.
(On many user interfaces, it’s very common for forms to time out and delete
all the user’s work done to date.) So, as shown on the right in the figure, the
user decides to do a workaround: they enter a “placeholder” weight of 1 kg,

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

310 | CHAPTER 22

Box 22.2. Cloned documentation

With digital, instead of typing something, you can just copy what you want
and save all the bother, and the longer and more complex the text you want,
the greater the benefits of cutting and pasting. Patients with chronic diseases
who turn up time and time again with the same problems create the perfect
case for cutting and pasting old notes. You get fewer transcription errors as
text does not have to be typed again.

Except, of course, when the original text has errors or is no longer rele-
vant, or was written by a trainee or has other problems. Possibly the wrong
text, perhaps from the wrong patient, is copied and pasted. The problem is
called cloned documentation.

There’s a story of how one patient turned up to a consultation with
4,000 pages of notes.330 Critical information would be well buried in all that
cloning.

Ross Koppel reports on another patient who had the same blood pressure
for a month. When this unbelievable consistency was investigated, it turned
out that the patient had a foot amputated a month before. The nurses had
been copying and pasting blood pressure in the notes, rather than entering
the patient’s actual blood pressure. Another of Ross’s cloned documenta-
tion examples regards a patient who entered the hospital unconscious after
a car crash, recovered, and thankfully walked out three weeks later. His pa-
tient notes show he was comatose until just a few minutes before he was
discharged.331

Failure to handle cloning safely is an example of failing to do proper UCD
and finding out how people really use systems. Once developers discover
cloning happens, it is easy to manage it better.

which the app happily accepts — despite the age and weight being inconsis-
tent. The plan is that the user will come back later and sort it out.

UCDwould discover this sort of workaround—here, fibbing on a form—
and it would probably suggest modifying the user interface to allow a patient
to save a partially completed form. In fact, the computer could continually
save the incomplete form automatically (perhaps keeping it separate from a
fully-completed form), and, therefore, the app warning the patient the form
is incomplete would be unnecessary. There is rarely any good reason not to
save partial information to help a user.

Similar problems happen in hospitals. A nurse has to get the computer
system to work, but they may not know some detail the computer insists
on but which they think is unimportant. Either the nurse enters the correct
data, or they make up something that keeps the computer happy — after all,
the nurse wants to get the job done. They plan to come back immediately
and sort out the problem, but life is complicated and they may get distracted.
Sometime later, the incorrect placeholder data causes a problem for the pa-
tient.

USER CENTERED DESIGN | 311
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Box 22.3. Externalizing User Centered Design

Businesses want to reduce their costs, and a standard way of doing this is
externalization, displacing activities and costs onto other people, outside of
the business. The highly-successful Swedish furniture store IKEA does this
by getting customers to assemble their own furniture. Externalization means
IKEA saves all the final construction costs. They are then more profitable.

UCD is a cost for manufacturers, so what better than to externalize it?
When a hospital buys a new electronic record system, this is usually in-

stalled over a couple of years and the hospital configures it and helps debug
the system — at their own expense. This is externalized UCD. The hospi-
tal ends up with its own programmers and engineers and specialists, whole
teams devoted to installing and maintaining the system. That is taken for
granted in digital healthcare. It helps to call it by its name: externalization.

Yet if you bought an ambulance, you’d expect all the development work
to have been done before it was delivered. This certainly makes the ambu-
lance a bit more expensive than it might have been (because development
had not been externalized), but the ambulance works properly on the day it
is delivered. The entire engineering project was done and completed by the
manufacturers. In particular, safety and usability were not externalized.

The topic of this chapter, UCD, is essential, but that does not mean you,
the customer, has to do it. It should be done by the developers.

Without UCD—going and finding out what users actually do andwant—
this sort of problem is invisible. In the specific example here, if the patient
comes to harm, the nurse will be blamed, yet the nurse was trying to do their
job and the design of the system made it too hard to do it the official way.

Henry Ford didn’t invent factory assembly lines, nor did he invent cars,
but he did build cars very efficiently: the Ford Model T was the result. He
made the Model T — and sold it — in such huge numbers that its place in
history was assured. Henry Ford is often quoted as saying that if he’d asked
people what they wanted, they’d have said that they wanted faster horses.

It’s a shame that Ford never said that,332 but the pithy saying highlights
dangers of UCD: if you ask clinicians or patients what they want, they prob-
ably don’t want what will be best for them. Instead, we have to find out what
people are actually doing (WAD), which probably isn’t what they think they
are doing or even what we thought they were doing (WAI).

This chapter’s brief introduction to UCD hasn’t covered everything. The
next chapter is a short personal story to illustrate some of the points and
the importance of iterating UCD to keep on improving. The Good reading
chapter provides more on the wider subjects of UCD, UX, and HCI.d

d See Chapter 33: User Centered Design reading recommendations, page 482→

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

User Centered Design means
finding out how systems are
used with their real users
doing real tasks. The insights
from working with users leads
to design insights and ways to
improve the systems. These
ideas are formalized in the
important idea of iterative
design.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

23

Iterative Design

I was posted a paper letter from my hospital with details of my next hospital
appointment. I duly turned up at the Morriston Hospital a little before my
appointed time.

On entering the main foyer of the hospital, I was asked to check in using
the self check-in kiosks. There are volunteers on hand to help do this. The
kiosks scan your appointment letter or the helpers can manually take your
details. I had a letter, and scanning it was easy.

The kiosks then tell you to sit down and wait.
There are two sorts of computer screens in thewaiting area; one for blood

tests and one for everything else. The screens bing every time a name comes
up, and when yours does you’re supposed to follow the instructions on it.
You then walk to the specified waiting area, tell another kiosk you’ve arrived
(why?), and wait again for your name to come up on one of the screens
there. When your name comes up, you are told which room to go to for your
appointment. (The Morriston Hospital has around 100 appointment rooms
in this part of it.)

This all sounds perfectly reasonable, and is no doubtmuchmore efficient
than the previous, pre-digital system, whichmight have involved a lot of staff
time tomanage different patients. I can imagine the new digital system being
demonstrated: and it would all have seemed to work well.

Now look at it from my point of view. I don’t think I’m a very unusual
patient; thought I was stressed being in hospital as a patient for the first time.

While I sat and waited, I worried whether the system had actually regis-
tered me and put me on the waiting list.

There is no feedback that you are going to be seen at all until your name
bings up — which might be thirty or more minutes of not knowing later.
Maybe my name had already popped up and I’d missed it? I don’t know
how long I am going to have to wait, and the longer I wait, the more I think
it’s likely I’ve missed my name binging earlier.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

314 | CHAPTER 23

Box 23.1. How do you know when nothing happens?

I’ve been back to the hospital for several appointments. As an “experienced”
patient, I’ve learned what to do, so I confidently walked up to one of the
check-in kiosks.

On the front of the kiosk is a slot with large, apparently helpful, instruc-
tions:

→ ←
SCAN HERE

I popped my appointment letter in the slot for the computer to read the
barcode at the top.

But nothing happened!
You need to first press lots of buttons on the kiosk to help it realize you

are there and let it know what sort of appointment you are going to.
Why doesn’t the barcode reader — which clearly knows when there is a

barcode there to read — do something useful and help the patient?
Here’s the UCD (User Centered Design) moral: when nothing happens,

the computer won’t know, and nobody is going to find out there is a usability
problem just by looking at computer logs and what the computer knows. You
have to go and see.

If a healthcare UCD case study isn’t quite persuasive enough for you,
here’s a famous story: UCD identified a previously unnoticed problem that
was losing a company $300million a year. UCDmade a surprising and enor-
mous return on the trivial investment in doing it.333

There are lots of people here who got here before me. My anxiety rises.
Every time somethings bings, you have to look to see if your name is up

there on one of the screens. I daren’t read my book in case I miss my name.
Then I noticed there are two sorts of screens, and, clearly, my namemight

come up on the other sort — one I haven’t been looking at. I got up and
walked over to look more closely at one of the other screens to see if my
name was there. Then I noticed the waiting area has five screens. Which is
my name going to be on? I’ve no idea. Has my name already appeared on
another screen and now disappeared? I’ve no idea.

Finally, my name did pop up on a screen I was watching, and I was told
to go to another waiting area, Waiting Area 2. Where’s Waiting Area 2? I
got up and started to look around. It turns out they put small signposts up to
help you on columns, but the signposts are at head-height. So you can’t see
them if anybody is standing in front of a column.

I then discovered I needed to check in again! I don’t know why, though,
worryingly, maybe I have missed my appointment, and I need to start again?

In hindsight — now I’ve been through the process successfully — I now
know they have two checkins for everyone: the first one means you register

ITERATIVE DESIGN | 315
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

to wait near the entrance to the hospital, and the second one is for checking
in to a more specialized part of the hospital you’ve been sent to.

I sat down and waited in the new area.
There are 7 screens in this new room (it’s a big room), and I walked

around to see whether the screens were all the same, or different from each
other, as they had been in Waiting Area 1. One was certainly different, and
seemed to be only for patients having their plaster casts checked. It was a
good job I hadn’t sat down to wait there, as plaster wasn’t my problem —
but I did notice none of the other screens had told any plaster patients they
would be watching the wrong screens.

I started looking around. Around the edge of this big waiting room I could
see numbered doors, and, as the doors havewindows, I could see that behind
each door there are numbered rooms. I think it’d be clearer if the doors were
called, say, A, B, C, so there is no confusion with the waiting room’s own
number or the numbered rooms beyond — it’d be tempting to run to Door
2 when my name comes up because I’ve already been told to go to Waiting
Area 2, and maybe I’ll go to the wrong room once I’m through the door. I
think designing the system so it says “Please go through Door B to Room 5”
would be less likely to get patients confused.

As always, UCD is needed. To anyone — you, for instance — sitting
comfortably reading this book, saying “Go to Door 1, Room 3” seems per-
fectly clear. To the developers building the system, too, it would very likely
have seemed perfectly clear too. But what happens with real patients, feeling
stressed with lots to worry about, and in a noisy environment? Or people
like me on their first ever visit to this part of the hospital, where everything is
strange? Probably, the information has to be repeated at least twice, maybe
more times, for real patients.

Anyway, after about half an hour in this waiting area, a screen bings. I
look up, and, yes, my name is there. But everything vanished before I’d
finished reading all the details — I think it said something about going to
door something, room something. What? What? What do I do now?

I waited for my name to come up again, but it didn’t.
I found a volunteer to askwhat to do, and theywalked off— I hope to help

me! A few minutes later they came back and told me that my appointment
has been taken by somebody else, presumably a pro patient. I’m told I’ll have
to wait again for another appointment.

Does that mean I need another appointment altogether, or do I just wait
in the waiting area, or do I have to go back to first waiting area? Do I have
to check in again? How long have I got to wait? Will I be next — so it’ll be
half an hour or so — or will I be put back to the end of the queue? The TV
screens now say my consultant is running 45 minutes late, so what does that
mean for me?

The old paper-based system gave patients a numbered slip of paper, and
all the patient had to do was wait until a big number display counted down to

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

316 | CHAPTER 23

their appointment number on their slip of paper. Crucially, this very simple
system gave the patient two reassuring details the new Electronic Patient
Flow Solution does not. The slip of paper was a tangible reminder that the
system “knew about you,” and the number display gave you a clear sense
of progress. The number increased by one for each patient as they were
seen, and you could see how the display was getting closer and closer to
your number. When it got close to your number, you started to get ready
to jump up. If you missed your slot, that was obvious too, as the displayed
number would be larger than the number on your slip of paper — then you
could go and try to sort it out.

With the old system, if a patient found it hard to understand, there were
lots of other patients happy to help. The new computer system is muchmore
complex and introduces interesting new problems: it knows people’s names,
so if you try and help somebody, you start intruding on their privacy. With
the old paper system, the only thing you needed to know to help someone
was their number. Everything else stayed private, so it was easy to help.

There were no surprises in the old system, and many reassurances to the
patient that they were “in” the system. Like, you’ve got that bit of paper.

Clearly, the new Electronic Patient Flow Solution could be further devel-
oped to improve the patient experience and recover some of the safety fea-
tures of the old system. Some patients already come with their own mobile
phones, and they could easily start simulating the old paper system to restore
the sense of progress. That would improve the system for some patients, and
give the volunteers more time to help the patients with more serious prob-
lems.

Although describing my story sounds complicated, the story is a nice ex-
ample of the tensions of digital system development from several different
perspectives …

The hospital staff now have less work to do, so that’s good. The devel-
opers have made a high-tech digital system that obviously works, so that’s
good. Thirdly, the developers probably never seriously studied how patients
use the system, for there are simple changes that would make the experience
so much nicer. Or possibly, the advantages to the hospital make it seem ob-
vious that the system is better, so why try to improve it?

In many hospitals, a digital system like this will be procured and installed
by a manager. Does the manager really understand what staff and patients
do? Have they bought a system that seems fantastic, but isn’t quite aligned to
what really goes on? Indeed, any new system like this hospital’s self check-
in kiosks will change how everyone behaves. So you can guarantee nobody
really knows how this or any new system will be used. More to the point,
even if anyone knowswhat patients do, they, too, will probably do something
else after a new system is installed.

The developers have problems too. If they did do user studies, which is
best practice, the users they are most likely to recruit into their studies would

ITERATIVE DESIGN | 317
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Restart > Step 1/6 > Step 2/6 > Step 3/6 >

Which date in July were you born?
31st 30th 29th 28th 27th 26th 25th

24th 23rd 22nd 21st 20th 19th 18th

17th 16th 15th 14th 13th 12th 11th

10th 9th 8th 7th 6th 5th 4th

3rd 2nd 1st

Figure 23.1. The touch screen to choose your birth date when registering as a
patient. Curiously, the dates are listed in reverse order, as shown in this schematic.
This design choice is likely to increase errors. To recover from any errors, the user
will need to press the not-very-clearly-named Step 4/6 on the next screen correctly,
because (although it doesn’t say it), this screen is the fourth out of a series of six
screens they have to deal with.

be frequent or regular patients — therefore they’ll tend to be patients who are
familiar with how the hospital works and where the waiting areas are, and
so on. These patients are unlikely to be as stressed as I was on my first few
experiences.

For obvious reasons, developers probably never or rarely recruit patients
with mobility problems, with cognitive problems, with hearing problems
(who can’t hear the bings), orwith sight problems (who can’t read the screens).
What about parents with children, whose lives are even more complex than
mine?

Inevitably, the first system that is built is built largely on hope and fantasy,
so it’s important to evaluate it and find out how it works. Even if it works
well, it will change how people work, so once it is in use, it may no longer be
the ideal solution it was promised as. It is important, then, to have continual
iterative design: after a system or device is installed and “working,” there
should be regular assessment of how it is working and how to improve it.
For example, volunteer users can be interviewed every week, and then they
can move on to using something like a suggestion box once they are trained
to report their insights about how the system is working — or issues that are
arising.

For example, when your birth date is entered, to help confirmwho you are
in theMorriston Hospital waiting room, the “calendar” of dates is, curiously,
backwards, and upside down (figure 23.1). Why not put it the right way up
to make it conventional and easier to understand? Or was it done this way
to make patients more careful?

And, finally, what is the objective improvement?
The old system with its slips of paper was simple, easy to understand,

cheap, and reliable. The new system is much more complex, slightly or a lot

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

318 | CHAPTER 23

Plan the

human-centred

design process

Designed solution

meets

user requirements

Understand and

specify the

context of use

Evaluate the

designs

against requirements

Produce design

solutions to meet

user requirements

Specify the

user

requirements

Iterate as appropriate

Prototypes

Figure 23.2. The recommended ISO 9241-210 design cycle. The oversight of
the 9241 process is that “evaluate the design requirements” emphasizes empirical
UCD methods, glossing Formal Methods and other software engineering methods
(version control, etc) that should also be used to rigorously prove requirements are
met and stay met as the design is iterated.

more efficient (I don’t know), but it is certainly much more expensive than
paper — and it’s subject to cyberattacks and the costs of keeping obsolete
technology working.

Reality is a lot more complicated, and if they go about installing it the
wrong way, once patients start experiencing problems it will be too late —
certainly expensive— to domuch to improve it. It should have been designed
so that it could be improved, so that there were ways for the system devel-
opers to learn, to get feedback, and to try improvements. Indeed, there’s an
international standard explaining how to do this (ISO standard 9241, espe-
cially part 9241-210) and if that standard hasn’t been followed, then the
system is, literally, sub-standard.

User Centered Design is the main way to help.
Last time I had an appointment at the Morriston Hospital, I bumped into

my friend Mandy in Waiting Area 2. We had a bit of a chat. She’d been
waiting a while. I asked if she’d checked in again. No, she didn’t know she
had to. So, she checked in again, and she was immediately called off to her
appointment.

She could have been sitting there for hours longer if we hadn’t met and
chatted.

ITERATIVE DESIGN | 319
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Plan the

human-centred

design process

Designed solution

meets

user requirements

Understand and

specify the

context of use

Evaluate the

designs

against requirements

Produce design

solutions to meet

user requirements

Specify the

user

requirements

Iterate as appropriate

Prototypes

Plan the

human-centred

design process

Designed solution

meets

user requirements

Understand and

specify the

context of use

Evaluate the

designs

against requirements

Produce design

solutions to meet

user requirements

Specify the

user

requirements

Iterate as appropriate

Prototypes

Plan the

human-centred

design process

Designed solution

meets

user requirements

Understand and

specify the

context of use

Evaluate the

designs

against requirements

Produce design

solutions to meet

user requirements

Specify the

user

requirements

Iterate as appropriate

Prototypes

Plan the

human-centred

design process

Designed solution

meets

user requirements

Understand and

specify the

context of use

Evaluate the

designs

against requirements

Produce design

solutions to meet

user requirements

Specify the

user

requirements

Iterate as appropriate

Prototypes

Define
Focus in

Discover
Explore and expand

Deliver

Focus in

Develop

Explore and expand

Figure 23.3. The recommended ISO 9241-210 design cycle (figure 23.2) should
not be done on only a single product concept, and certainly not by doing only one
cycle. A more mature process is to start with an open discovery process, develop-
ing personas, scenarios, and sketching323 — typically involving product concepts in
paper or wood — leading to a minimal viable product (MVPs, or the first nearly
working design), then refining that to a defined product, which is then developed
and delivered, through many ISO 9241 cycles until you have evidence that the de-
livered product is acceptable. The central organizing cycle in this figure is inspired
by the UK Design Council’s “double diamond” high-level approach to design.334

It’s interesting to note that finding outMandy had similar problems tome
increasesmy sample of data from one user (me) to two (us). It’s reassuring to
know that I am not a totally idiosyncratic user!335 More data turns personal
stories into systematic evidence.

Why don’t some designers come round and interview patients and find
out how their systems don’t work for patients like Mandy?

A very simple thing to do (without fixing the rest of the weird system)
would be for the many displays in Waiting Area 2 to remind people to check
in again. In fact, in principle, the computer system knows who is there who
hasn’t checked in again, so why doesn’t it say things like “beep beep Harold
Thimbleby we know you haven’t checked in again, please do so at the check
in kiosks outside Waiting Area 2. We know you can’t see them, but we’re
sure you can find them somehow.”

I’m not joking.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

320 | CHAPTER 23

Spelling out exactly what a helpful system ought to say would help the
designers work out how to make a more helpful system.

There’s one more point to make: it’s a really good job that Mandy can
hear the beeps, can see and can read the displays, and she can walk perfectly
well! In other words, if you are going to doUCD, you doUCD for a represen-
tative sample of users, not just the unstressed and able-bodied — especially
in healthcare, where, by definition, nobody is totally able-bodied.

My dentist works for a company that has just bought Clinipad336 to re-
place paperwork. My experience, as a patient, is that the simple paper form
I used to sign has been turned into an iPad nightmare. There are now two
forms. Neither of the forms are fully visible without scrolling; some parts of
the form are pre-filled; some parts you have to bring up a keyboard to edit;
some parts you just scribble in using a special pen. It is very inconsistent
and awkward.

It took me, with the receptionist helping, fifteen minutes to fill the elec-
tronic forms in, using two iPads and, for some reason, having to go back and
forth between the two. I don’t know how long people who aren’t professors
of Computer Science and totally familiar with iPads would take. I wonder
how many new errors get through? For instance, I never saw any data con-
fidentiality declarations, which are required by law. Somehow, Clinipad has
turned a digital opportunity into something that is muchworse than the orig-
inal paper, and, at least for the patient, provides no benefits— like reminding
you your medication list might need updating.337

Then when I got to see the dentist, her computer screen was wrong be-
cause the iPad’s links hadn’t updated properly. The dentist then spent a few
minutes talking about resigning because of the new digital pressures and
problems. But the paperwork has been automated, so the business man-
agers will be happy — they don’t see the struggles undermining the user
experience.

It’s not hard to think of lots of improvements to this system, just from
my one-off experience, but it’d be much more useful to get some represen-
tative data. (Perhaps I am an unusual patient; perhapsmy dental practice has
pre-existing morale problems — who knows?) It wouldn’t be difficult to get
permission to sit in on a few dental surgeries, and find out what is really go-
ing on on the ground. Of course, this would need to be a long-term study, to
balance out effects like initial excitement masking problems, or receptionists
being able to use a system well immediately after training but, maybe, not
six months later.

I was once working on the iterative design of a new system to be used in
doctors’ surgeries. We wanted to cover a range of conditions, one of which
was dementia.

ITERATIVE DESIGN | 321
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Unfortunately, you can’t easily do UCD work with patients with demen-
tia (or lots of other conditions, for that matter), so we used patient actors.
The patient actor “with” dementia got lost coming to our session. This bril-
liant acting was very valuable in designing so our system could work well-
enough to be trialled in a real doctor’s surgery. Iterative design would then
continue from a good starting point.

Howdo you brief patient actors? We spent weeks developing a represen-
tative collection of characters for the actors to play. We worked with doctors
and real patients to make our characters cover the critical issues in as bal-
anced a way as possible, as well as giving the actors a good background story
for each of their roles. These briefs are called personas. We checked out
our personas with consultants to make sure our descriptions were clinically
correct. The right level of clinical detail depends on your project.

Personas can be used throughout design and development. The personas
can be printed onto posters and put up in the developers’ offices. The idea is
that the personas have names, and the developers get to know them as real
people. Howwould Donna use the system? WouldDonna have the patience
to do that? And so on.

Our persona for Donna is at the end of this chapter. Note that the persona
doesn’t say it’s a persona: we treat Donna exactly as we would a real person.

Do be inspired by the headlines in the persona, and don’t copymyDonna
persona— it’s to inspire you to think about your users. Doing the work your-
self of developing personas is a very important part of the process, and helps
the development team learn a lot about the users and their needs. As you do
it, you talk to representative users and get all sorts of insights.

Human Factorsa tells us that other people are different, and they are dif-
ferent in different ways. It follows that when digital healthcare systems are
designed, we have to test them out on real users doing realistic work — oth-
erwise we have no idea what little we really know about the users’ real work
as done (WAD).

It’s very hard to see problems in design, because when we design we
know too much; we have privileged inside information about our systems
that no user is party to. We don’t know the half of the complexity of the
users’ work. We find our designs natural and easy, and we don’t anticipate
the errors users will make with them. The work as imagined (WAI) concept
captures this: unlesswe try really hard, we live in aworld that unintentionally
just imagines what users do, and this is never what they really do, the WAD.
Unless we do UCD, we have no idea. As soon as we start doing UCD, we see
it is a process: we get evidence that we have to improve our designs to make
them safer, more effective, more pleasurable to use. In turn, those improved
designs raise new unknown problems that we have to go and seek out. We

a See Chapter 20: Human Factors, page 259←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

322 | CHAPTER 23

need iterative design, and we carry on iterating until the design performs
well for its intended purpose.

For conventional products, like cars and planes, iterative design comes
to a point of diminishing returns, and a polished product is put on the mar-
ket. Digital products, however, can always be improved even after they have
been “finished” — just by downloading a software upgrade. It follows that
digital products should be designed so that iterative design can continue, for
instance through an ongoing process of collecting data about how they are
used. For medical devices, it is, in most countries, a regulatory requirement
to monitor patient safety by doing post-market surveillance, but iterative de-
sign says we can go much further.

We already expect continual digital upgrades as the manufacturers fix
bugs and think of new features. So manufacturers are already half way there.
Iterative design says, more strongly, that you should upgrade for the users
and their tasks, not for the uninformed imaginary excitement of new fea-
tures.

People choosing new digital systems to use need to be aware at least of
the issues in this and the previous chapter. If you don’t know about the
essential role of iterative design (quote ISO 9241 to your suppliers), you will
buy a product. Instead, you need to buy a relationshipwith themanufacturer,
a relationship of continual support and improvement.

Box 23.2. Donna Meyer’s persona

Donna Meyer, age 31

Donna’s key phrase: “I’m responsible!”

Quick take
Conditions: Recovering from a leg injury. • Key technology: Very into tech-
nology; Fully geared for active lifestyle; Good at using social networks as fo-

ITERATIVE DESIGN | 323
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

rum to share fitness tips. • Housing: 2-bed apartment. • Situation: Spouse
Frank Meyer, 32; Parents living 1.5 hours’ drive away; No children; One
3-year-old golden retriever (Frank’s dog). • Background: Associate tech-
nical manager in an international co-operation; Graduated in Electronic
Engineering; Regular runner, has run 4 marathons; Food fads & Weight
Watcher. • Changes: Recently broken leg in a rather serious incident; Just
been promoted; Busy preparing to buy a house.
Donna’s background unfolds
Donna has been married to Frank for 2 years. They are considering buying
a house, and having a baby. Donna has just been promoted, and the new
post requires a large amount of traveling around the globe.

Frank is also a very enthusiastic runner. The couple uses the same GPS
apps and occasionally they enjoy a running match.

They have a dog, a very energetic dog, which enjoys being loved and
stroked as much as it enjoys its toys and its daily walk. So that keeps Donna
busy outdoors.
Donna’s key goals
Donna has always been very good at multi-tasking and managing her own
life. She looks forward to her new responsibility at work as well as getting
herself physically prepared for being pregnant.

Though there is a lot on her plate, Donna believes she can manage
this. However, her broken leg has been a problem: she’s been in and out of
the operation room a number of times, before finally — she hopes — being
discharged a week ago. Donna is determined to have a fast recovery, and
get back on track with her life.
Key symptoms
Her leg was broken. One of her wounds was infected, which has left a scar.
She usesmoisturizers a lot to ease the dryness and itchiness. She’s still using
a crutch, but has started to manage without it recently.
A day in the life of Donna
Donna gets up at 7am to allow herself enough time to have a healthy break-
fast before Frank drives her to work. Sometimes she goes swimming in the
morning for 40 minutes to an hour, as it’s good for her recovery. She’s very
busy during the day, and sometimes has to work overtime.

She uses her iPhone app combined with other accessories to track her
activities. She uses online forums at weekends.
Influences
Donna is very self-driven. She studies various rehabilitation treatments,
and consults with her friends and clinicians on a regular basis. She’s also
taking extra care to comply with the prescriptions she’s on.
Donna is different
Donna has a lot on her plate.

She’s keen on getting back on track with her life.
Donna has discovered the advantage of using devices to manage not

just her condition but her lifestyle in general. She’s thinking she will con-
tinue using them after she recovers.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

Developers and programmers
need no qualifications to
develop digital healthcare
systems. We need to develop
a qualification structure for
digital healthcare, and do
much more research on
digital safety. Both will have a
huge impact on frontline
safety.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

24

Wedge Thinking

My friend DaveWilliams was flying back to the UK on an international flight
from the US. There was an urgent call for a doctor on the plane to help a
passenger. As he is a UK consultant anæsthetist, he immediately responded,
but the US air hostess, misunderstanding the UK term, refused his offer of
help, as she wanted a “proper” doctor.

In the UK, Australia, New Zealand, and South Africa, an anæsthetist is
a specialist doctor with significant training in anesthetics and patient care. In
the US, the anesthesiologist is similar to the UK anæsthetist, a doctor who
specializes in anesthesiology and is qualified to make all anesthesia-related
decisions, but an anesthetist is a non-physician who provides care before
and after anesthetic procedures.

The hostess instead chose a medical student who’d also volunteered to
help. The studentwould’ve had negligible training and experience compared
to Dave’s.

This is a small example of the problems of internationalization (that
is, words and concepts varying across countries and cultures), and its poten-
tially harmful and fatal consequences.

The relevance of internationalization to digital healthcare is discussed in
box 25.1, but the point of this story is that even an air hostess recognized that
a doctor needs proper qualifications to provide reliable care, even though, in
this case, she didn’t realize there are differences between the US and UK.

If something goes wrong when an anesthesiologist is looking after a pa-
tient on a plane, or more usually during surgery in a hospital, they have min-
utes, perhaps only seconds, to do the right thing. They work in a very pres-
surized environment.

If you want to be an anæsthetist in the UK, you must first be accepted to
train as a doctor. It then takes a minimum of fourteen years in the UK before
you’ll complete your training (figure 24.1). Furthermore, you have to under-
take regular updates and training to stay certified to continue working as an

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

326 | CHAPTER 24

Airway management; Anesthesia for neurosurgery; Anatomy; Basic sci-
ences to underpin anesthetic practice; Cardiothoracic anesthesia and car-
diothoracic critical care; Core anesthesia; Critical incidents; Day surgery;
ENT, maxillo-facial and dental surgery; General duties; General, urologi-
cal, and gynecological surgery; Induction of general anesthesia; Infection
control; Intensive care medicine; Intraoperative care; Management of car-
diac arrest in adults and children; Management of respiratory and cardiac
arrest; Neuroradiology and neurocritical care; Non-operating room ob-
stetrics; Non-operating room orthopedic surgery; Obstetrics; Orthopedic
perioperative medicine; Orthopedic surgery; Pediatrics, including child
protection; Pain medicine; Perioperative management of emergency pa-
tients; Perioperative medicine; Pharmacology; Physics and clinical mea-
surement; Physiology and biochemistry; Postoperative and recovery room
care; Premedication; Preoperative assessment; Regional sedation; Sta-
tistical methods; Transfer medicine; Trauma and stabilization; Vascular
surgery.

Figure 24.1. A selection of the many essential topics a UK anæsthetist must be
examined on and pass to qualify so that they can use anesthetic machines built by
unqualified developers — compare with figure 24.2.

anæsthetist. If anything goes wrong for an anæsthetist (or anesthesiologist),
they might harm or perhaps kill one or two patients.

In complete contrast, if you want to build or program a device that deliv-
ers drugs into a patient, you can start making and programming an infusion
pump or any other machine immediately. No qualifications whatsoever are
needed (figure 24.2), whether you are a programmer or other engineer, and
there are no requirements to undertake professional development, and no
requirements to be certified in any way. You can program badly and have no
risk of disqualification.

It’s worth pointing out that while programmers may make mistakes, they
do have lots of time, like months, to detect and correct bugs before their
products are sold and used. In contrast, doctors and nurses need to get things
right or sort out critical problems, often under urgent time pressures — so
they have to be better trained and have to be more skilled.

If a device sells well, bugs in it have the potential to cause widespread
harm. It could affect thousands or even millions of people. This is a huge
contrast to the limited harms that anesthesiologists and other medical pro-
fessionals can achieve, even over the course of their entire careers.

Modern digital devices are potentially far more complex and have far
more scope for harming patients than the trivial GrasebyMS26 andMS16As
that were at the center of the Gosport tragedy.a The Graseby devices were

a See Chapter 8: Gosport War Memorial Hospital tragedy, page 84←

WEDGE THINKING | 327
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Figure 24.2. All of the topics a programmermust be examined on andmust pass to
qualify so that they can design and program healthcare systems, such as anesthetic
machines — compare with figure 24.1.

so simple they weren’t even connected to the internet, but then think of the
scale of what Robin Seggelmann’s Heartbleed bug did to more modern dig-
ital systems — it affected 4.5 million patient records.b Probably the true
scale of the Heartbleed problem was much worse than this, as many hospi-
tals wouldn’t want to admit to the problems it caused, even if they noticed
them. How many anesthesiologists can impact 4.5 million patients?

In almost all areas that society recognizes as being risky, you legally must
have proper training and qualifications. You must have accreditation to cer-
tify that you’ve been trained to an appropriate professional standard.

Take installing gas boilers, like in your home. To install a boiler in the
UK, you are legally required to be on the Gas Safe Register, and specifically
approved for working on boilers. As a registered gas engineer, you are issued
a card with your photograph, your registration number, and an expiry date
and details of the different categories of work that you are qualified to un-
dertake, like working on cookers, boilers, or gas fires. Furthermore, carrying
out work without a current registration is illegal; doing so can result in fines
and a prison sentence.213

None of this regulation is surprising; after all, people’s lives depend on
gas boilers not exploding or killing people with carbon monoxide.

In contrast, it seems strange to me that to build a digital device that in-
jects potentially lethal drugs or delivers radiotherapy, you need no qualifica-

b See Chapter 27: Heartbleed bug, page 369→

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

328 | CHAPTER 24

tions whatsoever. There is no requirement for you to stay up-to-date in your
field. You don’t need a photo card specifying your competencies. Yet digital
health is a farmore complex job, withmore opportunities for life-threatening
consequences than installing a pre-made gas boiler. There’s also a lot more
innovation in digital health, making it hard for programmers to keep up.

In healthcare you wouldn’t trust a doctor or nurse who wasn’t certified,
so why would you trust an uncertified programmer? Indeed, the qualifi-
cations doctors and nurses have include legal issues like respecting patient
confidentiality; you wouldn’t trust a doctor who did not keep your infor-
mation confidential — but no programmer or digital device manufacturer is
required to respect confidentiality so rigorously. As Jesse Ehrenfeld, chair of
the American Medical Association Board of Trustees put it,

Physicians swear an oath to keep an individual’s data
confidential, [but] there’s currently no such obligation for
technology companies and data aggregators or the data
brokers to whom they might sell information.231

Clearly, digital healthcare needs proper qualifications, accreditation, and
regulations for all developers of digital healthcare systems and apps. There
should be a legal requirement that digital healthcare programming must be
done by appropriately certified professional programmers and nobody else.
Some people won’t like me saying this, but that also means that doctors
should not program their own apps, and administrators and clinical techni-
cians should not program spreadsheets. Potential fines and prison sentences
would also motivate, and reduce cowboy work, and cybersecurity leaks. Ul-
timately, proper regulation would reduce patient harms.

There are sensible ways to transition to this ideal. For example, in the
UK, years ago anyone used to be able to wire up their own house. Since
electrical wiring shares many properties of digital healthcare — it may look
like it works, it may be usable and pass tests that it works, but it may still
pose very serious risks338 — it is now legally regulated. However, as an un-
qualified electrician, I can still do my own wiring, but I am legally required
to have the quality of my wiring certified by a registered person. When I sell
my house, I also have to have appropriate safety certificates signed off by a
certified electrician.

Not just qualifications and certificates, though—we also need a culture of
professionalism. In other areas, a professional engineer is not just qualified
and certified, but follows a regulated code of practice and has professional
indemnity insurance. There is no need for a professional to have warranties,
like we’ve discussed,c that deny all liability. Sorting out the qualifications
digital health programmers need is not so hard — the Good readingd chapter
provides a basis for a syllabus for developers.

c See Chapter 15: Who’s accountable?, page 193←
d See Chapter 33: Good reading, page 471→

WEDGE THINKING | 329
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Box 24.1. Parallels with the German Enigma

The World War II German Enigma secret code machine predates modern
computer programming, but its design shows all the Human Factors failings
in programming that we are familiar with in digital healthcare. Despite the
overwhelming need to win the war, preventable design mistakes were made
and perpetuated in the Enigma which significantly contributed to the Axis
failure. Indeed, the very need to win a war created the tunnel vision that
meant the Enigma designers overlooked many ways of making it more reli-
able to use. In turn, the design failings put pressure on its operators — often
working under fire— exacerbating the chaos. In other words, the poor design
at the blunt end created problems for users at the sharp-end.

I did some research on the Enigma, and I showed it was an unnecessarily
flawed machine.339

Enigma operators were often executed as scapegoats when messages
went wrong. In an environment like that, it’d be wise to keep quiet and just
go along with pretending everything was OK! The stakes were higher, but
the Human Factors problems, and the reasons they occurred, were the same
as in modern healthcare.

The designers having tunnel vision is one reason why digital systems
have bugs and design problems. It’s so hard programming that developers
aren’t able to pay enough attention to all the many critical details and com-
plexities of healthcare, which then come back to haunt the users. Worse,
because designers are deeply involved in their systems and know them thor-
oughly, they can easily kid themselves their designs are much easier to un-
derstand than they actually are. They know some of the “secret” tricks but
don’t even realize they are secret.340 The only way out of these problems is
to use UCD.a

a See Chapter 22: User Centered Design, page 301←

Doctors and nurseswork at the sharp-end, where things happen quickly.
We tend to focus on the sharp-end, as it’s where harm is seen to happen. The
Wedge Model (which I invented) emphasizes that the sharp-end is only
part of a larger whole, and it should not be looked at in isolation.

There are all sorts of wedges. I imagine the sort of strong steel wedge
used for hammering into logs to split them up for firewood. You push the
sharp-end of the wedge into a block of wood and hit it hard with a sledge-
hammer, and the sharp-end is thwacked into the wood, splitting it apart.
This familiar sort of wedge reminds us that the sharp-end of a wedge is use-
less without the thick end; without the thick end, you can’t do much with
the thin end.

Nurses work at the sharp-end, whereas developers and manufacturers
work at the blunt end. Note that in the analogy, the thickness of the steel
represents how much time is available at each end to do the job.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

330 | CHAPTER 24

Because we tend to focus on what doctors and nurses do — it’s usually
they who end up in the newswhen things go wrong—we tend to think about
and seek solutions at the sharp-end.

It is critical that people doing safety-critical work know Human Factors.
The nurses might have had more confidence to speak up in the operating
roomwhen they were worried, and the surgeons would have welcomed their
intervention rather than seeing it as criticism.

Yet there’s another side to the story. The sharp-end of the wedge is used
for splitting the log, and you hit the blunt end with a sledgehammer.

Could the manufacturers of tracheal tubes (the pipes that go down your
throat and windpipe) put them in sterilized bags with “SPEAK UP IF WOR-
RIED” labels on them? What could have been Human Factors training (per-
haps last year and now forgotten) would now be prominently built into the
system: it would give people permission to say something and it reminds
other people not to be surprised or cross when somebody points out a prob-
lem.

Peter Pronovost, whowas until recently an intensive care specialist physi-
cian at Johns Hopkins Hospital in Baltimore, tried an idea like this.341 Very
sick patients often need lots of drugs, so they need lots of intravenous in-
jections and infusions. Inserting needles into people repeatedly has its risks,
so these patients have a central line, a gadget that allows tubes to be con-
nected and disconnected repeatedly without making more holes (inserting
cannulas) in the patient’s skin. Central lines also allow drugs to be easily put
directly into a patient’s heart, which can save seconds in an emergency.

Central lines are a good idea, but eventually they get dirty and harbor
bacteria, then there will be a risk of an infection going straight into the pa-
tient down the central line. Obviously, therefore, central lines should be
replaced every month or so with new, sterile ones. The trouble is that peo-
ple forget to do this. Every year in the US, 80,000 patients get infected
and about 30,000–60,000 die; that equates to about 16,000 infected and
6,000–12,000 dying in the UK (if we just assume the numbers are propor-
tional to the populations of the countries — the health systems are pretty
similar).

I am always astonished at how cavalier healthcare is about knowing what
causes disease and death. What other industry would accept an estimate of
fatalities somewhere between 30,000 and 60,000 from a common cause?
If we faced the embarrassment of this avoidable death rate, we’d take central
lines more seriously. Which is exactly what Peter Pronovost did.

Peter’s solution was to develop a checklist of what needed to be done and
when. He ensured patients had labels on their central lines, like “Replace
before 1 July 2018.”

Anybody who sees that label after June will ask why the central line has
not been replaced. They might be nurses. They might be relatives. Blunt
end thinking has sorted out a sharp-end problem. Peter Pronovost man-

WEDGE THINKING | 331
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

aged to get central line infections down to zero at Johns Hopkins Hospital.
The checklist simply — but very effectively — turns the invisible and easy to
overlook into something everyone can see and that is hard to miss.

Peter’s book Safe Patients, Smart Hospitals, which I recommend read-
ing (see the recommended reading list at the end of this book),e asks this
question,

… an estimated 750,000 people [perhaps 150,000 in the UK]
each year suffer a cardiac arrest in the hospital. Cardiac arrest
is almost always treated with a defibrillator. Yet roughly 30%
of the time, physicians operate these machines incorrectly. So
why not redesign them so they are easier to use, or print clear
instructions on the machine?

This is great blunt end thinking — improving the system improves the
sharp-end for free. All we need to do is put the thinking into action. I’d add
that if instructions aren’t clear, then you must redesign the system so the
thing is easier to explain clearly.342

The blunt end and sharp-end aremetaphors, but we can use the wedge to
visualize time and show all of the stages at once to make the stages of design
and use clearer (figure 24.3).

When people save time, effort, and money at the blunt end, they cause
preventable problems for people using their products at the sharp-end. Es-
sentially, the money developers save loses money for the users at the sharp-
end. A useful way to remember this is the term technical debt343 — the de-
velopers are borrowing from users, and becoming indebted to them. When
the cost of error at the sharp-end is so high, death and harm for patients and
imprisonment, depression and suicide for clinicians, we really do not want
technical debt.

It isn’t really the developers’ fault. Unlike the lawyers writing warranties
who clearly don’t want to be responsible, I believe that developers sink into
“not thinking” by accident. They have a complex enough job just getting
the stuff to work, let alone thinking of all the ways users may have trouble
with it.

Student programmers on degree courses are usually taught about the
user’s Human Factors issues, in courses called User Centered Design (UCD)
or Human Computer Interaction (HCI),344 but they are very rarely taught
about Human Factors as it applies to them and the programming process
itself. Programming is really difficult, and it’s hard to program and to keep
track of all the details of the user’s needs. When the user’s needs are clinical,
it’s likely the programmer doesn’t even understand the details anyway. The
programmer suffers from task saturation and loss of situational awareness —
having too much to do — and they rightly focus on getting their program

e See Chapter 33: Good reading, page 471→

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

332 | CHAPTER 24

ye
ar

s
to

th
in

k

se
co

n
d
s

to
ac

t

Clinical realityManufacturing

Development

Programming

Testing

Iterative design

Regulatory approval

Procurement

Sharp endBlunt end

Product lifecycle

Figure 24.3. The wedge’s blunt end and sharp-end show when activities happen
and how long they typically take. The height of the wedge at each point schemat-
ically indicates the time available for each task. At the blunt end, designers have
years; at the sharp-end, clinicians have maybe minutes or seconds.

to work, but they then inevitably start to lose sight of other issues, such as
correctness, safety, and error handling.

These programmer Human Factors problems are almost exactly the same
Human Factors problems as clinicians face at the sharp-end: task saturation,
and loss of situational awareness.

An unfortunate consequence of being at the blunt end is that many er-
rors are never noticed, so design errors get missed. At the sharp-end, things
may deteriorate, and usually it is very soon obvious when something bad has
happened. At the blunt end, the errors may have no consequences for years
— and by then the programmers havemoved on to other projects. So nobody
is really aware of error when developing systems. Developers can live in the
false bubble of thinking that “errors don’t happen here.”

The main solution at the blunt end is the same as at the sharp-end: ef-
fective teamwork. By working in a team, others can help spot oversights and
errors. Other people should go over your code and query why you are (and
aren’t) doing things using code review.f Another pair of eyes spots errors
you overlooked.

Pair programming is a very effective form of code review: two (or
more) programmers work together, one using the computer, and the other

f See Chapter 20: Code review, page 273←

WEDGE THINKING | 333
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

asking questions, critiquing the programming, and making suggestions —
it’s been likened to a pilot and navigator working together. By focusing on
different aspects of the task, they free up their minds to be more effective.
The Computer Factors chapter has many more ideas like this.g

Almost the opposite of pair programming in N version programming
(NVP). Here, independent programmers build different programs from the
same specification: these are the N versions. All the N versions are then run
with the same test suite, and if they don’t get the same results, then some of
themmust have bugs that need fixing.345NVP isn’t perfect, as it’s sometimes
difficult to compare the results of N programs (if so, then the specification of
what the programs are supposed to do needs improving), and programmers
tend to make the same mistakes — but N programming will pick up lots of
accidental mistakes, as they tend to be random. As always, reliance on one
method is not sufficient, but the more methods that are used to improve the
quality of programs the better.

Once you realize your own programmers are a risk — as they are — then
there are lots of obvious ideas to manage this risk. Manufacturers could send
their programmers off to universities to update their knowledge. External
experts could come in and do reviews.

An interesting and very important teamwork idea is that the team need
not all be in the room with you. There are international standards, for in-
stance, developed by expert teams somewhere else. Their standards can
help you think more clearly, and most have checklists and bibliographies
of important things to consider. They are like somebody watching what you
are doing, asking whether you have done the iterative design (or whatever).
Even better, if you follow the standards, you can write it down in your pro-
motional material: “Our products conform to international standards, ISO
14971, ISO 62366, ISO 9241, …” They’ll sell better.

This book isn’t really the place to explain International Organization
for Standardization (ISO) standards and all the others (IEC, ANSI, …)
— but they aren’t all the very dull documents you might expect them
to be. Most of them, especially ISO 9241-210, have lots of useful
background information in them in addition to the raw standard.

If you buy stuff (say, in hospital procurement), then you should pay
attention to standards, and make sure you buy products and systems
that conform to the latest safety standards. Ask for documentation
from the salespeople — they should be happy to provide it.

If you are a patient in a hospital, you might like to make sure (or get a
friend to make sure) the devices — monitors, infusion pumps,
ventilators — connected to you conform to all relevant standards. The

g See Chapter 21: Computer Factors, page 277←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

334 | CHAPTER 24

Research
Developing standards
Developing checklists
etc

Clinical reality

Usual

blunt end

Figure 24.4. The Two-Wedge Model shows there’s a longer process of research
and development (represented by the thicker wedge) going on before any particular
system’s blunt end even begins.

few days I’ve been in hospital, I’ve looked up the devices used on me;
it seemed like a good use of my nerdiness and otherwise spare time
in a hospital bed.
This sounds like a lot of work. Instead, we need a change in the way
devices are made and labeled, so that it’s easy to find out how safe
they are just by looking at them.h

International standards are examples of experts doing work long before
the blunt end in the Wedge Model: standards bodies are teams of people
working out how teams of people can better build and design digital systems
(well, except when Human Factors and other pressures undermine them).
In fact, since a wedge is a good analogy, two wedges must be even better …

Prior to and supporting everything going on at the blunt end of the sin-
gle wedge (development, testing, regulatory approval, manufacturing) is re-
search, creating standards, and developing checklists that are then used at
the blunt end.346 The timescales of “Wedge Two” (the wedge on the left)
are in decades and longer, but the impact is huge, as the research and stan-
dards eventually feed into regulation and every product at the blunt end of
Wedge One (the wedge on the right). Increasing funding for research in
digital healthcare safety could be the most effective form of long-term in-
vestment in healthcare.

Look back at the bar chart on causes of death.i More than £500 million
per year goes into cancer research in the UK alone.347 It’s needed, but think
what a fraction of that amount could do for research in preventable harm,
and in particular for improving the safety of digital systems. It would have
an immediate effect.

h See Chapter 29: Safety ratings will improve healthcare, page 401→
i See Chapter 9: Preventable error bar chart, page 113←

WEDGE THINKING | 335
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Clinical reality

Further

cycles

of

learning

Design to recoverDesign to prevent

Figure 24.5. Wedges can inspire all sorts of helpful models. Here, a Bowtie
Model shows two sides to the story: all the factors leading up to clinical activi-
ties, and the analysis and learning that follows clinical work. Ideally, in turn, this
leads to learning that feeds into the next wedge — as sketched on the far right of
the diagram.

Unlike cancer or any other disease, digital systems are involved with ev-
ery patient regardless of their disease. Digital also impacts “hidden” areas of
healthcare like sterilization, blood transfusions, and pathology labs, as well
as hospital finance, patient appointments, and lots more. Investment in the
safety and reliability of computers would certainly compare very well with
cancer research in terms of improvements in health per pound — and, un-
like cancer, the field is pretty much wide open for research. There’re lots of
avenues to explore and opportunities to find real improvements.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

Why is poor-quality software
so widespread? Simple bugs
might seem trivial, but they
are very common and don’t
help patient safety — they
make everyone inefficient and
error-prone, if nothing else.
Health would improve if we
paid attention to digital
details.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

25

Attention to detail

When I went to see my GP (my local doctor), he filled in a form to ask
for some blood tests. In the picture of the form (figure 25.1), what I want
you to notice is that my long name, Harold Thimbleby, is printed in full,
but the doctor’s name has been cut short; he isn’t Richard Jon, but Richard
Jones, or perhaps he’s Dr Richard Jonathon Tucker. Who knows? Certainly,
he doesn’t work at The Medical Ce, but he works at The Medical Centre,
Swansea, Wales. (See the note on anonymity in the figure.)

Why isn’t there space for the full doctor’s name and full address? At least
it could get the first line of the doctor’s address right, surely?

Instead, the doctor’s name and his address are both truncated. The pro-
grammer must have been told to show where the doctor worked, as the label
printer started to print the details, but it never finished. Somehow it was
designed not to finish printing the full address. What’s a name and address
good for if it isn’t right? What’s a name and address label printer good for if
it deliberately introduces errors? One wonders whether the barcode has got
bits missing as well (the barcode, names, and places I used in the picture are
fictitious).

The badly printed blood test form was for me to go and get some blood
tests done at the hospital, but when I went to my GP to get the blood results
after the tests had been done, I discovered another problem.

Over the months, I’ve seen several doctors, and they’ve all ordered vari-
ous blood tests. So my blood test results are sitting on several databases, and
there is no common view. The hospital databases are different from the GPs’
databases, and they keep patient data separate. My GP cannot see blood test
results unless he ordered them. I’m baffled by this lack of interoperability,
since keeping multiple copies of data — with different access security — is a
recipe for inconsistent data, and certainly a recipe for never being able to de-
tect problems automatically. These sorts of problems are harder to describe,
harder to understand, and much harder for doctors to cope with. The sys-

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

338 | CHAPTER 25

Figure 25.1. Part of a form requesting blood tests for me, Harold Thimbleby. Note
that my long name is printed correctly, but the doctor’s name and the name of
his surgery are cut short and printed incorrectly. (For the purposes of this book,
I’ve changed the doctor’s and medical center’s names, as well as the barcodes, to
preserve their anonymity, but the overall effect is unchanged. I’ve also recently
moved house, so my details are obsolete. Sorry!)

tems are not interoperable, but everyone has to live with them, making them
inefficient and more likely to make errors.

I want to ask the developers of these systems: When have you sat down
and spent all day exploring your systems? Looking for problems? Fixing
problems? Looking for splinters, then sanding and polishing your work so
it is smooth and shines? If you were a craftsman or other professional —
a woodworker, a calligrapher, a climber, an artist, a clinician — you would
spend time reflecting on your work so you could get better and safer. Indeed,
clinicians in the UK have an entire work program called quality improve-
ment (QI):

Quality improvement is the combined and unceasing efforts
of everyone — healthcare professionals, patients and their
families, researchers, payers, planners, and educators — to
make the changes that will lead to better patient outcomes
(health), better system performance (care) and better
professional development.348

Manufacturers and developers ought to be part of the QI team.

ATTENTION TO DETAIL | 339
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Figure 25.2. An Alaris PC infusion pump module (only part of it has been drawn).
The module is permanently calibrated “RATE (mL/h),” but, as shown here, a pro-
grammer made it able to display a rate in mg (milligrams) per hour. Will it now
deliver drugs at 9 mg per hour or 9 mL per hour? How’s the user supposed to know
what it’s doing?

The Alaris PC is a versatile infusion pump that allows users to attach
modules on it so that it can do many different things. The drawing (figure
25.2) shows part of the Alaris PC’s PCAmodule—PCAmeans “patient con-
trolled analgesia”; it’s designed to allow patients to control their painkiller
(analgesia) drug dose themselves. On the Alaris, the PCA module perma-
nently and clearly says the drug rate is in milliliters per hour (mL/h), but
the programmer has used the LED display to show the rate as MG/H, which
means milligrams per hour.

So which units will it use? As shown, nobody knows whether the Alaris
is delivering drugs at a rate of 9 mL per hour or at 9 mg per hour.

Note that 9 mL per hour and 9 mg per hour are only the same when the
drug concentration is 1mg per mL. There’s no reason why the concentration
should be 1 mg per mL. If the drug concentration was actually 0.1 mg per
mL, then the two interpretations would differ by a factor of ten, potentially
causing confusion that would lead to serious harm to the patient. Whatever
is going on, it’s confusing.

Confusing medical devices cause errors.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

340 | CHAPTER 25

from above from the left from above left
module is called H? module is called 9? module is called 4?

Figure 25.3. Looked at from three different angles, all very reasonable working
angles, the same letter A (or perhaps a digit 8?) on an Alaris PC infusion pump
module (figure 25.2) also looks like an H, a 9, or a 4. Because the display is deeply
recessed inside the infusion pump, the edges of the display get obscured, changing
the symbol shown in different ways.

The developers of the Alaris PC made it versatile by using a dot matrix
display that can show almost any text, unfortunately even if it’s contradictory.
Perhaps the programmers never tested their program running on an actual
pump? Certainly, it seems that nobody bothered to test it properly using
UCDa — nor did the regulators do enough to stop a buggy product getting to
market. It is, surely, an elementary bug349 that should have been avoided in
the first place. Yet here it is on a pump that is in use — I photographed it in
a large hospital, from which the drawings in this book were made.

The Alaris PC has other problems. The manufacturers decided to use a
cheaper seven-segment display for the module name, and to sink the display
a longway into the case, which can obscure segments andmake it impossible
to read correctly (figure 25.3). Module codes like , , , , , and more, are
therefore very easily confused.350

Fortunately, PCA pumps are generally very safe. Usually the patient
presses a button to get more painkiller when they need it, and the hospital
will have set limits on how frequently it can be pressed. When they have had
so much painkiller they are starting to get sleepy, they are less likely to press
the button again and again and get an overdose. Of course the hospital’s
limit on the maximum dose, programmed into the infusion pump, should
stop multiple pressing turning into an overdose even if the patient doesn’t
go to sleep first.

a See Chapter 22: User Centered Design, page 301←

ATTENTION TO DETAIL | 341
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

In 2019, Mobasher Butt, one of the directors of Babylon, a company
developing a major medical app, said,

We’re developing and improving our technology and the
versions of the symptom checker every two months.351

For many products, this would sound exciting and would gain all the
benefits of the very latest technologies. But would you take a drug or any
other medical intervention from a company that was still updating it every
few months? No; you’d ask them to finish developing it, and to get it tested.
Once they’d done that, youmight appreciate some improvements, but build-
ing on top of something that had been rigorously approved.

Despite its regular updates, the Babylon app is already in use, with over
110,000 registered patients in the UK (I discussed the financial impact of
this in an earlier chapterb). The Rwandan version of Babylon, Babyl, has
2,000,000 registered patients — a sixth of the country’s population. It’s a
huge international project. Yet Babylon’s patients are relying on a system a
director of the company has said is not yet finished.352 The app is changing
so fast to fix its known problems I’m surprised it was approved for use.

Babylon’s system is complex, and, inevitably, like any other digital sys-
tem, it has bugs. A critical question is: how does it balance pushing an ex-
citing product to market (it would go out of business if it didn’t) against es-
sential medical quality, such as ensuring that it is safe and effective (it would
unnecessarily harm patients if it didn’t)?

In June 2020, Rory Glover was using Babylon to check up on a prescrip-
tion, but found that Babylon’s “Consultation Replays” feature offered him a
list of about 50 videos to review. Which he did, of course, but they were
videos of other patients consulting with doctors that had been made avail-
able to him. Babylon blamed the introduction of a new feature allowing a
patient talking to a doctor to change from audio to video during a call for this
bug. It’s still a serious bug, though, releasing confidential patient consulta-
tions to other patients. It’s hard to see how software with such flaws meets
good regulatory standards; indeed, Babylon reported itself to the UK’s data
protection authority.353

Rory Glover also tweeted about the problem,354 including a screenshot
from his mobile. The videos are called Replay 0, Replay 1, Replay 2, … I’m
surprised they don’t have more informative labels — like the doctor’s name,
or at least the date and time of the consultation. Further indication of casual
programming.

Babylon has been criticized by Dr David Watkins, a Consultant Medical
Oncologist, who used his Twitter handle @DrMurphy11 to tweet examples
of its misdiagnoses: he also directly alerted Babylon and the relevant regula-
tors. One of his tweets is reproduced here (figure 25.4). While Dr Watkins

b See Chapter 18: Babylon patient finance model, page 242←

http://twitter.com/DrMurphy11

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

342 | CHAPTER 25

Figure 25.4. Dr David Watkins tweeting a problem he found with the Babylon
diagnosis algorithm. With the same symptoms reported, Babylon suggests a man
is having a heart attack, usually treated in an emergency department, but suggests
that a woman is having a panic attack, which can be treated at home.

has created a media profile on his work,355 Babylon responded rather crit-
ically.356 There’s clearly an argument going on, and I don’t know all of the
background; nor are the details of it relevant for this book. Nevertheless,
I want to pick up on a couple of points from Babylon’s press release about
their standoff:

Our technology meets robust regulatory standards […]356

Currently, regulatory standards for digital healthcare are inadequate (par-
ticularly for AI like Babylon), as I argue throughout this book, and as Rory
Glover’s video experience confirms.357 In any case, current regulatory stan-
dards don’t address the sorts of issues that Dr Watkins has been raising. For
example, Babylon has published papers suggesting that Babylon is 100%
safe,358 yet perfection is implausible: 100% saysmore about the experiment
than the safety. Indeed, Rwanda’s minister of health claimed that the Babyl
app included no questions about malaria, even though it is a major health
issue in Rwanda. Babylon disputes this, but if the Rwandan minister for
health can’t find malaria on it,359 there are at least some usability problems
that need sorting out. Then Babylon wrote in their press release:

ATTENTION TO DETAIL | 343
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

So today we’re making a big offer: @DrMurphy11 now that
you have stepped out from behind your computer, why not be
part of an open, independent analysis of your AI testing:
publish the entirety of your work, and let the totality of your
data be assessed by any objective expert.356

The perspective here seems to be that the data Dr Watkins made needs
independent analysis, and his data needs publishing in its entirety. On the
contrary, he has already published his findings, and they have been repro-
duced by others. Babylon may be hoping that his full data would show that
bugs are “rare” or “contrived,” but I suspect his full data would only saymore
about how he finds bugs, rather than how likely patients are to encounter
them.

I think Babylon should be asking themselves whether the bugs indicate
systematic design problems with their approach, and if so, they should start
fixing them, and, even better, start improving their development processes
that result in bugs. Indeed, their press release says, “senior doctors […] build
our products,” when you’d expect senior software engineers to build them.
If software engineers built their system, a good response would have been:
now we know of these bugs from Dr Watkins, we can automate his testing
and do it thoroughly and many times faster — for instance, looking at every
possible form of possible gender bias in the system (figure 25.4), we can fix
the bugs and stop them happening again.

Babylon’s press release doesn’t seem to see the data Dr Watkins has al-
ready publicly provided as an opportunity, but rather presents it as a public
relations challenge to give DrWatkins more work, which, obviously, they are
much better placed to do themselves. Babylon ought to be interested in how
Dr Watkins repeatedly found bugs by hand that they had missed even with
their greater resources. Babylon said their request that he just hand his data
over was a “big offer,” but the data is hardly interesting compared to how Dr
Watkins found bugs they missed.

It’s a shame to be so critical when digital innovators — especially ones
with significant resources like Babylon has — could be encouraging people
to help them improve. The approach here is more likely to put people off
trying. The news is not that there are bugs, but that manufacturers don’t
want to know.

To be positive, digital healthcare systems are going to be game-changers
for healthcare. They can relieve work for healthcare professionals, provide
faster care for patients, and have many other benefits on an unheard of scale.
On the other hand, any errors in their design or clinical information, or any
problems in their use, can lead to equally large problems. Even if they only
have a tiny 0.1% error rate, when that’s multiplied up by the huge numbers
of users, the impact on patients is significant. In particular, the errors will be
systematic. The way ahead is better regulation — and better programming.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

344 | CHAPTER 25

Box 25.1. Digital internationalization

I’ve written Fix IT about digital healthcare issues, which are international,
but I had to make choices: I wrote in English with US spelling. In the UK, we
talk about operating theatres, but in the US they’re called operating rooms —
just changing the spelling of “theatre” to “theater” isn’t enough as the whole
phrase changes. GP becomes primary care physician. Billion means differ-
ent things too.5 But there’s more. Anesthetist isn’t just the US spelling of
anæsthetist — it also changes its meaning.a In the UK there’s A&E, for Ac-
cident and Emergency, but in the US it’s ER, for Emergency Room. If I’d
written in a language other than English, say Mandarin, I’d have lost many
English speakers, even though the digital issues are the same.

Wherever in the world you’re reading this, I’m sure you’ll be able to take
cultural differences in your stride, but for digital systems (technically, this
book is a program360) international issues are critical. There’re opportuni-
ties for patient harm. Confusing dates (what does 3/4/22 mean?) and mix-
ing up units (e.g., pounds and kilograms) are common problems. Hospitals
use international systems, and accidentally import foreign ways of working.
Patients travel the world and access their medical records over the internet.
The problems arise when people don’t spot the differences affecting them.

Handling these problems is called internationalization. So if you find
confusions in my book’s internationalization, think of it as highlighting the
problems of internationalizing digital healthcare too. At least you’ve spotted
the problem — but think how a busy nurse might make mistakes when their
decisions are driven by a poorly internationalized digital system.

You should ask: how could systems be better internationalized to be
safer? Even better: how could healthcare itself be internationalized, so the
issues dissolve? Mobility and networking of digital don’t just highlight prob-
lems— they aremore positively thought of as drivers for defining and spread-
ing best practice, and hence for improving safety across the world.

a See Chapter 24: Anesthetics training, page 325←

Aviation has a very different safety culture to healthcare.
Air Inter Flight 148 flew from Lyon towards Strasbourg. As it neared

Strasbourg airport, the pilot commanded the autopilot to descend at an angle
of 3.3 degrees. A few moments later, the Airbus A320 flew into the side of
a mountain, crashing into woods and killing 87 people.

One cause of the crash was that the pilots had set the autopilot to –33,
meaning descend at a rate of 3,300 feet per minute, rather than descend at
an angle of 3.3 degrees, as they had intended. The difference is in the posi-
tion switch, a small decimal point (does the display show –33 or –3.3), and
a display showing V/S (for vertical speed) or FPA (for flight path angle). The
most prominent part of the display is the bright number. There is very lit-

ATTENTION TO DETAIL | 345
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Figure 25.5. Drawing of part of the A320 airplane’s autopilot, showing it in two
different modes. Imagine trying to spot the critical difference between the displays
when you are under pressure. Imagine the consequences of not noticing the deci-
mal point.

tle difference between –33 and –3.3. Indeed, with seven-segment displays,
the decimal point is hard to see anyway, because it’s so close to the bottom
of the 3 that it seems to be part of it.350

The pilots never noticed the difference — they had lots of other things
on their mind. The mountain was in clouds, and their rapid descent meant
they flew into the side of it with no time to recover. Reports of the crash were
never controversial; there was no argument. A few months later, Airbus, the
plane manufacturer, updated the design of autopilots so a descent rate of
3,300 feet per minute is displayed as –3300 not as the confusing –33. The
mix-up can never happen so easily again. I’ll talk more about aviation later.c

But consider this: in September 2016, when General Motors suspected
that they had a software problem with their vehicle airbags that might have
killed one person, they recalled over 4 million cars to fix the bug.361 The re-
ports of the bug weren’t controversial. The economic reality is that any crash
that might be plausibly blamed on their product designs would be a serious
public relations problem, and they quickly move to fix it. It’s an interest-
ing contrast to GE Healthcare’s handling of their bugs on their Aestiva and
Aespire anesthetic machines.d

Airbus and General Motors take safety seriously, and they pay serious
attention to “small” details. It doesn’t matter how big or small the holes in
Swiss Cheese are; small holes are still holes.

c See Chapter 26: Planes are safer, page 347→
d See Chapter 17: Aestiva and Aespire machines, page 213←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

Aviation safety relies on
getting very complex
engineering right, and it’s
getting safer and safer. What
can digital healthcare learn
from aviation and aviation
engineering?

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

26

Planes are safer

Here’s a famous story: a “simple” software bug caused the European Space
Agency’s Ariane 5 rocket to explode. Less than a minute after its launch,
the explosion was spectacular and photogenic. The explosion sent about $7
billion5 of 1996-valued US dollars up in flames (figures 26.1 and 26.2).

The embarrassing Ariane 5 disaster, with an explosion visible frommany
miles away, has ensured a lot of attention was paid to why it failed, and how
to avoid similar problems in the future. Because space and aviation failures
tend to be so spectacular and undeniable, there is now an enormous amount
of skill invested in, and attention paid, to software correctness — getting rid
of bugs — in aerospace. This begs the question why this successful approach
to safe software does not get embraced by digital healthcare.

Error in healthcare isn’t photogenic, and everybody is very busy and
wants to feel perfect — and manufacturers need to sell things to stay com-
petitive, even if what they sell is not “perfect” stuff. It’s hard to get anyone to
draw attention to fixing risky software when it’s good business not to — it’s
more profitable to keep selling upgrades, which have more bugs which will
mean more upgrades to sell. Like the time of the unsafe cars in the 1960s,
we’re still in a pre-Ralph Nader world of being excited by digital rather than
trying to make it safer.a

Consider the classic story of the London Ambulance Service’s Computer
Aided Dispatch (LASCAD) system failure in 1992: it resulted in at least 30
deaths as well as hundreds of delays.362 Yet none of it was photogenic like
the Ariane 5 explosion (figure). It got less attention because it was harder to
understand and it was less dramatic. Even after the lessons of the LASCAD
fiasco, the Ambulance Service’s digital problems continued on and off: for
instance, on New Year’s Eve in 2017, one of the busiest nights of the year,
another bug meant that control room staff had to rely on pen and paper for
several hours.363

a See Chapter 11: Unsafe at Any Speed, page 140←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

348 | CHAPTER 26

Figure 26.1. The 1996 launch of the Ariane 5 rocket …
(Continued in figure 26.2.)

Aviation is often held up as a contrasting example to healthcare. Air
safety is improving, and it is amazingly safe. Sometimes people say it’s un-
fair to compare healthcare and aviation because they are so different (sick
patients aren’t like predictable planes, for instance), but in this chapter I
want to compare their engineering. There are then fascinating, and relevant,
comparisons to be made. But aviation wasn’t always so safe.

A long time ago, some really serious crashes shocked the aviation in-
dustry. I described two crashes to illustrate task saturation earlier.b Here’s
another example:

In 1977 two Boeing 747 passenger planes collided on the runway at
what is now Tenerife North Airport. The crash killed 583 people and
had only 61 survivors, making it the most lethal aviation crash ever.
It was foggy, and one plane started to take off, while the other plane
was about to turn off the runway. They collided. As the Swiss Cheese
Modelc suggests, many things went wrong. There were mutual
misunderstandings between the pilots and Air Traffic Control — ATC
language has now been standardized.

Leading up to all of these crashes, there was a strong authority hierar-
chy in the cockpit. The pilot was in charge. The pilot was not successfully
challenged by more junior members of the crew who were worried about
what he — it was always a “he” in those days — was doing. Traditionally,

b See Chapter 20: Plane crashes, page 262←
c See Chapter 6: Swiss Cheese Model, page 61←

PLANES ARE SAFER | 349
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Figure 26.2. … ended in spectacular failure due to a computer bug.
(Continued from figure 26.1.)

the captain was the authority in the cockpit, and the crew had to do what he
said, rather than co-operate in solving problems.

After teasing out what was going wrong in these aviation crashes, crew
resource management (CRM) was developed and has now become stan-
dard practice. Crew resource management aims to create an explicit cul-
ture where authority can be questioned and the decision-makers do not feel
threatened by being questioned. There are now standard ways to ask pilots
to do things, and standard ways to query instructions, and standard ways to
escalate concerns. Air Traffic Control can listen in, and can take over when
they recognize conflict. And so on.

But CRM, putting Human Factors into practice in the cockpit — sharp-
end stuff— is only one of many approaches that aviation takes. Aviation also
takes engineering very seriously: the blunt-end stuff in the Wedge Model.d
After all, lives depend on both the human crew and the safe engineering of
the aircraft and cockpit. In a hospital, we have no idea what software there

d See Chapter 24: Wedge Thinking, page 325←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

350 | CHAPTER 26

1970 1980 1990 2000 2010 2020

0

5,000,000,000

10,000,000,000

15,000,000,000

20,000,000,000

25,000,000,000

30,000,000,000

Passengers
per year

Figure 26.3. Worldwide air passenger numbers are growing exponentially. The
graph here shows civil aviation passengers carried per year worldwide, over the pe-
riod 1970 to 2018.

is or how it is connected; in an aircraft, you can look at a bolt and find out its
correct torque, who put it there, what batch, and from which manufacturer
it came from. Because it matters.

Paying attention to safety isn’t confined to pilots and plane engineers, it
is pervasive. Have you noticed, when you, as a passenger, get on an airplane,
pretty much the first thing that’s said to you is about safety. What you should
do if there’s turbulence. What you should do if we ditch in water. What
you should do to slide down the evacuation chute. How to brace. Put your
oxygen mask on first, then help anyone else. The safety instructions are
in your seat. This is serious stuff, but it gets airline staff and passengers to
engage with safety. It helps improve safety and survival.

Digital bugs are a bit like flight turbulence — random surprises, with un-
predictable impact ranging from trivial to disastrous. The analogy is that it
would be helpful to regularly remind developers of ways to recognize and
control bugs to help improve digital healthcare safety. Maybe Fix IT should
take on a role like the safety card in every passenger’s seat? Please read Fix
IT before taking off.

The safety improvements achieved in aviation are very impressive. Pas-
senger numbers are growing exponentially, from just under two billion in
1972 to nearly 40 billion in 2017 (figure 26.3), but passenger deaths are
dropping dramatically, from 3,346 in 1972 to under 400 in 2017 (figure
26.4).364 Put another way, the chance of a passenger dying in 1972 was 2
in a million, and in 2015 the chance had dropped to 1 in 100 million — a
two-hundredfold improvement per passenger.

PLANES ARE SAFER | 351
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

1970 1980 1990 2000 2010 2020

0

500

1,000

1,500

2,000

2,500

3,000

Deaths
per year

Figure 26.4. Aviation deaths are falling. This graph shows worldwide civil aviation
passenger deaths per year (excluding “routine” passenger deaths inside the plane),
over the period 1970 to 2019. Note that the scales of the two graphs (passengers
carried in figure 26.3 and passenger deaths in this graph) are different. The chance
of dying on a flight is about 1 in 100,000,000. It’s very safe, safer than sitting
in an armchair.365 Put another way, every year planes carry four times the world’s
population, and it goes wrong for just a few hundreds; shouldn’t digital healthcare
envy aviation’s engineering reliability and see what it can learn?

On15 January 2009, Captain “Sully” Sullenbergerwas flyingUSAirways
Flight 1549, an Airbus A320, when it flew into a flock of Canada geese. The
plane lost both engines, right over the city of New York. With no engine
power, they professionally glided the plane to an emergency ditching on the
Hudson River. It was an accident that Sully turned into what has been called
the “Miracle on the Hudson” — nobody died. He is now a world-recognized
safety expert, and writes widely. Here is one of his deep observations:

In aviation, every rule that we have, everything we know, every
procedure we use, we know because someone, or often many
people, died. We have learned important safety lessons
purchased at great cost, sometimes literally bought in blood.
We have an obligation not to forget these lessons and have to
relearn them.366

In other words, aviation has been getting safer because it has deliberately
learned from failures, often from terrible accidents losing lives. As Sully has
made clear, he— and all his crew and passengers— survived the Flight 1549
emergency ditching because of years of aviations’s deliberate learning to im-
prove safety. You need to seek the learning, and not forget the lessons. One
of the best ways not to forget the lessons is to build them into the engineering

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

352 | CHAPTER 26

and procedures and, overriding both, build them into the regulations. How
muchwould healthcare improve if digital systems had Black Boxes and other
safety mechanisms inspired by aviation to gather information, and actually
wanted to learn to apply those lessons in improving healthcare? How much
safer would digital healthcare be if the developers prioritized programming
safely? There would be no better way to respect all the patients harmed by
buggy and dangerous systems.

A very interesting comment following the Miracle on the Hudson was
made by Patrick Harten: he said, “the hardest, most traumatic part of the
entire eventwaswhen it was over.”367 In a later chapter, I’ll showhowpatient
(and staff) stories can be used very successfully to both listen to the people
affected, and to help share the learning widely.e

Nine years after theMiracle on the Hudson’s example of aviation’s safety
culture, Boeing’s new 737 MAX plane crashed twice within five months. In
October 2018, a 737MAX crashed into the Java Sea killing 189 people, and
in March 2019, another 737 MAX crashed and 157 people died. All 737
MAXs have now been grounded, but the 737MAX story looks like a horrible
exception to the consistent trends in aircraft safety (figure 26.4).

So why were there safety problems with the 737 MAX?
The Boeing 737 plane has been in widespread use since 1967, and it’s

been a popular, very safe aircraft. As the 737 has been developed and modi-
fied over the years, its engines have beenmademore andmore fuel-efficient.
This has meant that its engines have got larger and larger, as bigger engines
are more efficient. The engines chosen for the 737 MAX design were so big
that they had to be moved forward from the old engine position under the
wings, to be positioned higher to clear the ground when the plane is on the
runway.

Moving the engines changed the flight characteristics of the plane. Not
just because of increasing the engine power, but the new engine shape and
position produces more lift ahead of the wing’s center. This tends to raise
the nose of the plane, increasing the angle of attack, which makes the plane
easier to stall — stalling is a dangerous condition when a plane stops flying
and falls like a brick. Boeing’s solution was to correct the new flight charac-
teristics with some digital tricks.

Boeing wanted to sell the 737MAX as, basically, just an improved, more
fuel-efficient version of their successful 737 series planes. They therefore
wanted to ensure that pilots for the 737 MAX would not need any more
training, despite the new software.368 Pilot training is a major cost for air-
lines, and cost-saving was part of the sales pitch for the 737 MAX.

In particular, to hide the new software from pilots so the plane seemed
like just a 737 to the pilots, that meant that the new software could not be

e See Chapter 30: How to make Digital Stories, page 422→

PLANES ARE SAFER | 353
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Box 26.1. The scandal of Alternative Summary Reporting

The collusion, often called regulatory capture, that occurs between regu-
lators and manufacturers, which was one of the main factors that led to the
Boeing 737 MAX disasters, is not unique to aviation. It seriously affects
healthcare too.

The FDA, the US medical device regulator, operates the MAUDE (Man-
ufacturer and User Facility Device Experience) database to collect reports on
medical device problems and patient harms.

MAUDE is publicly available and makes medical device reports available
to patients and healthcare professionals to help themmake informedmedical
decisions. MAUDE is also used in law courts to provide evidence of prob-
lems. In the Princess of Wales Hospital case, MAUDE was used to argue
that an Abbott XceedPro glucometer was a reliable device and therefore that
problems using it must have been the nurses’ fault. In fact, the device and
its management were at fault, and the nurses were acquitted.a

The FDA ran a secret reporting system, the Alternative Summary Report-
ing (ASR) Program, which enabled manufacturers to bypass MAUDE. ASR
collected “exempted” reports of injuries and device malfunctions, so they
never ended up in MAUDE. Over six million device incidents were recorded
in the ASR, thus giving the misleading impression that many devices were
safer than they really were. For instance, in 2016 alone there were 10,000
secret reports of harms recorded in ASR caused by surgical staplers made by
Covidien (now part of Medtronic). In the same period, only 84 reports with
the staplers were made public in MAUDE.

The FDA disclosed the hidden ASR reports and revoked the exemptions
in June 2019.369

The controversy has been widely reported.370 The investigative journal-
ism won Christina Jewett the National Press Foundation’s 2020 Feddie Re-
porting Award.371

a See Chapter 8: Abbott XceedPro glucometer, page 92←

overridden, even if it was doing the wrong thing — if it could have been
overridden, then the pilots would need new training to understand how and
when to override it. That would be a fine choice if the new software had
worked correctly.

The new software relied on a single sensor to detect if the plane was
about to stall. To correct a stall, real or imagined, the plane would automat-
ically drop the nose, and the pilot would have to fight against it. Two planes
crashed, killing everyone on board.

The full report into the first crash was published in October 2019 —
unlike many healthcare incidents, the full report is public and available for
free.372

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

354 | CHAPTER 26

Echoing the insights of Swiss Cheese,f there were nine faults that con-
tributed to the accident — nine slices of cheese that failed. If any one of
them had not occurred, likely the accident would not have occurred. How-
ever these are all “what ifs” and at the center of the incident was the digital
software.

Gregory Travis’s clear discussion of the 737MAX’s problemsmakes some
very important points:368

Safety didn’t come first. Money did.

The ease of using software to modify systems (in this case to correct
conventional engineering problems) and the ease of updating
software has created a cultural laziness. Less effort is put into getting
a design right, since it can always be fixed up by software.

Software itself is often delivered to the customer unfinished and not
properly tested, because it can always be fixed up later to address
problems as and when they occur (or maybe after they occur).

There were pilot training issues — should the pilots have been better
trained?

Cost savings in the way safety is regulated led to serious problems
being overlooked. The manufacturers told the regulators that the
plane was safe.

Finally, the 737 MAX software had a single point of failure, so
when it went wrong, the whole thing failed. There was no
redundancy in the software, and no way for it to make the “best”
decision when one of its sensor inputs failed.

In summary, software was added to the 737 MAX in the spirit of in-
creasing its safety, but it failed and has now killed people. Boeing works
within the aviation regulatory environment, and arguably the core failure
was in regulation or in its application.373 Possibly it was corruption or in-
stitutionalized corruption (systematic corruption that is accepted); we don’t
know yet, and perhaps never will. Investigations are ongoing, but it looks
like poor regulation combined with poor management, no doubt “justified”
by the amazing track record of safety the industry had had up until that mo-
ment, led to failures. It’s a common sort of unconscious arrogance, which I’d
call errorgance— errorgance is the arrogance surrounding an error and the
refusal to acknowledge it or to learn from it; errorgance stops people fixing
the underlying problems.

The attitude is capturedwell by Sir LiamDonaldson, champion of patient
safety and UK Chief Medical Officer (1998–2010):

f See Chapter 6: Swiss Cheese Model, page 61←

PLANES ARE SAFER | 355
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Box 26.2. An aviation analogy

When people get a hip implant or a cancer operation, they rightly spend a lot
of time finding out who is the best surgeon to do their operation. When I got
neuropathy, I spent a lot of time researching who the best neurologist was.

Yet when we fly on a plane, howmuch time do we spend worrying about
getting a good pilot? We don’t even think about it!

The point is: pilots are trained to very high and consistent standards to
fly planes safely, but somehow surgeons are far less predictable. If you are a
passenger on an Airbus A321, you know the pilots are trained to fly A321s
safely. If you need to have a hip implant, you have a lot less assurance that
the surgeon is experienced and really good at this particular operation.374

When we have a hip implant, we also ought to worry about the quality
of the implant,a or when we have an infusion, we ought to worry about the
quality of the infusion pump, not just our surgeon. The implant or infusion
pump will be caring for you a lot longer than the surgeon!b

When you last took a flight, did you worry whether you were flying on an
Airbus A321 or on a Boeing 777? They are both airworthy, and both are safe
— they go through airworthiness testing that would put healthcare to shame
(because passenger lives depend on ensuring they are safe). Yet infusion
pumps vary by a factor of at least two in how safe they are. We ought to be
more careful choosing which infusion pumps to use!

a See Chapter 33: The Danger Within Us, page 491→
b See Chapter 29: Infusion pump evaluations, page 406→

The most dangerous five words in the world are
“it could not happen here.”

The key lessons for digital healthcare are that we need to strengthen ap-
propriate and effective regulation (with adequate funding to do a good job
of it), and developers must make software systems that are proved safe —
relying on upgrading software later is asking for trouble.

If you were admitted to hospital tomorrow in any country, your chances
of being subject to an error in your care would be something like 1 in 10, and
dying from an error about 1 in 300. Compare this to the risk of dying in an
air crash of about 1 in 100 million. The World Health Organization (WHO)
points out that healthcare is far riskier than flying.375

TheUnitedNations says that out of every 100 hospitalized patients at any
given time, 7 patients in developed and 10 patients in developing countries
will acquire at least one healthcare-associated infection during their stay.375
The better rates in some countries proves things could be improved.

I’m arguing that digital healthcare could improve its safety a lot by adopt-
ing ideas from aviation engineering and aviation regulation and safety cul-
ture. Some people, however, argue that the human sides of aviation and

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

356 | CHAPTER 26

healthcare are very different and should not be compared. I’m not so sure.
A heart operation and all its preparation might easily involve a team of 60
people, but this is the same sort of number as needed to run a jumbo jet. In
both hospitals and airports there are hundreds of unsung people sorting out
problems — sterilizing equipment or handling baggage. There seems to be a
lot to learn from aviation systems even if there are differences.

Just like planes are getting safer, so too are many technologies. Car safety
has been improving too. There’s been much less emphasis on Human Fac-
tors with driving cars, but there have been huge innovations in the engi-
neering: air bags, ABS, seat belts, crumple zones, and more. Not only is
car safety improving, but we have car safety awards, car safety ratings, and
more. There is a car safety culture.

Interestingly, bus safety is even better — buses have benefitted from all
the improved engineering that car safety benefits from and they carry more
passengers. So per passenger, they are doing extremely well.

In transport, then, especially planes and buses, engineering for safety
has improved dramatically. A lot of that engineering improvement is in the
software, in improving the quality of the digital systems.376

Aviation and car transport are both highly technical industries. Training
engineers for them takes years, and training pilots or drivers is also special-
ized. Pilots are trained for specific airplanes. Drivers, after training and pass-
ing tests, are only allowed to drive specific sorts of vehicles. I am an ordinary
domestic driver, and I am not licensed to drive serious professional vehicles
like buses, lorries, and diggers. This is so obvious, it’s strange to discuss it.

Stephen Pettitt was the first patient in the UK to undergo an operation to
treat mitral valve disease by robot— in this case, a Da Vinci. He died after the
operation at the Freeman Hospital in Newcastle.377 The coroner, the inves-
tigator into the death, said there had been an “absence of any benchmark”
for training on the new treatment. Sukumaran Nair, the surgeon, had had
no one-to-one training on the Da Vinci robot and had been “running before
he could walk.” Other experts in the operating room walked out before the
operation was finished.

Nobody supervising a pilot or driver would have so little awareness of
the importance of training, supervision, competency, and fitness to practice.
Nobody is allowed to pilot a plane or drive a car without a license that they
have been trained and are competent to do so. Somehow, it seems, health-
care practice focuses so much on the traditional clinical issues that it ignores
the new digital risks, like of using robots.

The same oversight has happened in digital development for healthcare.
Although a patient’s medical data is complicated, the software in planes and
cars is even more complex and has to work in real time (very rapidly). Cer-
tainly MRI and CAT scanners are complex, but the math behind them is
still relatively straightforward. The point is — without starting an argument

PLANES ARE SAFER | 357
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

about the borderline exceptions — the software engineering techniques used
tomake planes and cars safer would find no troublemaking digital healthcare
safer.

All the bugs described in this book are avoidable using standard
programming practices that are routinely used in other industries —
such as aviation and nuclear power — where lives depend on quality
programming. Primarily, they use Formal Methods,g along with a
lot of automated tools to help with quality processes, like
documentation, version control, and so on.

Getting rid of bugs would make healthcare both easier and safer.
What are Formal Methods? Formal Methods are best explained by anal-

ogy with house building. You can get a builder to put up a house, and as it
goes up the builder will make many design decisions. We need a steel joist
over that window, and let’s make it the same size as one I saw in another
building. Many houses built like this will stand up and even look cute. The
alternative is “Formal Methods,” where a structural engineer carefully ex-
amines the architect’s design, and calculates how large the steel joists need
to be to hold up the building above the windows. The structural engineer
and architect will have some discussions if the architect’s plans turn out to
be unsafe. For something complicated like a tower block or skyscraper, it
would obviously be negligent not to do the relevant calculations, but for
many small-scale building projects builders get away with guesswork and
adjusting things as they go along.

Playing with programs is very easy, and they are very easy to fiddle with
until things seem towork. But theremay be bugs, just likewhen your cowboy
builder leaves you with a house with structural problems you don’t discover
until long after the builders disappeared with your money. Indeed, builders
are notorious for “plastering over” problems. Programs are no different. Pro-
grams can look fantastic, can give persuasive demos, but underneath there is
no rigorous engineering to hold it all together. Like building, programming
is one of the few things that can be done badly but look successful. Worse,
many programmers find it very tempting to add features to make their pro-
grams more and more exciting — this is the equivalent of adding windows or
knocking out walls: it looks nice, but doing so probably adds more structural
problems. The hole the builder made for that new window might have been
holding up the floor above.

Many people think programming is really easy. Well, even children can
do it, can’t they? Well, yes, children can build wonderful things in Lego, but
that doesn’t mean they are already competent house builders, car designers,
or aviation engineers. We all know that real engineering is very different to
making Lego models. A skyscraper in Lego looks nice and can be built quite

g See Chapter 27: Formal Methods, page 379→

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

358 | CHAPTER 26

Box 26.3. The Dunning-Kruger Effect

Like building, developing programs can be done badly butmade to look good,
often extremely good. While this makes programming seem really easy —
even children look like they can programwell — it creates a potential double-
edged problem called the Dunning-Kruger Effect:378

Programmers who are weak programmers are unlikely to be aware of
how bad they are. They will be over-optimistic about their skills, and
would see no reason to try to get better. Maybe they will get
promoted and start recruiting more staff: and then they won’t know
how to recruit skilled staff. In short, program quality will be poor, but
nobody will realize it, and the problems will be perpetuated.

Programmers who are good are, for exactly these reasons, often
surrounded by weaker programmers. Surrounded by weak
programmers — some of whom get promoted — they may not realize
how much better they are. They have no reason to realize they are
better, possibly much better, nor do their managers, and hence they
won’t have much influence in improving anything.

In contrast, in surgery or anesthesia, or pretty much any area of health-
care, if you do something badly it becomes obvious very quickly. Healthcare
has therefore evolved strict regulation and tough requirements for training,
qualifications, and regular certification to practice.

Despite digital systems being used throughout healthcare, sometimes
practically substituting for qualified clinicians, there are no such require-
ments. Dunning-Kruger explains why. The main solutions are professional
training (to increase self-awareness in the relevant skills and meta-skills379)
and qualifications (to provide objective measurement of skill levels).

quickly, but a real skyscraper needs a lot of serious thought beyond children’s
abilities. Fire safety. Electrical safety. Earthquake resilience. Wind forces.
Lift scheduling. Heating. None of that is needed in a toy Lego skyscraper,
however nice it looks.

Somehow these facts about Lego are obvious. We don’t go around saying
building a skyscraper or bridge is easy because young children can do it in
Lego.

Here’s a real-life example of this sort of confused thinking about children
and programming.

The Times newspaper praised industry for hiring teenagers380 to test
their cybersecurity. Somehow we think children hacking is clever and ex-
citing, but we wouldn’t be impressed with their ability to swing sledgeham-
mers and smash their way into a jewelery shop. Surely we’d ask: why didn’t
the jewelers use professional engineers in the first place? Clearly, if children
can break into a jewelery shop, the shop is insecure, so when children break

PLANES ARE SAFER | 359
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Box 26.4. Lego workshops

Leanna Rierson has a brilliant idea for running workshops with Lego.
The workshop is divided up into teams, and each team is given a pre-

built Lego model, like a car or an airplane. The team writes down on paper
the requirements for the model.

This is analogous to writing the requirements for a computer program.
You “know what you want” the program to do, so you write requirements so
the programmers can construct the program you want. The program should
satisfy the requirements, of course.

Then the team takes the model to pieces and puts the pieces and their
written requirements into a bag. The bag is passed on to the next team, who
will put themodel together from the requirements and the bits they are given.

The results are often hilarious, because the end results do not resemble
the original models.

In other words, not everyone can write good requirements.
And, these are just requirements for simple Lego models when all the

pieces are present in the bag making it easier. Writing effective requirements
for real programs, as needed in digital healthcare, is much harder, and rarely
hilarious.

into a computer system, why do we think the children are clever?
Emphasizing children’s amazing computing skills misdirects our atten-

tion away from our own struggles with all things digital — and the need for
adults to be used to program safely.

Somehow it isn’t obvious that safe and secure programming is hard, and
if children are programming, then, however imaginative it is, they cannot be
doing quality programming.

We are surrounded by very exciting, powerful systems. Amazon would
be a good example: it provides a very smooth, very effective experience. It
looks very easy. Indeed, it “must be” easy as it is so easy to use. Actually,
thinking this is a fallacy. Amazon (and eBay, Facebook, and others) are only
so smooth because they put an awful lot of world-leading research and hard
work into polishing them. In 2017, Amazon alone invested about $22.6 bil-
lion5 in research and development.381 They have thousands of highly skilled
developers. The end result is something that looks intuitive, but it wasn’t in-
tuitive to get there.

This means that when politicians and others look at these wonderful
things, they think, wouldn’t it be easy to have such nice things in health-
care?

Not unless healthcare has investments comparable to some of theworld’s
richest companies.

Another confusion is with business models. Again, take Amazon as a
concrete example. If Amazon makes a mistake, or if you make a mistake

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

360 | CHAPTER 26

Figure 26.5. What a contrast there is between a sleek modern Airbus 340 plane
seating 350 passengers in comfort, and the Wright brothers’ simple, flimsy 1903
Flyer on its first successful flight! The Airbus’s body alone is longer than the entire
first flight.

using Amazon, this isn’t going to be a big problem, either due to consumer
laws or due to Amazon’s business philosophy. You can return your faulty
product. You can have another one. You can have a refund. There are lots
of easy solutions to problems.

Fundamentally, mostmodern businesses rely on an interesting idea called
fungibility. That is, things are essentially interchangeable. If my book is
damaged, another copy can replace it. If I’ve lost £10 on a transaction, an-
other £10 is just as good, and in fact £12 would be even better. I don’t need
my original £10 back to be equally wealthy. That’s what fungible means.

There is little fungibility in healthcare.
You may be able to replace one drug by another, but if you cut my left leg

off by mistake, another leg will not be adequate restitution.382 Almost every
part of my health is mine, and very little of it can be exchanged for something
else without harming me.

In other words, a company like Amazon has two advantages over digital
healthcare. It has huge resources and, if errors happen, it doesn’t really mat-
ter because they can be easily fixed by financial compensation, if by nothing
else. This makes most digital companies very misleading as inspiration for
digital healthcare. In healthcare, with fewer resources, you’ll havemore bugs
and more design problems, yet any error has far more serious consequences.

Without enormous investments, which would attract commensurate ex-
perience, skills, and qualifications, as well as more and more programmers,
the few under-resourced programmers in digital healthcare desperately need
competent mentors to open them up to modern programming techniques.
This isn’t a criticism of them, it’s a very hard job, but they need mentors,
training, or some other way to get better at safe, dependable programming
at the sort of scale needed in healthcare.

Computers look after patients, even directly providing drugs and radio-
therapy. Computer companies and hospital IT staff completely specify what
computers should do. Healthcare would get a lot safer if IT standards and ac-
countability were improved. Since errors often result in expensive litigation
and compensation, improving IT andmaking IT liable would save healthcare

PLANES ARE SAFER | 361
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

a lot of money as well as making patients safer.
Aviation has improved, and is continually improving. Aviation started off

as an exciting but deadly amateur sport whenOrville andWilburWright flew
the first powered, heavier-than-air craft in 1903.

I think flying a plane in the 1930s was probably about as dangerous as
being a patient is now.

The Wright brothers’ first flight stalled, but the second flight at Kitty
Hawk in 1903 was just 37 meters (120 feet). The 2001 Airbus A340-600
(figure 26.5) is 75 meters long (246 feet) and it can fly 14,500 km (9,000
miles) — a lot further than that first plane! The Airbus A340 is by no means
the record holder, but when carrying a full load of over 400 passengers it
has a range that’s nearly 400,000 times further than the 1903 Flyer carry-
ing just the pilot, Orville Wright. It’s quite a thought that a modern plane
is longer than the first successful powered flight! What’s more, the A340 is
unbelievably more reliable as well — in fact, what should have been the very
first decent powered flight of the Flyer stalled after only three seconds.

The A340 and all other modern aircraft are engineered to be reliable be-
cause we all recognize that otherwise they’d be too risky to fly. Lives depend
on the manufacturers feeling — and being held — accountable for getting
safety right, and they do.

Nobody back in 1903 would have thought that “flying” would come to
mean sippingwine, watchingmovies, and reclining in an armchair at 45,000
feet while moving at 600 miles an hour, ideally with a decent internet con-
nection. Neither would the Wright brothers have dreamed that their tin-
kering with canvas, wire, and wood would transform into a worldwide in-
dustry of sophisticated supply chains, computer-aided design, wind tun-
nels, quality control systems, CRM, Air Traffic Control, loads of technical
mathematics — and loads of serious regulations. The history of powered
flight offers a visible maturing that has yet to occur in digital healthcare: if
you could look at many of today’s programs, they would seem as flimsy as
the Wright brothers’ Flyer.

It took about 70 years — coincidentally, the UK’s National Health Ser-
vice is 70 years old — to turn aviation into a professionally regulated and
professionally engineered and very safe form of mass transport.

It’s time digital healthcare started to catch up. Catching up will mean
addressing culture from the law makers down to programmers and IT main-
tenance staff. It will take a while, but it will be worth it.

When you find bugs, don’t just fix them. Work out why they
happened, and improve the processes so that fewer bugs happen in
the future.

Safety One thinking is about how we focus on human error and try to
get less of it, whereas Safety Two thinking is about focusing on doing more

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

362 | CHAPTER 26

of the right things.h Safety One and Two also work well with programming.
Safety One is looking for the problems, testing programs, and trying to debug
them. Safety Two is avoiding them — following Correct by Construction
(CbC) practices.i

The programming hero Edsger Dijkstra famously said,

Program testing can be used to show the presence of bugs,
but never to show their absence!316

In other words, just because you can’t find a bug doesn’t mean there
aren’t any. Perhaps your bug analysis is not good enough?

Drugs are the dominant treatment in healthcare, and they are tested with
trials. We don’t know how patients will respond, and we need to try out our
drugs on a selection of patients in different circumstances to find out how
effective or, maybe, how dangerous drugs are. Patients with other diseases,
taking other treatments, or with different genetic makeup, can respond un-
predictably.

Software is very different. In principle, we can be certain what it does
under all circumstances; trials are necessary (think User Experience, User
Centered Design) but not sufficient to establish that it is correct. Thinking
— mathematical proof — is required.

If an error arises when several factors combine together, the chances of
it being discovered even in a large trial may be vanishingly small. Trials may
not last long enough to find all critical bugs. Mathematical proof, on the
other hand, will find errors with certainty.

It turns out that mathematical proof is hard (even when computer tools
help do it), so other methods are used as well.

Careful programmers will insert temporary, deliberate, subtle bugs to
check that their code review processes can at least find some bugs. In fact,
if you insert 10 bugs, but the quality control processes only find 9 of them,
then you know some useful things about your review process — and you’ll
probably want to improve it!

Our normal Safety One thinking makes us worry about finding and fixing
the bugs, whereas what we should be thinking is why did I get that bug —
what am I doing wrong that allowed me to introduce or not spot that bug
when I was programming it? Can I fix my approach, rather than fix one
symptom at a time? Can I avoid the bugs?

Although it’s a catastrophe when a building burns down, you don’t test
whether a building is fireproof by trying to set fire to it. That’s Safety One
thinking. Instead you design it to be fireproof; more precisely, since that
isn’t strictly possible, you design buildings to contain, limit, and hinder the
spread of fire for as long as reasonably possible.

h See Chapter 12: Safety One & Safety Two, page 145←
i See Chapter 27: Correct by Construction, page 375→

PLANES ARE SAFER | 363
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Rather than building programs and seeing if they work, you make sure
they are well engineered first. That’s Safety Two thinking for programmers.
Formal Methods helps you do this.

This book emphasizes medical devices, from pacemakers to radiother-
apy machines, because they are easier to understand and explain quickly,
and I can easily simulate them accurately for research. Unfortunately, big
systems that manage patient records and finances, and other complex things
are much harder to explain the details of, but they also suffer from bugs.
Typically, when the bugs are noticed in these large digital healthcare sys-
tems, thousands of people have been affected. Here are some examples:

Reported in 2016: “Up to 300,000 heart patients may have been
given wrong drugs or advice due to major NHS IT blunder” according
to the newspapers.383 The software, SystmOne, was developed by
TPP, and is used in 2,500 GP surgeries. The problem occurred when
SystemOne incorrectly filled in patient data to use a risk algorithm
QRISK. GPs were left with the job of reviewing all the affected
patients.384

Reported in 2018: another TPP bug, this time which had remained
undetected for three years, meant that 150,000 patients who had
opted out of NHS data sharing had their preferences ignored — so
their private medical data was then widely shared against their
wishes. Although the NHS reassured patients that there was no risk to
patient care, there is in practice no way to recover the shared data.385

Reported in 2018: A bug in breast screening software affected up to
450,000 women aged 68 to 71 eligible for breast cancer screening
checks. They did not get mammograms as a result of the error, and
probably “shortened up to 270 lives” according to Jeremy Hunt the
UK Secretary of State for Health and Social Care at the time. Worse
(well, worse in the long run) the software was also being used for
research,386 so the bug has also interfered with the debate about
whether breast screening (which may cause unnecessary operations)
is effective. Interestingly, Hitachi says the problem was not with the
software but with what the NHS asked the software to do.387 That’s
exactly the sort of problem that Formal Methods can detect, and
could have detected at the time the software was written: about ten
years before the patients were affected by the missed bug.

The last incident has had a formal review, the Independent Breast Screen-
ing Review.388 The review says that the IT systems broadly operated as they
were designed to and that the errors were not caused by IT but by errors in
using two separate and complicated systems. They say, “5,000 women were
not invited for a final breast screening when they should have been because

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

364 | CHAPTER 26

of manual errors in using the unwieldy IT systems to invite women, and a
misalignment between a computer algorithm and thewaywomenwere being
invited to screenings.”

The Independent Breast Screening Review carries on: “the specific age
range of women to be invited was not set out in sufficient detail.” What re-
sponsible programmer would implement a healthcare system that was not
specified properly; why didn’t they double-check the specification against
the requirements? And “no-one realised or checked that the 2013 Specifi-
cation was compatible with the existing IT systems.” Why not? It is as if
everyone thinks IT systems work by magic and there is no need to do hard
work to make them work. Moreover, the Review tries very hard to make it
sound like the problem was not at least partly the IT itself — as if we cannot
question the perfection of IT.

These are IT systems that were being developed since the 1980s. If
there have been usability problems, there has been ample time to evaluate
the problems and determine good fixes. The “errors in using the systems”
are now errors in the design of the systems. The failure to notice that the
specifications were incomplete is a failure of using Formal Methods: if the
specification is incomplete or inconsistent, you cannot implement a correct
program. Formal Methods would have detected this problem, and led to
its resolution. In addition, standard practice for developing digital systems
requires user interface evaluation and improvement: this clearly did not hap-
pen either.

The Review also shows that the systems were owned and overseen by
several different organizations. There was no overarching oversight of how
they interact and function as a system, so the basic steps such as Formal
Methods and good user interface design fell between the cracks.

The Independent Breast Screening Review is practically an advert for the
systematic approach to safety engineering that aviation uses.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

We should program better so
that digital healthcare gets
safer, which is a Safety Two
approach. Formal Methods
is widely used in
safety-critical industries, but
not often enough in
healthcare. Here’s why
Formal Methods is needed,
and how it works.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

27

Stories for developers

Years ago, when I could imagine I was the world’s best C programmer (there
weren’t very many of us back in 1976), Professor Peter Landin — one of my
heroes — asked me a simple question. Or so it seemed. It changed my life.

Most computer programs are thousands of lines long. A typical infusion
pump — even a simple one — will have hundreds of thousands of lines of
program code. The Mersey Burns app has about 15,000 lines of program
code and that’s not counting the code shared with other programs — called
the “libraries” and “APIs” (application programmer interfaces, the cool name
for libraries). The libraries and APIs are the standard code it relies on, but
these are generally written by other people. APIs do things like send email
— they provide features that lots of programs need, but there’s no point rein-
venting the wheel and very likely introducing your own bugs to a problem
that’s been better solved and tested already.

Here’s Peter’s question …What does the simple program code shown in
the box below do?

function f(n) {
for(var i = 2; i < n; f(i++–1));
say(*);
}

A good programmer will be able to work out exactly what this code does
without needing to run it on a computer: how many stars does it print for
any value of n?

I’ve recast Peter’s problem into one of the world’smost popular program-
ming languages, JavaScript.389

If you’re not a programmer, just note how simple this question looks
and how simple the program looks. This is a tiny, tiny, tiny program

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

368 | CHAPTER 27

only a few lines long, and it’s a very basic question to ask. In
comparison, real-world programs are much more complex and much
more challenging to understand.

It is very hard to work out what this very short bit of program does.

If you are a programmer, please try answering Peter Landin’s
question. Try working it out — don’t cheat and get a computer to
work it out for you!

It’s easy enough to work out what f(1) does, what does f(2) do, … but
what does f(n) do in general, for any n?

This deceptively simple problem makes a profound point: if only a few
lines of code are so hard to understand, how hard to understand will a typical
digital health program of thousands of lines be? And if it’s hard to under-
stand, how hard will it be to debug and get right? Nearly impossible.

Therefore we urgently need to increase programming skills in healthcare
if we want to have a chance of understanding and managing the risks in dig-
ital healthcare. In particular, we needs skills to use computer tools to help
us program — programming is too hard to do unaided.

Unfortunately most programmers are unable to work out what this very
simple, brief, code does. Or why. This means there are probably many parts
of their real more complex programs that they do not understand, and which
therefore must be deemed unreliable. Most programs are written by teams
of programmers. Most programmers have no idea what anyone else’s code
does. \par Have you any idea what my little program does? (The answer is
here.390)

Here’s another scary thing. If the word “var” is omitted in the code above
(or the names “f,” “n,” or “i” weremisspelled), the programwill still compile
and run happily, but it will do something completely different. The computer
will not notice any such errors!

JavaScript’s failure to help spot errors is one reason why healthcare sys-
tems should never use JavaScript, because it is hopeless for helping to write
safe programs.

Mersey Burns is written in JavaScript. I explored a few of the Mersey
Burns app’s bugs earlier.a To be positive: JavaScript is quick and easy to
program in, so if Mersey Burns hadn’t used JavaScript wemight still be wait-
ing for it. The problem, of course, is to get the right balance between speed
and safety, and between seeing Mersey Burns as an exciting and stimulating
prototype and as a final, polished product safe for large-scale deployment.

JavaScript isn’t the only unreliable and unsafe programming language by
a long way, as we shall soon see.

a See Chapter 10: Mersey Burns app, page 121←

STORIES FOR DEVELOPERS | 369
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Programmersmakemistakes they don’t notice, just like when I wrote this
book I made many spelling mistakes and typos I didn’t notice. Fortunately,
I worked with careful reviewers and proofreaders who found lots I’d missed.

The Heartbleed bug is a famous story. Heartbleed affected key internet
software called OpenSSL, and allowed hackers to access credit card num-
bers, emails, and other personal data. There was a brief window in April
2014 between the developers admitting there was a bug and people getting
their systems fixed — about 17% of the internet’s secure web servers were
affected. Because of the central role of OpenSSL in internet infrastructure,
the scale of the problem was phenomenal. In the six-hour window after the
bug announcement, the bug had already led to the Canada Revenue Agency
(Canadian tax authorities) losing 600 taxpayers’ social security numbers to
hackers. A fewmonths later, in August 2014, Community Health Systems—
the second-biggest hospital chain in the US — admitted that Heartbleed had
enabled hackers to steal security keys from them, compromising 4.5 million
patient records.391

How did it happen? Robin Seggelmann was a programmer working on
OpenSSL, core internet software, back in 2011. He made a trivial typing
mistake, which has been famously compared to misspelling Mississippi. He
didn’t notice that he’d enabled hackers to cause chaos by, as it were, paddling
up the wrong river.

There are several astonishing issues here. OpenSSL is about 500,000
lines of code. It is central software used all over the internet. It was being
maintained by two volunteer programmers, one of whomwas Robin Seggel-
mann. Overworked volunteers missed this bug for several years. The scary
thing is the combination of problems: two volunteers won’t be able to spot
bugs very quickly, and there is a very large world of hackers out there who
are highlymotivated to find and exploit bugs. The real mystery is that so little
went wrong. Unless we change how we develop software, one day soon we
won’t be so lucky.

Prof Matthew Green, a cryptographer at Johns Hopkins University, is re-
ported as saying about Heartbleed:392

We have standards for coding in mission-critical systems like
the airline industry, but I’m not sure we would want those
standards applied everywhere. Such strict standards require
programmers to spend significantly more time testing their
work — and neither technology companies nor consumers can
stomach such delays. I don’t think we want to wait 20 years
for the next Google and Facebook.

Green’s comments about Google and Facebook may seem pretty reason-
able. It’s a common attitude, after all, but the attitude explains why digital
healthcare is so risky. Most healthcare programmers don’t knowhow towork
to the sorts of high standards expected in other industries like aviation.393

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

370 | CHAPTER 27

Would you rather wait “20 years” for something safe, or have something
new and exciting tomorrow that, well, maybe isn’t as safe as it should be? Of
course, the airline industry is different, because lots of people’s lives depend
on safe programs in airplanes… so the real problem is thatwe don’t realize, or
don’t acknowledge, that lots of lives depend on having safe digital healthcare.

Robin Seggelmann’s typo got missed — he didn’t spot his error, nor did
his colleagues until much later. But programmers should not just be relying
on humans to check their programming. When programming, the computer
itself should also help spot errors. We saw above that JavaScript does not do
a very good job of spotting spelling errors; in fact, it just makes things worse
by doing unexpected things.

OpenEMR is one very popular patientmanagement system, used bymany
GP surgeries and hospitals to manage treatment for patients, as well as do
administration and finance. It is downloaded about 7,000 times a month.
It’s used worldwide, fromKenya to the US. In 2018, the cybersecurity group
called Project Insecurity found 30 bugs that put at risk the data of 100 mil-
lion patients worldwide.394 At the time of writing this book, bug fixes had
been released and sharedwithmany—but not all—OpenEMRusers. Open-
EMR is written in the programming language PHP. PHP is much worse than
JavaScript.395

Here are two examples illustrating how PHP works:

Healthcare systems need to check numbers. So a program might
check that a number x is equal to ten, say, which it would do by
writing x==10. Except that in PHP this is always false, even if x is
exactly ten (you’d expect x==10 to be true if x was equal to ten) — the
problem is, it should have been written $x==10, with a dollar, for it to
work correctly.

If I wrote “$x = 1; echo $x” in PHP, the variable x would first be set to
1, and then its value would be printed, namely PHP would say “1.”
That seems clear enough, but if I missed out the dollar in the echo,
nothing at all would be printed — it just wouldn’t work.

In both cases, missing out the dollar sign is an error — perhaps because
of a simple typo or spelling mistake — but PHP does not notice and warn
me. A safe programming language would complain and stop anyone using a
program with such a critical spelling mistake in it.

Amazingly, PHP has a feature, written with just an @ sign, which a pro-
grammer can use to force it to ignore errors! This feature encourages pro-
grammers to write programs that may have errors in them, and just to ignore
the errors. This feature certainly saves a lot of time programming, as it com-
pletely saves thinking about errors or what to do with them, but it’s asking
for trouble.

Ironically, you might type @ by mistake and never notice.

STORIES FOR DEVELOPERS | 371
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

It is amazing that the PHP programming language is designed to encour-
age silencing errors, and astonishing that it would then be chosen as an ap-
propriate programming language for any safety-critical systems in health-
care.

I wonder if the programmers who wrote OpenEMR, which, as we dis-
cussed above, uses PHP, wrote a computer program to check that @ was
never used? There are, of course, many other things such a useful program
could do to help catch bugs and generally improve quality while it’s at it — in
contrast, programming languages like SPARK Ada cannot be used without
highly developed static analysis tools, so they are much safer.

Far, far, worse than either JavaScript or PHP is the programming language
MUMPS,396 the programming language underpinning many of the world’s
major healthcare systems. MUMPS underlies Allscripts, EMIS, Epic, and
VistA healthcare systems, and many more.

Epic is arguably the dominant digital healthcare system,397 — handling
about 200 million patients around the world. The largest digital healthcare
system inside the US is VistA, short for the Veterans Health Information Sys-
tems and Technology Architecture. VistA is used by about 200,000 staff in
1,000 hospitals, clinics, and nursing homes, managing nearly 10 million
patients. It’s the US Department of Veterans Affairs (VA) system.

However good a programmer you are, MUMPS allows, no, it encour-
ages, errors that it does not help detect. There is a vicious circle: if you
use an “easy” language, like PHP or MUMPS, you can recruit cheaper, less
competent programmers towork on your systems, and your problems rapidly
escalate.

Programs often have to know when something is true; for example, is it
true that the user operating the drug dispensing cabinet has an authorized
identity? Are they allowed to get drugs out of the cabinet?

In MUMPS, a programmer would write something like

if authorized …

to test the user’s authorization. However if the programmer typed, say, ‘if
authorised” (with an s) or “if uthorized” (without an a) by mistake the test
would not work correctly when the program was used. MUMPS would not
notice the typo. More confusingly, if by some slip the programmer just wrote
“if,” that is, missing out what to test altogether, MUMPS would happily, and
silently, use the value of a quirky variable called $test instead. What $test
means depends on things done earlier in the program, and it’s not very likely
the programmer — especially if this is a new programmer joining the team
to add code — has much idea what it means. In my view, what MUMPS has
done is turn an error into a feature that programmers think is cool, but in
reality undermines the safety of the language.

Program tests themselves should always use the values true and false
only; nothing else makes sense. However, MUMPS allows anything, con-

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

372 | CHAPTER 27

verting numbers and strings into true and false following quirky rules of its
own. This means that if a programmer makes a mistake, for instance say-
ing x instead of x=0 (is the number equal to zero?), then MUMPS will be
completely happy — but do something unexpected. The trouble is that the
unexpected, unwanted things MUMPS does may be good enough when the
program is tested, but may cause a disaster years later.

Here’s another way of putting it. Let’s carefully check our member of
staff knows the correct password to prove they are authorized to take drugs
out of the drug cabinet. The correct MUMPS program might say something
like

if password= 26jumble …

but if the programmer misses out a bit, say, writing

if 26jumble …

then it will always succeed, even though it’s nonsense, and regardless of
the password the user actually uses.

You might think that is an unlikely error, but with any large enough pro-
gram this sort of error will happen. Systems like Epic are millions of lines
of program code, and they are written and maintained by thousands of pro-
grammers. One day, one of them will make a mistake, perhaps not under-
standing exactly what’s going on somewhere else in the program — perhaps
not even realizing they don’t understand.

Silent errors can lie around in a program for years. Who knowswhat they
do? Would clinicians using the MUMPS program notice and realize “their”
errors were actually caused by the program? Would the investigators of an
incident blame the program and not the “responsible” clinicians?

Putting it more charitably, if a company usingMUMPS tries to make safe
changes to any program, they will take a long time working out what’s going
on and how to change it safely — so they will just change it and have to hope
for the best. The advantage of being able to write programs quickly thus
becomes a serious problemwhen the shortcuts taken by earlier programmers
become unfathomable.

It’s a problem recognized by calling it write-only programming. No-
body is expected to be able to read and understand write-only programming,
and it’s often easier to start again and leave old bits of program untouched.
Gradually programs collect more and more additions, with nobody ever dar-
ing to fix anything in case “fixing” ruins everything else. Write-only pro-
gramming is a shout of exasperation: “I don’t understand this write-only
programming! It wasn’t written to be read” This is the road to software rot,
as the problems just get worse and worse over time.

The common problemwith JavaScript, PHP, andMUMPS is that the pro-
gramming languages have tried hard to be concise and quick to use. This

STORIES FOR DEVELOPERS | 373
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Box 27.1. Epic’s daylight saving and Y2K

Twice a year those of us who don’t live near the equator change daylight
saving, where clocks are changed by an hour to help increase the amount of
daylight people have during working hours. The idea was originally proposed
in the nineteenth century by George Hudson. It’s not a new idea.

Carol Hawthorne-Johnson, a nurse in California, says her hospital
doesn’t shut down their Epic system during the time change, which means
that any patient data entered into Epic between 1 am and 2 am is deleted
when the clocks change.398 An hour’s worth of record-keeping “is gone,”
she says.

Dr Mark Friedberg, is quoted by USA Today saying398 “It’s mind-
boggling. In 2018, we expect electronics to handle something as simple as a
time change. I shudder to think,” he said. “What does it do with leap years?”

I wrote about this mess way back in 1991.399 How is it still a problem
when, thousands of years ago, Julius Cæsar sorted out leap years. What we
now call 46 BC went down in history as the “last year of confusion.” That
optimism now looks rather premature!

Problems that get sorted out in the world don’t always get sorted out
in the digital world. The Year 2000 (Y2K) problem took this to a new
height;a without a huge worldwide effort, many computer systems would’ve
had problems at the turn of the millennium, on New Year’s Day 2000. The
problem was that years earlier, nobody had thought computers would work
that long, and very few programmers thought to make their software robust
enough to survive the date change safely (or possibly managers didn’t allow
their programmers to spend the time to program more reliably).400 The year
2000was hardly unexpected, yet it was a widespread bug. Many of the prob-
lems in digital healthcare creep up on us in ways that are very much harder
to anticipate.

a See Chapter 4: Millennium Bug (Y2K problem), page 33←

makes them popular with many programmers, and soon many useful pro-
grams are written in these languages, and then the easiest way to program
anything starts off by building on the vast libraries of resources. Thus the
community of programmers grows.

Yet none of the languages were designed to be safe. They are unsuitable
for healthcare use. I’ve called such programming languages heedless,401
since they just make programming unsafe, however good the programmers
that use them try to be.

MUMPS started life in the 1960s, when it was at the time, arguably, do-
ing a good job with what primitive equipment was available, but now it has
left a prehistoric legacy to everything it supports.

Since the 1960s, safe programming has improved beyond recognition.
Unfortunately, too few healthcare programmers have caught up with current

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

374 | CHAPTER 27

best practice in safe programming — there are thousands of healthcare pro-
grammers caught up in having to program in PHP, JavaScript, and MUMPS
to keep old systems working, who haven’t had a chance to learn any better.

For a start, unlike JavaScript, PHP, andMUMPS, most modern program-
ming languages require declarations, where the programmer has to “de-
clare” they are going to use certain names in their program, like x. If they
make a typo and write a name like xx by mistake that won’t have been de-
clared, then their program cannot even be run: the computer points out the
mistake to them so they have to correct it before the program can be run.
MUMPS, PHP, and JavaScript do not require declarations, so they cannot
even detect such simple typos or help the programmer be safer.

Better modern languages further require names to be strongly typed,
so that you can’t accidentally mix chalk and cheese — I also covered type
checking briefly earlier, as it’s such a fundamental idea.b Strong typing is a
bit like requiring every word in this book to be correctly spelled English, and
only used in grammatical English sentences — just telling the computer this
would pick up more errors that might otherwise have been missed and led
to confusion for you, the reader.

For example, with amodern typed language, you cannot accidentallymix
up a number and a truth value. While JavaScript and other programmers
might find this tedious, it stops a wide range of unnoticed errors ever hap-
pening. It improves safety, and it’s a slight burden on the programmer that
is worth it to eliminate bugs.

To go back to my example of trying to get the words in this book spelled
right: obviously, I used a computerized spell-checker to check the words
were correctly spelled. That’s a bit like declaring all my words I use in the
book, and the computer automatically checking they are valid English words.
In fact, I used the computer and human proofreaders to help review this
book.

In JavaScript and similar languages, you can do what you like, because
they aren’t typed like this. Being free from types seems superficially very
flexible and convenient, which it sort of is. But if you want to write safe
programs — as we need to in healthcare — it’s asking for trouble. It’s asking
for trouble you won’t notice until something goes wrong.

It’s far better, if youwant safe programs, that is, as we surely do in health-
care, to use programming languages that are strict and require declarations
and types and assertions and other safeguards — like, for this book, strict
proofreaders worried about that what I wrotemade good sense in English.402
Furthermore, we want to move as many checks from run time (for instance,
assertions) to compile time — while it’s obviously useful to detect errors in
a running program when assertions fail, it’s even better that programs that
may be faulty are never run in the first place.

b See Chapter 21: Programming with types, page 282←

STORIES FOR DEVELOPERS | 375
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Fortunately, there aremuch better programming languages available than
JavaScript, PHP, and MUMPS, and their friends.403

One of themore practical and reliable approaches is to use a system called
SPARK Ada. SPARK Ada incorporates Formal Methods and is designed to
catch errors, and to stop you writing programs that are badly designed. It is
used widely in the aviation industry — because people’s lives depend on safe
software. It’s a great shame it isn’t used widely in healthcare — note that you
can also write medical apps in it, as it will run on mobile devices.

Another programming language to use is MISRA C (or MISRA C++),
which is a safer version of C that is widely used in the car industry. Imagine
that you want to program anti-skid brakes; you’ll want them to be very reli-
able to avoid car accidents. MISRA C was developed by the Motor Industry
Software Reliability Association (MISRA) to ensure car software is safer than
C (and similar languages) can achieve alone. InMISRAC, any programswith
simple errors like I’ve just described above would be rejected and would not
even be allowed to be run. It is a much safer way to program. Healthcare
doesn’t have any equivalent to MISRA to help make digital healthcare safer.
Yet.

Indeed, there is much work going on to make safer programming lan-
guages. Rust is a new programming language that has been under devel-
opment for over a decade, and it’s starting to become very popular because
of its nice balance between safety and flexibility, which programmers like.
There’s an excellent introductory article on Rust,404 which I recommend you
read because it describes the problems of bad programming that Rust solves
— you should about know all these problems, even if you never want to use
Rust. However, using Rust (and any of Rust’s ideas) would be a huge im-
provement over conventional digital health programming. A salutary point
in the article is that programming safely poses fundamental research ques-
tions that are still being addressed — in other words, any digital health pro-
gramming is pushing the boundaries of safety, and one should be extremely
careful whatever language you use.

To be realistic, there are all sorts of practical constraints that limit the
choice of programming language. In digital healthcare, it’s very common
that some complex machinery, such as an MRI machine, needs to be con-
trolled and the hardware or, rather, the hardware manufacturers, limit the
languages that it can be programmed in. Training programming teams to
use new languages is another problem. Or there’s a huge, existing, code base
that won’t work with a new language. In these cases, in fact in all cases, a
wise approach is to outline a specification of what the system does in another
language, such as Alloy,405 to explore its design, correctness and safety. By
using a formal specification language, you can explore “the big picture” of
the program’s safety whether or not you use a safer programming language.

It is a bit beyond the scope of this book to explain in detail whyMISRAC,
SPARK Ada, and Rust are so much better.406 These programming languages

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

376 | CHAPTER 27

Box 27.2. Never events and good programming

The healthcare ideas of never events and always conditions correspond
to some important Formal Methods ideas in programming.

Safety properties describe things thatmust never happen; they are the-
oretical properties that should be proved of programs. For example, if a nurse
enters a drug dose to an infusion pump, the pump will never deliver a higher
dose.

In contrast, Always Conditions correspond to liveness properties.
Again, these are theoretic properties that a program must always have. For
example, when the Off button is pressed twice the device will always stop
doing whatever it is doing.

are aspects of a programming style called Correct by Construction (CbC)
– avoid problems in the first place, rather than trying to test and debug to get
rid of problems.

People who know SPARK Ada or Rust will also know fifteen other ex-
cellent ways of programming; choosing the language itself isn’t the only so-
lution. But, here’s the thing: if you don’t know at least one good approach
like MISRA C or SPARK, you should not be programming in digital health-
care, because your programs will be unavoidably unreliable. And, as I’ve
emphasized throughout this book, we don’t notice our own errors, so a key
problem is that you have no idea how unreliable your programs really are.
Indeed, almost all programmers are over-confident and have little idea how
buggy their own programs are.

I think there are obvious reasons why Formal Methods are good, but
those reasons don’t necessarily mean that Formal Methods help make safer
systems in practice. Do Formal Methods work in industry? I reality perhaps
too complex for Formal Methods?

As a matter of fact, people have been researching the impact of Formal
Methods, and the evidence is that it works very well.

The quality of a program can be estimated by counting bugs, and the
standardmeasure is to count bugs per thousand lines of program code, known
as defects per kLoC (k here meaning kilo, one thousand). Very good soft-
ware developers can get down tomaybe 10 to 30 defects per kLoC. However,
using Formal Methods and CbCmethods, one can get down to 0.1 per kLoC
in the same time. Of course, not all bugs should be counted equally — some
are life-critical, some are just a nuisance, some are found quickly, and some
may lie dormant for years407 — so counting or estimating numbers of bugs
per kLoC, then, can’t be the whole story. What FormalMethods clearly does
very usefully is help reduce bugs (and hence the risks to patients) to very low
levels, but, crucially, it is a different sort of tool that helps find — and elimi-
nate— bugs that human programmers won’t find unaided. Just on that basis,

STORIES FOR DEVELOPERS | 377
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Formal Methods ought to be required for all digital health development: it
works and it complements human programmers.

The bit of JavaScript program I showed at the start of this chapterc is eas-
ily translated from JavaScript into the programming language C; it’s virtually
the same thing, like writing in a different dialect. Interestingly, MISRA C,
the safe version of C, will not even let you try my example program at all.
Whereas I found it difficult to think about what it does, MISRA C went fur-
ther and decided that if it’s that difficult, then it should not even be used.
That’s how a safety system like MISRA C can help make better and safer
systems.

Sensible systems like MISRA C protect us from ourselves.408
A long, long time ago, a long time at least in computer terms, Tony Hoare

gave a speech to accept his 1980 Turing Award, the Computer Science ver-
sion of theNobel Prize. In his speech he famously criticized the bad practices
many programmers slip into:165

I note with fear and horror that even in 1980, language
designers and [programmers] have not learned this lesson [to
check the correctness of their programming]. In any
respectable branch of engineering, failure to observe such
elementary precautions would have long been against the law.

In the decades since then, programming has becomemuch easier, and it’s
now farmore powerful than inHoare’s 1980. Unfortunately, while program-
ming is easier, programming safely has become very much harder. Most
people who design programming languages prefer power over safety, and
sadly this makes it even harder for programmers to program safely.

Here’s a typical example.
Let’s say we want to look up a number in a table; to be specific, we want

to use a patient’s age to look up their risk of having a Down syndrome baby
— a serious issue we’ve already talked about.d

In many programs, risk data would be stored in a table called some-
thing like dataTable. Each entry in the table is then accessed by writing
dataTable[1], dataTable[2], and so on, to look at individual table entries. If
a patient is 20 years old, their risk would be found in dataTable[20]. Proba-
bly the details would be different — for example, the table might be indexed
by weeks instead of years — but this level of detail isn’t important for our
discussion.

Here is the fundamental tension:

If you want programming to be easy, you will want power, flexibility,
and lots of options and choices. So you might use the programming

c See Chapter 27: Peter Landin’s mystery code, page 367←
d See Chapter 4: Millennium Bug (Y2K problem) and Down syndrome tragedy, page 34←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

378 | CHAPTER 27

language Python (to take another very popular healthcare
programming language to task), which allows you to count from
either end of a table, instead of restricting you to one end. So, in
Python, dataTable[1] is entry 1, but dataTable[–1] is entry 1 from the
other end. This may be a convenient feature if you need it, but it
means that the accidental error of looking up a negative value in the
table is something the programming language accepts as perfectly
valid — but it won’t mean what you expect.

If you want programming to be robust, forgiving of errors, you want
errors to be ignored and for the program to carry on running. So you
might use JavaScript, which is a more robust language. If you look up
dataTable[–1] in JavaScript, you get the “value” undefined. However,
the program carries on running as if nothing has happened, and
anything you do with undefined carries on as if it makes sense. You
might want to warn the patient if the risk is larger than 0.8, say,
which you’d naturally do by writing if(dataTable[i] > 0.9)
Unfortunately, as JavaScript works, it’s false that undefined is greater
than 0.9, so the program probably goes wrong — and it goes wrong
completely silently, so nobody knows that it’s gone wrong.

If you want programming to be reliable and dependable, that is much
harder. Every feature that makes a language seem easier, more
powerful, and flexible, is also a feature that gives accidental and
unintended meanings to your errors. So you don’t want cunning
features; you want strictness and pedantry. Your boss will think you
are a slower programmer, and at the same time your programs will
seem to do less. Your programming language is stricter and harder to
use, and you have to plan more carefully. Dependable programming
is difficult.

There is a tension here with Agile, an extremely popular approach to
quick-and-dirty programming. Agile has been systematized into a whole ap-
proach encouraging changing and adapting things quickly and being respon-
sive to customer or user needs.409

Agile requires you to build quickly, fail quickly, and improve. Facebook’s
motto (up to 2014) used to be “Move Fast and Break Things” — a hacker
rallying cry that prioritized rapid product development and evolution over
everything else.410 Push out products. If they work, great. If they don’t
work, learn, update, and push out another version. But at all costs stay ahead
in themarket. Agilemakes things fast, but at the expense of ignoring creating
problems on the way to getting there. Agile works for Facebook because
its products don’t directly harm people if they go wrong. Agile works for
Amazon because if something goes wrong, they can send you some credit or
send another parcel.

STORIES FOR DEVELOPERS | 379
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Agile means that developers quickly prototype something, try it out, and
improve it — although experimental and iterative design are good ideas re-
gardless of Agile. Despite its popularity in consumer and business systems,
Agile is unsuited to healthcare. Agile does not work for healthcare because
“Move Fast andBreak Things”means it is likely that somethingwill gowrong
that might cause somebody irrecoverable harm before you have a chance to
improve anything. I make it a rule:

Agile and similar methods are inappropriate for digital healthcare
development.

More specifically: Agile is fine for non-critical software, but for anywhere
that may have an impact on patients or staff health or welfare, Agile is not
appropriate. Inside of healthcare, Agile can be a disaster because systems are
used before they are polished, and this is likely to cause problems. Outside of
critical areas like healthcare, Agile is fine: it makes developers competitive,
racing to provide new features.

In contrast to Agile, Formal Methods requires you to plan carefully, and
makes it harder to change, since change can introduce errors with unforeseen
consequences. Formal Methods means “build thoughtfully and don’t fail.”
In contrast, Agile celebrates change and adaptation, so accidental changes —
errors— are hard tomanage. FormalMethods are designed to stop accidental
change, so the resulting systems are much more reliable. They are different
philosophies, with very different benefits. I’ll discuss resources for reading
about programming at greater length later, including the idea of flexibility,
which makes Agile easier and more reliable to implement.e

We ought to be regulating digital healthcare as seriously as equally criti-
cal areas of engineering (like aviation, building, radiation, gas, or electricity),
just as Hoare said we should. Unless and until regulators start requiring dig-
ital safety, reliability and dependability in healthcare won’t happen because
everyone is too keen on programming being easy and exciting rather than
safe.

When Peter Landin asked me what the program code I showed you at
the beginning of this chapter does, my first answer was wrong.

I naïvely thought: “simple program, simple answer.”
How wrong I was!
Peter then challenged me to work it out properly. So I spent all that

evening on the problem. Finally I got it right (I was young and naïve then;
I can do it much faster now). The next day, I met Peter, and I showed him
my solution. He then told me how to approach the problem better — my so-
lution wasn’t as good as his elegant answer which was obviously right, and
moreoverwas obviously a goodway of solvingmany programming problems.

e See Chapter 33: If you are a developer, page 484→

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

380 | CHAPTER 27

My approach really only worked with the particular program; it gave me the
right answer but, unlike Peter’s answer, it didn’t help with solving problems
with other, different programs. Put another way: I solved the problem using
math, whereas Peter solved the problem using Methods, Formal Methods.

It takes a few minutes to do a job well if you know how. It was a forma-
tive moment in my career: simple-looking programs are not simple! Now I
believe in Formal Methods. What’s more, when I write programs, I always
put assertions and other rules in them.f Just in case I’ve made a mistake, I
always want the computer to help block or help me find my errors. Well …
except when I am over-confident. The trouble is, I never notice when I’ve
fallen into the trap of being over-confident. I usually find out too late. Which
is why we need teamwork and all the other help we can get.

I had thought of ending this chapter with a helpful list of programming
languages and tools that I would warn you off or that I would recommend.
There certainly are unsafe languages to avoid in healthcare (like C, C++,
JavaScript, PHP, …), whereas SPARK Ada is very good. Unfortunately, I
don’t know what you’re trying to do — what you want for an entertainment
system will be different from what you want for an MRI scanner or from a
telephone exchange. Instead of having a list from me, whenever a program-
ming language or tool is going to be used, make sure there is a professional
justification that the choice is safe and appropriate to use for the intended
purpose. Make sure the language is well defined and has tools to support its
effective and efficient use too. Don’t forget that programming languages are
a fashion industry, with all the corresponding emotional pressures on us to
buy into the latest fashion just to keep the industry going. Remember: digi-
tal healthcare (and all the patients and staff depending on it) deserves better,
something more thoughtful, than the latest fad.

f See Chapter 21: Assertions, page 291←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

Although it helps everything
else, Formal Methods isn’t
enough on its own. Thorough
testing is essential to ensure
things really work well,
especially when things are
going to be used in complex
environments like healthcare.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

28

Finding bugs

Often, programs are tested and demonstrated by people who know what the
program is supposed to do, so many bugs are not uncovered — most bugs
hit you when you do something the programmer hadn’t anticipated.

A famous example of this is when Grete Fossbakk lost a lot of money
from her bank account in 2007.

Here’s how it happened. Grete Fossbakk used her bank’s user interface
to try to transfer some money to her daughter. Unfortunately, Grete double-
pressed a 0 key, resulting in a longer account number than the correct num-
ber for her daughter’s account. This number was too long, so it was auto-
matically made shorter, thus obtaining another number. Unfortunately, this
number was a valid account number.

Thinking she had keyed the correct number, Grete confirmed the money
transfer, despite it actually being to a differently named account. The person
who inadvertently received the money was eventually sentenced to prison,
but this did nothing to help Grete get her money back — which the lucky
chap had already spent.

Grete lost about 500,000Norwegian krone (which is around $75,000 or
£50,000 — a lot of money to lose) because the bad banking system allowed
her to type an incorrect bank account number without blocking her error or
warning her.55 This is the same sort of failure to help the user we’ve found in
lots of digital healthcare systems. The bank’s system must have looked fine
to all of the developers whomade it, but they’d overlooked a serious problem
— which cost Grete a lot of money.

I used a made-up account number in the table (figure 28.1) to make it
clear how the problem happened.411

The problem is that digital systems can look fine, and even dowell in user
testing, but unfortunately this is misleading: the developers might still have
overlooked testing for erroneous user input such as Grete made, or many
other forms of error. It’s a surprising oversight for a bank to make.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

384 | CHAPTER 28

Grete Fossbakk’s daughter’s bank account number. This
is the number that Grete intended to type.

87408455566

What Grete actually typed, including an accidental extra
0 digit. I’ve arrowed the extra digit for clarity. You can also
see the incorrect number is now too long.

87400
↑
8455566

Instead of blocking the obvious error and warning Grete,
the bank just silently ignored the final digit, “correcting”
the number into an unrelated but, unfortunately, valid ac-
count number for someone else.

87400845556

Figure 28.1. Explaining Grete Fossbakk’s bank’s mistake. Unfortunately, Grete’s
typing error was ignored by the bank’s computer. Instead of detecting and blocking
the error, so Grete could correct it, the bank instead ignored the error. The bank
didn’t tell her it had changed the number she had typed. Grete then unwittingly
transferred money to the wrong account. (All the bank account numbers are just
for illustrative purposes.)

I had a look at my own digital bank account, many years after Grete had
been caught out, and my bank account still has the same bug. I don’t use
the same bank as Grete did; this is a general banking problem across the
sector. Banks can blame customers for making mistakes that are caused by
their programs. I won’t tell you my own bank account details, but you can
try yours. In other words, anyone today couldmake an error like Gretemade,
and still some bank websites won’t notice or block it.

A similar error in 2019 lost Peter Teich £193,000 when a sort code was
mistyped. Surprisingly, Barclays Bank have several customers with the same
account numbers but different sort codes, yet their computer systems do not
have redundant checks (such as checking the names match as well as the
account numbers). Given that Barclays Bank must know that they have du-
plicate account numbers, this failure to manage predictable errors seems as-
tonishing. The lucky recipient refused to refund the money, and the bank,
even after being notified of the error, allowed them to dishonestly withdraw
£193,000, which has now disappeared.412

It seems the industry isn’t testing code verywell, and it isn’t using Formal
Methods to mathematically specify and check its programs. (More specifi-
cally, it isn’t using Formal Methods to specify and check a bank’s user inter-
face.) Perhaps management thinks a banking system is finished because it
looks OK, so why waste more money on testing it? Or they aren’t collecting
data on how their system is actually used and using the data and real use
errors to help improve it. Perhaps the bank did do a cost-benefit analysis on
further testing, in which case one could argue that with better programming
the testing would be cheaper, and therefore more cost-effective. It looks like

FINDING BUGS | 385
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Box 28.1. Don’t use bad programming languages

Here is a little bit of program, written in JavaScript:

alert(parseFloat(40.5));

There are three steps to this program:
1. 40.5 The string of characters 4, 0, dot, then 5.
2. parseFloat What is the numerical value of those characters?
3. alert Tell the user the value.

The standard JavaScript function parseFloat converts the keys you typed
into a number, which should of course have the value 40.5. Indeed, the code
above will say 40.5 here, as you expect.55

It looks very easy: the user keyed 40.5 and you’ve got 40.5. Unfortu-
nately, it’s likely that the programmer has overlooked subtleties.

Suppose the user enters “40.5 mcg”; that is, the user specifies the units,
micrograms, too. Did the programmer remember to check for that? No. The
standard JavaScript code inside parseFloat does not notice. You will get the
same result if the user types mg (milligrams) or kg (kilograms) or even lbs
(pounds). None report the error: that important units are being ignored.

You can run this code on a computer and try entering your own imagi-
native input; the notes at the end of this book give more details on how to do
this.413

In short, the standard JavaScript code parseFloat is a disaster if you want
to have a safe program. And if something so fundamental is a disaster, what
else is going to go wrong when you use other standard features in a larger
program? There is no easy way for a programmer to protect against such
built-in bugs. JavaScript should never be used in healthcare.

a head-in-the-sand approach has certainly saved higher development costs
too. It’s a conflict of interest that shouldn’t happen— testing should be done
independently and more realistically; it needs a bit of randomization, too, to
think out of the box and avoid the developers’ preconceptions of what might
need testing and how.

Possibly, the developers did use Formal Methods, but they didn’t use
it on how their program read account numbers. It’s likely they used some
standard program to read numbers, and they just assumed it worked properly.
Uncovering such assumptions is exactly why good testing is required. The
testing has to cover what happens “end to end” and not just the bit of code
you wrote. It has to cover everything — just as it would be used in the real
world by people like Grete Fossbakk.

The trouble is, too many programmers skimp these important things, so
their programs end up not being reliable enough for healthcare. Unfortu-
nately, it’s very easy to conceal bad programming from managers and hos-
pitals until it’s too late — accidentally or deliberately. Real programming is

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

386 | CHAPTER 28

very hard, and FormalMethods, and programming languages such as SPARK
Ada and similar tools, are a very important part of the solution, but compa-
nies most likely want to be quick-to-market more than they want to provide
high-quality solutions. Since everybody works like this, nobody realizes it is
lowering quality across the board. It’s a recipe for problems.

Programsmust be correct, but they also have to work well for their users.
Just because the program is “correct,” even if you can prove it is correct, does
not mean it is correct. Youmight, for instance, be doing the wrong thing cor-
rectly. Correctness as such does not show that a program works correctly in
a medical context and is safe and helpful with patients. Just as programming
needs code review,a Formal Methods, the mathematical specification of the
task, also need review. Some of the people reviewing the formal specifica-
tions need to come from other disciplines as well, so that there is real in-
put from nurses and others who will use the systems — they will be doing
complicated things that the programmers working on their own won’t really
understand.

Code review supplements Formal Methods. I am surprised how rarely
developers make tools to help them do code review systematically.

For example, it’s easy to work out all the screens or displays the software
can generate, check them off, and record which screens have been correct.
When the software is edited, which screens have been changed and need
checking again? In principle, that’s a very easy question to answer if you
have a tool to help do it, and if you built a program that knows what screens
it can generate. If you don’t have a tool, then errors will slip through. And if
you’re writing programs that can’t work out all the screens they can display,
then that could be worrying.

The lesson that digital healthcare should learn is the fact that something
looks great, works (at least up until this moment in time), and even has been
tested, means next to nothing. Testing alone is unreliable, and certainly,
testing in the lab — although better than nothing — is unreliable and usu-
ally misleading. Bugs sometimes take years to surface and affect users, and
manufacturers rapidly give up on testing, and then just ship their products
and leave it to the rest of us to find the bugs for them.

FormalMethods is not something that can be learned in fiveminutes, and
most programmers will deny they need to use it. Look at all the successful
things they have programmed — they didn’t use Formal Methods then, so
why (they argue) should they need Formal Methods now?

If you are going to be given an infusion, or connected to a ventilator, or
given radiotherapy from a linear accelerator, can you — or anyone else —
prove the program works? Can you prove it is always possible to stop it?
Can you prove it will never deliver an overdose? Can you prove it will detect
use errors (when users accidentally key in out of range numbers)?

a See Chapter 20: Code review, page 273←

FINDING BUGS | 387
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

If you can’t prove it works, your only reason to believe it is reliable is
that when you tested it you found no (or no critical) bugs. But how do you
know your testing covered all the possibilities? If some bug is caused by
an oversight, how do you know your testing doesn’t suffer from the same
oversight? How can your testing find types of bugs you don’t even know are
there?

The answer is to prove your program is correct, which you do through
Formal Methods. (You also want to prove your testing covers the relevant
parts of the program — coverage being a technical problem that should be
done rigorously.)

It’s important to understand some of the benefits of FormalMethods. Or-
dinary testing helps improve products and should always be used, but Formal
Methods is more thorough at what it does, and it’s much faster.

Let’s say we are using Formal Methods with the banking system that
Grete used. Typically there would be a library of standard design proper-
ties to check, but a good one might be:

Pressing the delete key deletes one character of user input
AND only the delete key deletes input
AND if there is nothing to delete, it beeps.

… though it would be expressed more mathematically. The notes at the
back of the book give ideas for more such properties, and show how to use
them to ensure infusion pumps are safe.414

Proving a program is correct is difficult, so people usually use computer
tools to do it — another aspect of resilience. There are many tools that can
help. A Formal Methods tool, given the bank’s program to check and the
property summarized above, would report that if a user keys more than 8
digits in some parts of the user interface, then some digits get lost — and not
because of the delete key being used, but because of a design bug. Formal
Methods can report that bug in seconds, but to find it by testing with users
would take ages and perhaps it would never be encountered. Not finding a
bug during testing never means there isn’t a bug!

It’s worth noting that as more work is done with Formal Methods, the li-
brary of useful things to check gets enlarged with more issues. For example,
if UCD testing finds that users often get dates muddled (say, getting month
and day number swapped out of order), then these issues can be expressed
in a way so that the FormalMethods tool can check the system handles these
problems appropriately everywhere. In a second, Formal Methods can gen-
eralize a UCD insight which, had it continued under conventional UCD in-
vestigation, would have taken centuries.

Programmers of digital healthcare should use Formal Methods. The reg-
ulators should insist on seeing their homework, and seeing their “working.”
My teachers used to ask to see my working; I might have what looks like the
right answer, but if I don’t understand how I got there, perhaps I don’t un-

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

388 | CHAPTER 28

Figure 28.2. A trolley full of a manufacturer’s lengthy written response to a regu-
lator’s single question.

derstand what I am doing. If manufacturers had to supply why they believe
their safety claims, this could be assessed by the regulators or their desig-
nated bodies. If manufacturers used Formal Methods, this would be very
easy to do — indeed, the regulators could use tools to automatically check
the claims.

This is an accurate drawing (figure 28.2) of a huge trolley-load of paper-
work a regulator has been sent. In some countries, like the US, the regulator
has a limited time to respond to depositions from a manufacturer. It’s hard
to imagine how diligent regulators can read through such a large quantity of
documents fast enough to respond properly, so the system is being gamed.
Why has the regulatory process become so disconnected from what it is in-
tended to ensure?

We built a tool that can analyze interactive digital healthcare devices.415
It can check whether they conform to the US FDA and other safety and us-
ability requirements (figure 28.3).

The picture may not look very exciting, but it allows people to simulate a
device (two different devices are shown in the picture) and it is run inside a
Formal Methods system that can do all sorts of safety checks. You can click

FINDING BUGS | 389
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Figure 28.3. Our Formal Methods tool, analyzing an infusion pump.

buttons on the screen, and things happen — the 1.2 and 74 numbers, for
instance, were generated by our system and drawn on top of photographs of
the systems it is simulating. In its “design mode” you can also move but-
tons around and add more. What the system does is turn the usually rather
mathematical Formal Methods into something that works and can be shown
to people and discussed, explored, and tested on clinical tasks. You don’t
need to be a mathematician to see how useful it is.

If the everyday calculators I criticizedb had been programmed in SPARK
Ada, the computer would have warned that they cannot work correctly with
large numbers. You can then easily find and fix the problems that Casio and
Apple did not notice.

Formal Methods are hard, in that programmers need mathematical skills
and training to use them effectively — but I’d argue that a programmer who
doesn’t know or isn’t able to use Formal Methods probably isn’t good for
digital healthcare, or at least isn’t good for the safety-critical parts of digital
healthcare — which is most of it. However, there are easier techniques that
are still very helpful, and can be used very effectively with Formal Methods.

A very simple and effective approach is fuzzing. Instead of, or rather, as
well as, testing on users — or, worse, only testing on a few developers — test
on computers.

b See Chapter 14: Calculator bugs, page 179←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

390 | CHAPTER 28

Computers can easily pretend to be users, they are cheaper, they are
much faster, and they don’t get bored or need paying for their time. Huge
numbers of tests can be run automatically with virtually no effort.

It baffles me that so many programmers think their programs work so
well that they don’t fuzz them, not even to check.416

We built a simple tool to do fuzzing, so it’s easy to collect lots of data and
compare alternative designs to see which is better. Data can be collected and
then plotted — graphs show trends in the data that can be very insightful.
Since the simulated users are behaving randomly, typically you get wiggly
graphs, which smooth out as the number of fuzzing trials is increased. It
might take a while to generate millions of tests to get smooth lines, but the
safety trends are usually very obviousmuch sooner. In particular, comparing
two or more designs is much more insightful than just analyzing one design
in isolation. It also helps you distinguish between bugs in the system being
tested and any bugs there may be in your simulator.

The graph shown (figure 28.4) compares the user interface of the popu-
lar Hewlett Packard EasyCalc 100 (it’s similar to many medical devices but
is easier to obtain), and a design inspired by the Institute for Safe Medica-
tion Practices (ISMP) recommendations for writing numbers reliably (figure
28.5). The details are fully explained in our papers,417, but in this brief de-
scription the details are not as important as seeing that this sort of analysis
is very quick, insightful, and easy to do. Any programmer who can generate
random key presses can find out all sorts of useful things. Fuzzing quickly
finds bugs; random key presses by definition do unexpected things. Fuzzing
can compare designs to see how relatively safe they are. Here, fuzzing is
making very clear that following the ISMP guidelines would make systems
much safer to use.

Failing to do even this basic sort of experiment (and fixing the bugs it
uncovers) before releasing products for use in healthcare is negligent, as is
any regulation that allows products to be marketed without adequate safety
evidence.

A lot of modern software is developed using an Agile process. Agile
means that partly working software is quickly developed, trialed, and im-
proved in a repeating process. This approach suits a lot of software develop-
ment, as often organizations want something “better than nothing” working
as quickly as possible. This is what Agile promises and often achieves.409

Earlier, we saw how Agile and Formal Methods are opposed,c but now
we will see that Agile and rigorous testing — as required in healthcare —
are opposed. Because Agile and Agile-like methods produce a continual se-
ries of rapidly improving prototypes, it is hard to test the systems rigorously,
as nothing is finalized. Let’s say a statistically reliable test of a new system

c See Chapter 27: Agile method, page 378←

FINDING BUGS | 391
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

HP calculator

Typical commercial design

ISMP-inspired

safer design

Increasing user vulnerability

missing errors

No

harms

All errors

noticed

In
cr

ea
si
n
g

ri
sk

o
f
h
ar

m

Figure 28.4. A graph summarizing thousands of automatic fuzzing results (simu-
lating user testing) to compare the safety of two devices.417 As a user misses more
errors (increasing their vulnerability to error) you’d expect safety risks to increase,
as indeed both lines show. However, the HP calculator, with behavior typical of de-
signs commonly found in medical devices, is much riskier to use than the improved
design. The plot clearly shows that if the user misses fewer errors (moving left in
the plot), the ISMP-inspired design becomes safer and safer, finally becoming com-
pletely safe, whereas the common design has residual risks that the user can never
avoid, even if they try to correct them. In other words: even if a user notices all
errors and tries to recover from all of them, the common design has bugs that could
cause patient harm, however careful the user is.

requires 100 users to use it for a day each, but in Agile the system will al-
ready have changed before the tests are complete. There is no time with a
fixed system to do thorough testing for safety. Agile is fine if you’re making
something nicer, but if you are trying to make something safer, it’s likely that
every change that is made will affect safety, and therefore every safety test
needs doing again when the system changes.

Agile sees bugs as the necessary step to better products, but in healthcare
the impact of bugs cannot be dismissed or seen as acceptable side effects of
faster development, as Agile assumes. People who promote Agile uncondi-
tionally in healthcare are overlooking the need to develop safe products.

Let me justify that important point a bit more.
A lot of effort goes into ensuring drugs are understood and shown to be

safe before they are widely used — it’s very expensive if problems come to
light later, and of course we want to avoid unfortunate or unnecessary side

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

392 | CHAPTER 28

Reject numbers that have … Example
A leading zero if the number is greater than 1 05
A trailing zero after a decimal point 5.0
Trailing zeros after a decimal fraction 5.40
A missing leading zero if number less than 1 .5
A decimal point with no digits are after it 5.
More than one decimal point 5..5

Figure 28.5. Rules inspired by the ISMP to pick up and reduce numerical errors.417

For example, 05 might be misread as 0.5, and 5.0 might be misread as 50, and
so on. (Other rules, such as validating that the number value is positive and less
than 1,000, are also required.) In contrast, most user interfaces to read numbers
ignore all these potential problems, and therefore do not provide adequate support
to the user when errors do occur. When these rules were implemented exactly, we
achieved a safer user interface — which was shown by fuzzing (figure 28.4).

effects. It would be unconscionable to put a drug on the market that had
not been shown to be both safe and effective, or whose side effects or other
details were not well understood.

The drug development process is broken down into five phases:

Preclinical phase Initial selection, development, and testing of the drug
in laboratories, on tissues, or on animals.

Phase 0 How does the drug work? Studies on small groups, about 10
volunteers, usually with tiny doses. Establishes which drugs are most
promising to invest in for further phases.
Artificial Intelligence is starting to accelerate these initial phases. The
Centaur Chemist AI system took less than a year to design the OCD
(obsessive compulsive disorder) drug DSP-1181 ready for Phase I
testing, much faster than the typical five-year process.418

Phase I Testing of the drug on 20–100 healthy volunteers to test for
safety. Patients with serious or terminal diseases may volunteer.
Phase I establishes data to balance between safe and effective doses.

Phase II Now known to be broadly safe, larger testing of the drug on
100+ patients to assess efficacy and side effects.

Phase III Testing of the drug on thousands of patients to rigorously assess
efficacy, effectiveness, and safety. Sometimes potential new uses of
the drug are discovered at this stage (so-called label expansion).

Phase IV Monitoring the drug in public use following regulatory approval
for sale. Post-marketing surveillance monitoring the drug’s use
beyond the manufacturer’s control.

FINDING BUGS | 393
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Developing a cancer or dementia drug through these phases may take 15
years start-to-finish, and cost around $1 billion.5 A drug may be abandoned
at any phase during the trials, so quite often the development costs are not
recovered by future sales. (Often several variants of a drug proceed in parallel
through the trials, with only the least promising dropping out.)

Ironically, the ease of modifying digital systems compared to the dif-
ficulty of modifying pharmaceuticals means that digital development pro-
cesses are much more relaxed. The drug development Phases I to IV are
treated very crudely, if at all, in the digital world. Because digital systems
can be updated so easily at any time, it is cheaper to find and fix bugs in the
field after a product has been put on the market than to avoid the problems.
Indeed, as bugs are fixed after putting products on the market, gradually dig-
ital systems drift into being only loosely related to the original approved sys-
tems—figure 16.2 shows an examplewhere post-market product drift seems
to be done deliberately to make it easier to get regulatory approval before all
the features are added. Regulations like the FDA’s 510(k) enable and seem
to endorse this.d Anything else would be increasing regulatory burden,
which to some minds is self-evidently a bad idea.

These common habits are often turned into counter-arguments for im-
proving digital healthcare regulation.

Although in digital development a lot of development work goes into
the preclinical phases, the only evaluation phase that is routinely done cor-
responds to Phase 0 (that is, hopefully, by using UCD). Fortunately, post-
market surveillance (Phase IV) is being increasingly required. Indeed,Wi-Fi
and the internet makes post-market surveillance a doddle, and we can look
forward to regulations being improved further.

Drugs are often tested using Randomized Controlled Trials (RCTs).
RCTs have become the “gold standard” for drug testing and for medical evi-
dence more generally.

What, then, are RCTs?419
Put briefly, patients are selected for a study, and some patients are ran-

domly allocated to a control group who don’t get the experimental treat-
ment, and others are treated with the specified intervention (usually a drug).
It’s complex to organize an RCT properly, and recruiting all the patients and
tracking them throughout the trial is costly. Follow-up may take years, as
the effects and side effects of the drug may be slow.

RCTs are randomized because people respond differently to drugs, but
we don’t know how they are going to respond. If we did a trial on students,
we might fail to find out what happens with older people or with children —
for example, most students are well educated and are healthy, andmost older
people are already on some drug, which might interact with the drug being
trialed. We might inadvertently select patients the drug will do better with,

d See Chapter 16: FDA 510(k) regulation, page 201←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

394 | CHAPTER 28

or wemay have any number of other systematic biases we are unaware of. So
the patients in an RCT are selected from a broad sample of the population,
and then randomized to try to avoid any unintentional systematic bias in the
trials.

RCTs are expensive, but the thalidomide scandal — or, rather, the de-
sire to avoid another scandal — is sufficient for everyone to agree that they
are worthwhile, if not obligatory, for developing drugs, especially when sup-
ported by post-market surveillance (long-termmonitoring of effects after
the product is allowed on the market).

When digital systems deliver and even modify drug doses, drug therapy
and digital therapy become closely intertwined. The safety and effectiveness
of a drug depends on its reliable dosing. In other words, digital healthcare
systems need to be developed to comparable standards for drug dispensing,
as well as for many other contexts.

Unfortunately, thanks largely to the popularity of Agile thinking,e digital
systems are often released to patients without large-scale, let alone rigorous
testing. There are common arguments for this: Agile is all about failing
fast; Agile is inconsistent with RCTs; and undertaking proper trials would
delay reaping the benefits of the digital innovation — benefits for patients as
well as profit for the manufacturers. Agile’s failing fast means you can build
nice consumer products quickly using iterative design.f True, but if — as
you would in healthcare — you might harm people by failing fast, the Agile
approach is totally inappropriate.

Anyway, Agile enthusiasts argue, by the time any trials are complete,
their innovative digital technologies would be obsolete. Which I think is a
very devious argument, as it tries to make us feel sympathetic toward avoid-
ing tedious evaluations becausewe’dmiss out onwonderful innovations. Yet
if innovative digital products are going to become obsolete so quickly, that’s
actually a problem, not an excuse to rush their development. It’d be a waste
of money buying them if they need replacing so soon.

Certainly, the basic RCT does have a range of problems for digital eval-
uations. For example, if we’re convinced that a new system we’ve been de-
veloping will benefit patients and we want to know how much benefit there
is, then an RCT would be a rigorous test — but it will deny some randomly
selected people (or hospitals) from the benefits we believe our digital system
has.

Thisworry is expressed as the principle of clinical equipoise: we should
treat patients fairly. We shouldn’t deny people treatments or interventions
we know to be effective just because we want to do an RCT. There is a won-
derful paper I recommend that illustrates equipoise brilliantly — it describes
an RCT evaluating the clinical value of parachutes as an intervention to pre-
vent death when jumping from aircraft.420

e See Chapter 27: Agile method, page 378←
f See Chapter 23: Iterative design, page 313←

FINDING BUGS | 395
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Hospital C

evaluation

Hospital E

evaluation

Hospital D

evaluation

Hospital A

evaluation

Hospital B

evaluation

Time

P
re
-
ro

ll
o
u
t
p
er

io
d

Figure 28.6. An example of a Stepped Wedge Trial (SWT) for five randomly se-
lected hospitals. The hospital test sites are put into a random order, and then the
digital system is installed and evaluated at each in turn, illustrated here in the order
B–A–D–E–C. The shaded regions, after each individual hospital evaluation, show
how you can take advantage of an iterative (or Agile) design process to improve the
system as other SWT evaluations proceed.

Not all digital systems needRCT-typemethodologies.421 Lots of research
has already found out how men and women interact with computers differ-
ently, how people work under pressure, and so on. Digital experiments —
especially UCD experiments — typically involve only a few tens of partici-
pants, not thousands as in typical drug RCTs. (However, a medical app for
mental health would need to be trialed much more like a drug, and for the
same reasons — because we don’t know how different people respond to
new digital therapies.) Furthermore, a lot of the digital system trial phases
can be done better and far more easily with digital systems than with drugs,
because digital allows for very easy monitoring.

RCTs are slow and expensive, and as most people can’t see the bugs and
technical defects in digital systems, many people would argue that RCTs are
overkill for digital systems. Digital systems obviously save money, are faster
and more efficient: why do an RCT that’s only going to delay the promised
improvements? If we are going to roll out our digital systems to every hospi-
tal (or to every patient), it isn’t possible to deny them to a random selection
anyway — they are going to get them eventually.

In other words, RCTs are certainly very good for drug development but
they don’t workwhenmindlessly applied in the digital world.422 Fortunately,

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

396 | CHAPTER 28

there are many variants of RCTs that help get around these problems, and
which work well with how digital systems are developed.423

As an example, let’s suppose we have a digital system we want to eval-
uate for safe and effective use in hospitals. It might be, say, a back-office
administrative system.

The Stepped Wedge Trial (SWT) is a form of RCT that works like this:
first you write down the hospitals in a random order. Next, in a pre-rollout
phase, you measure how well everybody is doing, then you install the digital
system in the first hospital on your list. At this stage, this is just like an RCT,
but with only one randomly selected hospital, with all the rest being controls.
At the next step, you take the next random hospital listed, and install the
digital system there. This is like a second RCT — in fact, it’s better, because
you can start a longitudinal (long-term) study on the first hospital, as it’s had
the system running for longer. At the third step, you install the system in the
third randomly selected hospital. Again, this is like another RCT, with all the
remaining hospitals or wards being control groups. And so on.

While you are at it, doing an SWT is a good time to collect evidence of
real-world (that is, post-market, because it comes after the product has
gone to market) effectiveness, not just safety: most organizations are very
interested in cost effectiveness, and if you want people to buy your products,
safety isn’t the only argument that’ll be needed.

At the end of the SWT, every hospital has the system. Even better, every
hospital ends up with an improved system, and the manufacturers have lots
of evaluation information that they can use for meeting regulatory require-
ments as well as for making further improvements. A diagram illustrating
how it would work for just five hospitals is shown in figure 28.6 — the dia-
gram also shows why it’s called a Stepped Wedge Trial.

The UK made very expensive mistakes with its national COVID-19 Test
and Trace digital system, a system designed to test people and trace back
their contacts so that infectious people could be identified and isolate, so
reducing the rate of spread of the pandemic. The Test and Trace system
went live nationally, but was immediately swamped— exposingmany design
bugs. It “was beset by technical problems” and the related app, too, was
problematic:

A technical problem [a euphemism for bugs] meant the app
gave false alerts to users and those who did test positive could
be left confused as to how long to isolate for, with the app
giving a different date to the instruction delivered by contact
tracers.424

Because the system was launched on a national scale, the problems very
rapidly became overwhelming.

I wonder what would have happened if they’d used a SWT (or similar
approach) to roll out the system? If so, they would have found problems

FINDING BUGS | 397
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

with the first small release, fixed them, then proceeded to release the system
in another region of the country, and so on. Theywould have beenmuch less
likely to be overwhelmed, and they would have had more resources to focus
on fixing the early problems, and keeping it on a much more manageable
scale. A crisis would have been avoided, and the incremental evaluations
would have improved the system. Who knows? Whatever — even without
hindsight, when going into delivering a large, national digital project, surely
it’s better to plan to evaluate it in phases and to use standard practice iterative
designg because you want to improve. Instead, the UK system was launched
as if it worked and needed neither improvement nor evaluation, when plainly
it was fatally buggy. People unnecessarily caught COVID-19 and some died
as a result.

Now the system has got a terrible reputation, it’s created a new problem:
they now have to recover public trust in any approach. Loss of trust is a huge
problem that will undermine other attempts to control the pandemic. Many
of the problemswould, I am sure, have been avoided by an SWT—and, if not
an SWT, by any honest professional approach that acknowledged that digital
systems are never perfect and always require evaluation and improvement.

The Agile/RCT/SWT/etc arguments are complex, and for the most part
illustrate collisions between very different cultures. To quickly summarize
my views, I’ll emphasize a few points:

People say “Digital innovation in healthcare is rushing ahead, and
RCTs would slow it down.” My view is that this argument only works
when you are not interested in one of the main benefits that RCTs
offer, namely, empirically assured safety. Since most digital health
innovators aren’t interested in safety (since it’s surely “obvious” that
their systems work wellh), this is a weak argument.

RCTs are not the best methodology for digital systems that were
developed using professional Formal Methods and user interface
design practice.

However, since very few digital healthcare systems were rigorously
designed — particularly AI-based systems, which have often learned
unknown things from their training data — then doing RCTs or SWTs
(or similar) would be a very valuable addition to the evidence for
them. This is because randomized trials are especially good when
systems are not well defined, as the randomization controls for their
unknown features.

I’d argue that every digital healthcare innovation must have solid
evidence and arguments for its use, to rigorously assure us of their

g See Chapter 23: Iterative design, page 313←
h See Chapter 3: Cat Thinking, page 25←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

398 | CHAPTER 28

capability, safety, and reliability in real use. While Formal Methods
can underpin this, RCTs do have the advantage that the healthcare
world readily understands them.

… if digital healthcare was a mature discipline, we could also add
systematic reviews and meta-analyses to RCTs as good things to do,
but so far there isn’t much of a decent digital healthcare literature to
do useful reviews (other than to point out that there aren’t many
good peer-reviewed papers).

Hindsight is one thing, but what can we learn to use as foresight so we
can all have better systems in the future?

The UK’s Test and Trace fiasco for COVID-19 showed fallout from the
clash between an uncritical rush to implement with the need to have an ef-
fective system. We havemany other pressures in digital healthcare— to rush
into using AI, to rush into connected systems, to rush cybersecurity “solu-
tions,” to rush big data … to rush into all sorts of exciting innovations. So
we should learn: SWTs are a really good idea and protect us from small- and
large-scale mistakes, and — given human nature — we ought to have regula-
tion to require SWTs (or similar) in all digital healthcare development. And
while wewait for regulation, anyone choosing or buying new systems should
require SWTs or other evidence that those systems really work as effectively
as hoped.

We started off with the conventional arguments against using RCTs in
digital healthcare, and now we’ve shown how straightforward it is to do dig-
ital RCTs. In fact, as figure 28.6 illustrates, you’d definitely want to do iter-
ative design to improve your system anyway, and the SWT version of RCTs
lets you do that efficiently at the same time, and with the added benefits of
rigorous evaluation. You obviously have to decide whether the remaining
SWT evaluations use the original design or the improved design; there are
advantages and disadvantages of either choice. The obvious solution is to ex-
tend the SWT to another set of hospitals after you have finished improving
the system with what’s been learned during the first trials. When regulators
require digital RCTs, the regulations will help make these decisions for you.

Currently many digital systems are exempt from clinical regulation, such
as office systems like calculators, email, and word processors. My argument
would be that at least parts of these systemsmust be regulated— I’ve already
made a strong case for calculators and spreadsheetsi (they are used to calcu-
late drug doses), but even word processors handle patient information, and
theymust be evaluated tomake sure they do not corrupt clinical information.
For instance, automatic spelling correction can cause chaos, as shown in box
18.2.

i See Chapter 14: Risky calculations, page 177←

FINDING BUGS | 399
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Apart from cutting corners, it isn’t obvious why digital systems aren’t
regulated to the same level as drugs, requiring rigorous evaluations like RCTs
and SWTs. Infusion pumps, for instance, deliver drugs, and can aid or ruin
drug interventions as much as any poor pharmacological development of
the drugs themselves. As I’ve said before in this book, what’s the point of
carefully regulating a drug if it can easily be delivered in the wrong doses by
buggy software? You need to carefully regulate both.

After this ramble through Agile and RCTs, I, at least, need to remind my-
self why we needed the discussion. My argument throughout this book is
that we need to improve the quality of digital healthcare, and improving de-
velopment and testing is an essential contribution toward that. Ideally digital
would be regulated at least as tightly as drugs. Everybody agrees RCTs are
the gold standard. Developers argue that RCTs won’t work in healthcare, as
if digital is somehow an exception. Therefore, they argue, don’t regulate us
to tighten testing, as it’d just be unproductive regulatory burden that would
delay innovation. Aren’t we all agreed that digital healthcare needs innova-
tion? I think the argument is specious. Even if you think that there might
be something (I don’t know what) in the argument, I don’t think you should
concede that digital healthcare doesn’t need improving. As the Lancet put
it in 2018, “Continuing to argue for digital exceptionalism and failing to ro-
bustly evaluate digital health interventions presents the greatest risk for pa-
tients and health systems.”425

Despite the resistance to digital RCTs, especially from the Agile commu-
nity, they have in fact been shown to be very valuable in digital healthcare,
especially with RCT variants like the SWT. Here’s a standard story:

Dr Joseph Smith developed a medical app for virtual therapy and decided
to undertake an RCT.426 His RCT process delayed the product by 30 months
and cost him $2 million. However, he now knows his app saves an average
of $2,745 per patient. It was worth it. But a disadvantage, he points out, is
that his research investment may create a halo around competing products
that did not undertake trials.

Here’s a quick summary of this chapter’s arguments:

Use Formal Methods to specify and help write programs.

Design programs to anticipate and check for bugs — and to attempt to
recover from them.

Use or develop your own tools (for instance, for fuzzing) to help test
and review specifications and code.

Test programs (once they are known to be safe enough) in the messy
reality of hospital wards, or wherever they are intended to be used.
There are lots of ways to do this, including SWTs. Don’t be put off.

Improve regulation to ensure more of these steps happen.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

Let’s have a reliable way of
clearly seeing how safe
systems are, so that we can
make choices based on
evidence and improve safety.

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

29

Choose safety

I bought some new tires for our Land Rover. When I went to the garage, they
offered me three different makes of tire they had in stock that would fit it. I
bought the Continental, as they could do me a deal — I could get it cheaper
than the others, so buying it seemed a no-brainer. That’s the tire shown on
my car in the drawing above.

Tires differ enormously on how safe they are, what their fuel consump-
tion is, and how noisy they are. When you buy a tire, though, you have no
idea about any of this, so it’s easier to buy on a gut feeling about the brand
and the price, and thus probably not end up with the best tire.

The European Union (the EU to its friends) therefore now requires tires
to be sold with rating labels. If these labels had been legally required when

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

402 | CHAPTER 29

Bridgestone

£110

Pirelli

£119

Continental

£75

Figure 29.1. EU safety labels for three different car tires.

I was buying my new tires, I would have hesitated about buying the Conti-
nental tire (the one on the right in the picture, see figure 29.1), which was
noisier, more costly to run, and had a worse stopping distance in the wet. I
made a poor choice (given what I wanted) without knowing I was making a
poor choice.

The idea is that once consumers know the quality of tires, they will tend
to buy tires better matching their requirements. In turn, this will encourage
the manufacturers to make better tires. More sophisticated consumers might
be prepared to pay a premium price for tires that are just what they want;
perhaps some people want green, fuel efficient tires?

I personally would prefer safer tires with shorter stopping distances. I
think a car that has been in a crash (because it didn’t stop soon enough),
maybe written off, causes a lot more pollution, with lots of bits going to land-
fill, than a small saving in fuel and emissions. Perhaps the EU should update
the tire label to give an estimate of environmental impact?

Indeed, Michelin, apparently, mentioned that the EU tire label scheme
does not assess the lifetime of the tire —Michelin make tires that last a long
time. But if the EU assessed environmental impact, then tire lifetime, fuel
consumption, and an estimate of scrapped tires and broken cars, because
long stopping distances increase the collision rate, would go into the mix of
helping consumers make better decisions. While the science behind all the
assessment may be complex, the tire rating remains easy to understand.

The EU has used this rating idea on other products, not just tires. In
the old days, people would buy white goods (fridges, cookers, washing ma-

CHOOSE SAFETY | 403
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

G

F

E

D

C

B

A

E

Less safe

Safer

Figure 29.2. A simple safety label design based on the EU energy rating label. I
was inspired by the EU conventions, so as I’ve reimagined the label, a shorter line
represents more safety. This might be confusing, so experiments will be required
to find out the most reliable way of representing safety, particularly remembering
that people may be stressed when they use the label.

chines) on their preferences for looks, brand, cost, and the salesman’s patter.
Now the EU labels can help consumers choose better energy efficiency.

At first the EU rated white goods with labels G (worst) to A (best) for
energy efficiency. But as consumers started preferentially buying more ef-
ficient things, now they could see how to, the manufacturers of course im-
proved their products so they could sell more. Soon, more or less everything
was rated A. The EU responded by adding tighter criteria — nowwhite goods
can be rated A+, A++, A+++, and A++++. And some products are up there.

An important thing is that the EU never told manufacturers how to make
more energy-efficient white goods (the EU ratings avoid implementation
bias). The market pressure encouraged manufacturers to work out how they
could do it for themselves.

Wouldn’t it be nice if we had EU (or EU-type) safety rating labels for all
medical devices and digital systems?

Before you rush in and tell me how impractical an idea this is, note that
the LeapfrogGroup427 provides safety ratings for entire hospitals, and appar-
ently it’s very helpful. Leapfrog has worked out how to do it professionally,
with an expert panel, and more. It’s worth quoting from the group’s website:

One of the most significant problems with today’s health care
system is the failure to make safety and quality information
available to the public. But the public deserves this
information so they can make informed choices about where
to receive care. The purpose of the Leapfrog Hospital Safety

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

404 | CHAPTER 29

Grade is to bring this information to light in a way that is easy
for you — the consumer — to use.
Some people do more research on what car to buy than what
hospital to go to for medical care. The Leapfrog Hospital
Safety Grade provides data and research to help you make
informed decisions about a critical aspect of your hospital stay
— safety. A hospital may have the best surgeons and greatest
technology in the world, but unless it is preventing infections
and eliminating errors, it is not delivering on a very basic
premise: ensuring the safety of you and your loved ones. The
goal of the Leapfrog Hospital Safety Grade is to reduce the
approximately 440,000 yearly deaths from hospital errors and
injuries by publicly recognizing safety and exposing harm.

The Leapfrog ideas would clearly work equally well with digital health-
care.

If safety rating labels stayed on digital systems and devices for ever, then
they would become part of everyone’s awareness and this would start to
change things for the better, as Leapfrog emphasized for its hospital rating
system.

I’ve put a QR code on the safety label in my mock-up (figure 29.3) so
that if an incident was reported, it’d be very easy to get the identity of the
device into the reporting system. Of course, a QR code is just a clever way of
saying something, and it can code for anything— they often code for web ad-
dresses — but in the medical area, they should code forUnique Device In-
dicators or UDIs, which are a growing standard of codes. UDIs have expiry
dates, and they tie in with a database (the Global UDI Database, GUDID),
so while you are at it, many other beneficial things can be achieved.

Sticking safety labels and QR codes on devices permanently will ensure
everyone can see them whenever they are used. The codes could also help
reduce fraud and other problems (like stealing and reselling expensive de-
vices), and that would improve manufacturers’ profits, so they might want
to do it regardless of the idea’s impact on improving patient safety.

Eventually some incidentwill occur in the operating room. The clinicians
will be more likely to mention the device in their report, especially if it was F
or G safety rated! Patients would also put pressure on the system to improve:
“why am I getting a B-rated dialysis machine…?”

QR codes have the advantage that they are visible, so they are a visual
reminder that they can help report an incident or near miss. Today it might
bemore exciting to have an active RFID tag inside the label:428 then using the
code would be even easier. However, this would be jumping to conclusions
whenwe need to do experiments. RFIDs are hidden, inscrutable, and they all
look the same to the naked eye. Perhaps the invisibility of RFIDs would lead
to more errors than they fix? RFIDs might get muddled up without anyone

CHOOSE SAFETY | 405
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Figure 29.3. My mock-up of using safety labels in a hospital. Perhaps it should
also have a hologram to make it hard to forge.

noticing until it was too late, but QR codes can be printed with supporting
text.

I and my colleague Patrick Oladimeji helped a hospital procure an in-
fusion pump. They had short-listed 16 pumps and asked us to rate them.
Unlike the EU and its tire ratings, we were not sure how to get lots of design
features down to a simple “stopping distance” or “energy efficiency” rating.
Instead we assessed lots of criteria, 33 in all.

The summary diagram (figure 29.4) doesn’t show all the features we
evaluated, but it gives the general idea.429 Each column in the diagram is
an infusion pump, and the rows are our assessment of each pump against
each of the safety criteria.

Although you may be reading this in black and white, a green-to-red
spectrum of colors is used: the colors are copied from our two-dimensional
risk assessment (figure 29.6), itself inspired by the international standard
IEC 61508, which we will return to again later, in box 32.1. So green means
very safe, and red means we think it is very risky. Red means things are ex-

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

406 | CHAPTER 29

P
u
m

p
1

P
u
m

p
2

P
u
m

p
3

P
u
m

p
4

P
u
m

p
5

P
u
m

p
6

P
u
m

p
7

P
u
m

p
8

P
u
m

p
9

P
u
m

p
10

P
u
m

p
11

P
u
m

p
12

P
u
m

p
13

P
u
m

p
14

P
u
m

p
15

P
u
m

p
16

Visual indication of alarm

Alarm volume level

Power connected

Battery level

Occlusion limit

Volume infused

Dose infused

Status of infusion

Infusion rate

Time left

Drug name

Keypad lock status

Patient details

…plus 20 more tests…

Figure 29.4. Summary visualization of the 33 safety evaluations (each row) of 16
infusion pumps (each column). See figure 29.6 for the explanation of the color
scheme, which, unfortunately, may be hard to follow if this picture is reproduced in
black and white.

pected to go wrong often and with high, frequent, harmful, impact on the
patient. Each column in the table has a summary pie chart (at the bottom),
where we just added up all the scores in each column into a simple visual
summary. Here, the color coding is very helpful, as the eye can easily assess
the dominant colors of the pie chart icons.

One might also want to assess not just risk, as we did, but risk–benefit —
here, all the deviceswere similar infusion pumps, so at face value the benefits
are more or less the same. If we were assessing a range of different types of
devices, the risks and benefits would need to be compared — for example,
with an ambulatory infusion pump the patient can walk around, so it has
different benefits than a pump that is big and needs a floor stand to hold it.

Essentially we have rated everything on a 10-point scale, running from
0 to 9. However, we left it to the hospital that was buying the pumps to de-
cide which areas they are most worried about; for instance, they may want
different balances of risk in general wards or in intensive care, where there
are more staff around and there is more patient monitoring to keep eyes on
things. A higher-risk pump might be appropriate in intensive care or the op-
erating room, when it might be unacceptably dangerous in other settings. Or

CHOOSE SAFETY | 407
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

22% light green

9% yellow

17% orange

22% brown

30% red

47% dark green

18% light green

12% yellow12% orange

12% brown

Figure 29.5. Examples of the summary risk pie charts, where each sector indicates
the total number of design factors with each risk rating. The meanings of the colors
are as described in the matrix figure 29.6. (Colors have been named in case this
picture is reproduced in black and white.)

perhaps the operating room can afford to buy more expensive, better pumps,
and general wards that need lots of pumpsmight find that cost ismore impor-
tant than safety. Well, now the hospital can decide on the evidence, whereas
before it just bought cute ones or cheap ones, or ones with discounts. Pre-
viously it had no idea how safe they were.

It is hard to talk about safety honestly — and we need to talk honestly if
there is going to be any chance of making digital health safer.

Digital healthcare industry, on the whole, is resistant to testing and rating
safety. Some of the arguments are that testing is expensive and slow, and by
the time trials have been done, the technologywill havemoved on. However,
drug manufacturers don’t say this, despite drug development — from lab to
hospital—being very slow. Sure, pharmaceutical sciencewill havemoved on
by the time you’ve finished your trials, but you still want all drugs to be tested
before you use them! (With some sensible exceptions for compassionate
reasons — for example, if someone is near the end of their life, where hope
is important and many potential side effects aren’t very relevant.)

Drug testing costs millions, often billions, and the success rate is very
low.430 There isn’t this sort of money to invest in digital healthcare trials, let
alone the willingness to put up with success rates under 10%. It’s a chicken
and egg problem. While digital healthcare manufacturers can get away with
next-to-no testing, why would anybody invest millions in testing? It’d be
money wasted on something that has no competitive value. Although we
could start off with a voluntary scheme, it would be far better to change the
law so that trials and safety proofs have to be done. The money to fund trials
would then appear, because there would be no alternative. Regulators are
certainly starting to realize the challenge of digital healthcare, but we have a
way to go.

As an aside, the scare-mongering of the cost of trials is misleading. Trials
would be much cheaper than conventional drug trials. Almost every digital
device can record how it is being used and could upload quality data to the in-
ternet at virtually no cost (with provisos about patient confidentiality). Given

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

408 | CHAPTER 29

3

6

9

2

4

6

1

2

3

0
HighMediumLow

Low

Medium

High

Impact

F
re

q
u
en

cy

Yellow

Brown

Red

Light

green

Orange

Brown

Green

Light

green

Yellow

Dark

green

Figure 29.6. Explaining the safety rating color scheme. Something that doesn’t
happen often and has little impact is colored bright green (bottom left); “minor”
things that happen a lot (top left), or terrible things that happen rarely (bottom
right), are colored yellow. But things that happen often and have a large impact
are bright red (top right). The extreme safe case, something that practically doesn’t
happen and has negligible impact, is represented by the square off at the bottom
left, colored dark green.

that stuff is currently rushed to market, a compromise would be to say: you
can put new devices and systems on the market today, provided they collect
good data on their performance and patient outcomes, and if you can prove
they are adequately successful within a year (say), then they can pass their
test and will be certified for general use.

Another aspect of scare-mongering is to sow confusion on exactly what
needs testing. Clearly, testing everything would be very expensive. But with
pharmaceuticals, you don’t need to do expensive randomized controlled tri-
als on the packaging or the non-active ingredients. Similarly, when an air-
craft is certified for air worthiness, there is no need to waste time testing
whether the entertainment systems work nicely. There’s a basic principle of
Computational Thinking called separation of concerns:a basically, differ-
ent parts of programs should be kept separate so they can be thought about
independently, and so that they don’t interact in unexpected ways with each
other. For example, the clinically active and inactive parts of a product are
separate things, so keep them separate rather than mixing them up andmak-
ing them harder to understand. It’s a shame the principle isn’t very widely
used in thinking about digital healthcare systems.431

In themeantime, beforewe get safety labels accepted andworking nicely,
what can we do?

Many of the examples (not all of them) that we’ve covered in this book
have been about bugs with handling numbers. That’s partly because num-

a See Chapter 13: Separation of concerns, page 169←

CHOOSE SAFETY | 409
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Box 29.1. Example evaluation criteria

Feedback: Howwell is the user kept informed about the state of the device?
How clearly does the device communicate the effect of actions to the user?
For instance, does it provide clear visual indication of an alarm that can be
seen when the aural alarm is turned off?
Adherence to ISMP guidelines: The Institute for Safe Medication Prac-
tices produces up-to-date, evidence-based guidelines and recommendations
for safer healthcare.432

Data entry: What is the probability that the user will notice an error while
entering data? For example, a numeric keypad, by design, does not encour-
age error detection, since the usermight not look at the displaywhile entering
numbers.433

Event Logs: Devices must maintain time-stamped logs in order to support
evaluations and incident investigations, and they should be easy to access,
review, and learn from. Logs should be in an open format, not limited in
size, and should be at a level of detail that allows the accurate replay of user
actions that took place at the time the log was recorded.434 These obvious
requirements are rarely met.
Accountability: If the manufacturer provides a strong warranty, this con-
firms that the product has been professionally designed and built, and that
the manufacturer is confident in it. On the other hand, if a warranty has
exclusions, it could imply the device or system is unsafe.
Compliance: What relevant ISO, IEC, and other standards does the device
adhere to?

bers are easy to describe in a book (numbers are very familiar) and partly
because numbers are central to digital healthcare: your height, weight, BMI,
drug doses, and more are all numbers. Numbers seem simple, but the sim-
plicity is deceptive: they often result in bugs and inefficiencies.55

There are several popular ways to enter numbers into a system. You can
use a number keypad, like the Hospira infusion pumpb or any of the calcu-
lators we’ve talked about.c Numeric keypads are the most familiar approach.
You can use up/down keys: you press one button to increase the number,
the other button to decrease it. Or, especially on touch screens, you can use
rollers.

Of the most popular ways for entering numbers (figure 29.7), which de-
sign do you think is safer?

First, what do we mean by safer?
Imagine you’ve been asked to give a patient 2.5 mL of insulin. You need

to set up the insulin, and now you need to enter 2.5 into the gadget you are
using. There are at least four things that can happen (figure 29.8).

b See Chapter 5: Abbott AIM Plus infusion pump, page 55←
c See Chapter 14: Calculator bugs, page 179←

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

410 | CHAPTER 29

16%
17%
18%
19%

20%

21%
22%
23%
24%

Numeric keypad Up/down keys Roller
fast and slow keys shown

Figure 29.7. Three commonways to enter numbers. With the numeric keypad, the
user concentrates on the keys and not on the display; if a mistake happens — like a
button bounces and a digit repeats, or the decimal point is pressed by mistake — the
error can enter a number a factor of 10 out, but the user is unlikely to notice. With
the up/down keys, the mental model is entirely different: the user concentrates on
the numeric display rather than the keys: they adjust the number up or down until
the display is the correct number they want. Users are therefore far less likely to
make errors when using up/down keys. Finally, touchscreen rollers (as used on the
Mersey Burns app) make it very difficult to enter a number that is a factor of two or
more out from the intended value.

If you are using the numeric keypad, it seems easy, as you just press 2
• 5 , and of course you’ve entered 2.5.
You hope.
If something went wrong — perhaps one of the keys is dodgy — maybe

you entered 25 (the decimal point didn’t work) or 22.5 (the two got re-
peated). So you think you entered 2.5, but something else could easily have
happened.

We’ve done eye tracking experiments435 that show that your eyes spend
most of their time looking at the keypad or controls so you know where to
press buttons or what to do. That means you don’t often look at the number
display; you don’t pay attention to the number displayed that you have ac-
tually entered. If it was wrong, perhaps because of accidentally pressing the
wrong button, you probably wouldn’t notice.

With the up/down keys, the whole idea is that you keep pressing up or
down until the displayed number is right. In other words, if you make a
mistake, you are going to correct it. You are paying attention to the number
displayed. Our eye tracking experiments confirm that you don’t spend much

CHOOSE SAFETY | 411
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

You noticed You didn’t notice

You entered
2.5 correctly

You are safe You are safe

You didn’t enter
2.5 correctly

You should be safe You are not safe

Figure 29.8. The really unsafe case is the combination where you didn’t enter 2.5
as you intended and you didn’t notice your error. That means you will not try to
correct the error. Perhaps the wrong number you entered will have serious conse-
quences for your patient.

time looking at the buttons because there aren’t many of them and you are
concentrating on the number displayed to get it right.

Overall, the up/downdesign is about twice as safe as the numeric keypad.
I’m therefore glad it was the user interface design of infusion pump that was
used on me for my doses of rituximab436 (figure 29.9).

A more dramatic way to put that result is: if across the country 100 peo-
ple die fromwrong drug doses when using an infusion pump with a numeric
keypad, then as up/down has half the error rate, 50 would not have died had
up/down been used instead.

Our experiments with different ways of entering numbers made some in-
teresting discoveries.435 Our participants437 preferred the numeric keypad,
probably because it’s so familiar, despite it having a worse error rate. We also
broke down errors into how serious they were — as a proxy to how harmful
they were. The numeric keypad made greater numbers of more harmful er-
rors, and the up/down method made greater numbers of less harmful errors.

If we introduced safety labeling for digital healthcare systems, numeric
keypads could get G for safety, and up/down (and four-key) style keypads
could probably get an A or B for safety. There are many other factors to rate,
including whether the devices have bugs and how significant the bugs are for
safety.

I think programmers think numbers are easy, so they overlook problems
in programming number entry. Whatever the reasons, numeric keyboards
are not only less reliable to use, they often have risky bugs as well. Somehow,
though, programmers usually manage to program up/down correctly. That’s
another reason to prefer up/down keys.

Also, people using numbers are not aware of these subtle but critical dif-
ferences. Unfortunately, how people behave and what people think are not

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

412 | CHAPTER 29

Figure 29.9. I’m having a day-long infusion of rituximab. I prefer the up/down
keys on infusion pumps (I’m using an Alaris GP) for my infusions, as our research
shows they are twice as safe as numeric keypads. As my dose needed adjusting fre-
quently, I benefitted from the improved safety repeatedly as the dose was adjusted.
With many thanks to Katrin, Jenny, Michelle, Chris, and the rest of the amazing
nursing team — and with many thanks to the NHS, their cheese sandwiches, and
their best filter coffee.

the same thing. It takes careful experiments, like the ones we did, to find
out that some designs are safer than others — people are not usually aware
of safety. Errors happen infrequently, and they occur most frequently when
we are distracted. We are not very clued up over the design features that
induce or cause error. On the other hand, we are very aware of “usability,”
how usable things feel to us, but we have little insight (unless we do the ex-
periments) into what the usability to other people is, or what the usability to
us really is. If something feels nice we may think it is usable, but an objec-
tive measurement might find we are slower or make more errors. We always
need rigorous experiments to be sure.

Some designs seem harder to use, and some seem easier. We are very
aware of being confused and slowed down by poor user interface design. It
seems like every key click is a burden. Why can’t the design be easier to use?

CHOOSE SAFETY | 413
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

Unfortunately, often making things faster — which makes them feel eas-
ier — comes at the cost of making them less safe. There is a trade-off.

Abbreviations are unsafe, and the shorter they are, the more problematic
they become. Longer abbreviations are safer, but they are more tedious to
use. Of course, if the user gets fed up typing long words when they think
shorter words would do, their frustration won’t help their error rate. In gen-
eral, careful experiments have to be done to find the best trade-off.

Consider usingM and F for mother and father. This makes perfect sense
in antenatal clinics, where there are lots of mothers and fathers. Why keep
writing or typingMother and Father out in full every time, when the much
quickerM and F are obviously sufficient?

Now, if the mother’s blood is Rhesus negative and the baby’s is Rhesus
positive, this “Rh incompatibility” is dangerous. It’s therefore important to
check the mother’s and father’s blood types.

If the mother is Rh negative and the father is Rh positive, the baby may
be Rh positive too, but if it is the other way around, with the mother Rh
positive, it doesn’t matter what Rh type of blood the baby has. So, it’s critical
for blood tests to check themother and father the right way round! However,
if the antenatal clinic labels the bloods taken the obvious way asM or F, the
blood testing laboratory are very likely to be more conventional and take it
to mean Male or Female. That reverses the meanings.

The problem is thatM and F are so much easier to write or type than the
“long” full words Mother/Male or Father/Female. The single letters are both
ambiguous. Thus subtle and dangerous errors can arise, especially since nei-
ther the antenatal clinic nor the blood lab thinks their scheme is remarkable.
So nobody thinks through the safety implications: what they are doing is
safe, so it “is” safe. This is a stark interoperability problem — the computer
brings together two incompatible ways of working as the laboratory’s con-
ventions appear on the computer screens in the antenatal clinics (and vice
versa).

People, especially clinicians, often want to reduce the number of mouse
clicks they have to do each day, as well as the number of keystrokes. Both
clicks and keystrokes are obvious measures of usability — that is, the more
clicks to do the same thing, the less usable it is.438 People want to save time.
Unfortunately, reducing mouse clicks makes it feel more efficient but, in-
evitably, the trade-off is that if it’s a critical task it also makes it more risky.
However, when it isn’t a useful task, the trade-off of being more efficient is
all for the good.

Indeed, some clicks just waste time.
Hawai‘i Pacific Health has a brilliant project called “Getting Rid of Stupid

Stuff.”439 They looked for stupid things. One stupid thing they discovered
was that one mouse click their system required was just for auditing pur-
poses. It was: click this if you’vewalked round theward tomeet each patient.
The Getting Rid of Stupid Stuff survey discovered this check was irritating

Part
II

⋄
Treatm

ent
⋄

Finding
solutions

414 | CHAPTER 29

nurses, and the data they were getting was anyway unreliable. It was just a
stupid mouse click.

When they looked more closely at it, they found that the clicking took
24 seconds to do. I don’t know if these 24 seconds included walking over
to the computer and logging in, but it’s not an unreasonable figure. The 24
seconds added up to 425 nursing hours per week! If a typical nurse works
35+ hours a week, this question was wasting the four Hawai‘i hospitals in
the survey the time of 12 nurses — three per hospital.

The Getting Rid of Stupid Stuff work led to fixing the bad design, and ef-
fectively increased the number of nurses available without increasing payroll
costs. One wonders what other mindless and counter-productive features go
into digital systems everywhere else. Projects like Getting Rid of Stupid Stuff
are useful!

Menus are often provided to speed up user interfaces. The menu gives
the relevant choices and the full phrases, so there is no ambiguity there, but
instead of there being abbreviations that are easy to mix up, a menu makes
errors happen with a slip of a few millimeters of the mouse. Now, the user
can select the wrong thing that the menu has ensured “makes sense.” Fur-
thermore, menus usually disappear after the user has selected their choice,
so there is a reduced opportunity to notice and correct any error. Possibly the
incorrect incident report over Peter Thimbleby’s death was an easy menu er-
ror rather than the doctor deliberately typing a lie, or perhaps the menu of
choices was so restrictive that he slipped and selected the wrong answer?d
It is very likely that the menu selection happened so fast that the doctor has
no clear memory of it.

Earlier, I explained how we found that up/down keys were safer than
numeric keypads for entering numbers, by about a factor of two. On the
other hand, up/down is safer but it is also slower. Being slower makes it feel
less usable, and saving a fraction of a second every time you do an infusion
seems like a good idea. Unfortunately, clinicians aren’t really aware of losing
safety, so they are unaware of the trade-off — and it’s some trade off to save
fractions of a second every time, but more frequently make an error, which
will almost certainly take longer to sort out, even if it’s possible, than all the
saved fractions of a second put together. Visible safety labels would help
make the trade-offs explicit and would help bring error rates down — which
benefits patients.

Remembering Safety Twoe — focus on the good, not the bad — it’s im-
portant not just to expose poor design, but also to have awards and rewards
for good design. Design awards are common; the Japanese Good Design
Award is one internationally recognized example I mentioned earlier.f We

d See Chapter 9: Peter Thimbleby’s preventable death, page 109←
e See Chapter 12: Safety One & Safety Two, page 145←
f See Chapter 8: Good Design Award, page 96←

CHOOSE SAFETY | 415
Part

II
⋄

Treatm
ent

⋄
Finding

solutions

should extend awards like this to take account of safety, especially in health-
care.

We want safer healthcare, and to do that we have to be able to see safety
so that we can think more clearly, rather than be driven by our impressions.
Safety labels could be the fastest way to improve healthcare safety — and,
in turn, they’ll drive improvements in assessing safety so the labels are fair,
informative, and accurate.

Everybody will benefit.

Part
III

⋄
Prognosis

⋄
A

betterfuture

We’ve emphasized problems
and solutions to problems,
but of course digital can do
some fantastic things too.
This chapter collects some
positive stories about digital
successes and how digital can
transform lives.

Part
III

⋄
Prognosis

⋄
A

betterfuture

30

Signs of life

If digital healthcare was only risky, the simple answer would be to get rid of
it all. But we all know that digital healthcare has huge promise and can do
amazing things. Instead, then, we need to build on digital health’s signs of
life; we need to take the bits that work, and make them work in more ways,
in more places, more of the time — and of course with far fewer bugs and
interoperating together effectively …

There are many inspiring stories to choose from.

The Medal medical app

The Medal medical app440 has a history going back to 1998, when the com-
pany startedwith a bare suite of algorithms. By2009, they had over 100,000
registered users of the algorithms. They then put the algorithms into an app:
version 1.0 of the Medal app appeared in 2014. The app has now been in
use and development for several years. I tried version 2.3 for the iPhone,
which I downloaded in May 2016.

As well as iPhones and Androids, Medal can also be used on a conven-
tional PC in a web browser. The features it provides range from simple
unit conversions (like converting liters to pints), generic calculations such
as Bayes Theorem, and clinical calculations such as determining the dose of
potassium iodide following an exposure to radioactive iodine. In some cases,
such as estimating blood volume, it provides alternative calculations, as the
medical research literature supports many different algorithms.

By 2018 the app already had over 22,000 medical algorithms. Clearly,
with so much to check, there should have been an automated test procedure
that assured all calculations and user interfaces were implemented correctly.
Since there are so many algorithms, I did a “stratified sampling” of the app
— I selected a random sample of ten algorithms. Without exception, every
algorithm I evaluated had problems impacting safety.

Part
III

⋄
Prognosis

⋄
A

betterfuture

418 | CHAPTER 30

Figure 30.1. A BOC Healthcare oxygen cylinder, showing its digital controller.
(The cylinder is 950 mm, just over 3 feet, long.)

Eventually, I found lots of bugs.
To be fair, there were so many bugs because there was a common user

interface to all the thousands of algorithms. So the same bugs hit lots of
algorithms.

I contacted Medal, who responded positively. Rather than tell me I was
wrong and I didn’t understand their app, Medal met me and we worked to-
wards fixing the bugs by using amoremature software engineering approach.
Their current version of the app now has many hundred fewer bugs.

Risky digital healthcare can be improved. Now, Medal wants people to
know it is better than a lot of the competition. That’s a good story!

Oxygen cylinders and the Internet of Things

Oxygen is one of the most common therapies used in hospitals. Hospitals
have thousands of oxygen cylinders, and they need to keep track of them and
ensure they are all fully charged with oxygen, ready for use. Cylinders can
be hidden in cupboards, may arrive in ambulances, and frequently disappear
into homes when patients are discharged or moved to other hospitals.

BOCHealthcare put a Bluetooth transmitter on the top of them, bringing
them into the world of the Internet of Things. The transmitter enables every
cylinder and its location and status to be very easily tracked centrally.

Another advantage of the computer on the end of the cylinder is that
it helps eliminate a common cause of error that can cause serious patient
harm.441 Because of the way it has to be built, the head of the cylinder con-
tains compressed oxygen that can be sufficient to last about 30 seconds. It
is possible to check a cylinder and connect it to a patient, but not realize that
the brief burst of oxygen is coming from the compressed oxygen in the cylin-
der head alone, and not from the full cylinder. It’s easy to think everything is
OK and walk away, leaving the patient to run out of oxygen just after you’ve
left them on their own. The new digital head warns against this error, and
helps to stop patients asphyxiating.

SIGNS OF LIFE | 419
Part

III
⋄

Prognosis
⋄

A
betterfuture

Figure 30.2. Zoë Norris’s tweet, and the Secretary of State for Health and Social
Care Matt Hancock’s quick response to her.442

Zoë Norris’s tweet

Twitter was founded in 2006. Twitter was a new idea, and by 2009 it was
the third-ranking social networking system — though its founders argued it
was an information network, not a social network.

In this story, Twitter took minutes to connect a doctor on a hospital ward
to the most senior healthcare figure in the country. It started off as yet an-
other everyday symptom of risky digital healthcare: Dr Zoë Norris’s hospital
computer stopped responding.

Zoë photographed her computer and tweeted (figure 30.2):

Middle of telephone triage and this happens. Come on
@MattHancock — basic working IT needed. Let’s walk before
we can run #NHScomputer

The UK’s Secretary of State for Health and Social Care, The Right Hon-
ourable Matt Hancock MP (Member of Parliament) noticed and responded
to her, and the conversation then got retweeted to thousands of people,
including me. Maybe only one of Matt Hancock’s assistants noticed and
tweeted for him, but it’s still a very good story of how digital improves com-

http://twitter.com/MattHancock

Part
III

⋄
Prognosis

⋄
A

betterfuture

420 | CHAPTER 30

munication across hierarchies. Let’s hope that Matt Hancock and his staff
effectively follow up on this tweet.

It’s worth spending a moment explaining why this isn’t just a random
heart-warming computer story: it has farwider implications for digital health.
Let’s say the NHS has a million general purpose computers. If so, if these
bugs, the causes of Zoë’s and everyone else’s problems, are in each and every
computer — and there’s no reason to think otherwise — then every minute
a doctor or nurse spends trying to log in or to restart equates to a collective
million or so minutes of lost staff time, spread out across the whole NHS.
Over a year, that loss in time would equate to about ten full five-day jobs,
and of course most computer problems take a lot longer than a minute to
resolve, so the hidden cost to the NHS is even higher.

Back in the early 1980s, Steve Jobs used to worry about how slow his
new Macintosh computer might turn out to be, but he encouraged his staff
to design faster computers. He wanted to sell so many of them that speed-
ing them up by only ten seconds would save lives. His thinking was that
every Macintosh booting up takes a few minutes out of your life, and if Ap-
ple sold millions of them, those precious minutes would add up to wasted
lifetimes. Shaving seconds off eachMacintosh would — given enough sales!
— collectively save lives. Apparently, his encouragement worked.443 Digi-
tal healthcare could save more lives like this, just by eliminating bugs and
getting faster at what it does.

Electronic intensive care

The intensive care unit (ICU) provides hospital care for critically ill patients
who need life support, close care, and constant supervision. They are very
intense places to work, and digital technology is routinely used not just for
supporting patients but for monitoring them. If a patient deteriorates, staff
are notified and can respond immediately.

Since the digital systems doing the patient monitoring are digital, they
can be monitored remotely. The idea of an electronic ICU or tele-ICU is
that a dedicated room has digital systems that monitor perhaps hundreds of
intensive care patients, either in one hospital or spread around a geographical
region (figure 30.3).

In a good eICU, the nurses rotate with the staff in the actual ICUs, so
everybody gets to see both sides, and then they can help get to implement
ways to make the monitoring and help more effective. In particular, rotation
avoids any sense that the hands-on staff are being monitored in a negative
way.

The evidence shows that eICUs are very effective.444
eICUs couldn’t be done without digital.

SIGNS OF LIFE | 421
Part

III
⋄

Prognosis
⋄

A
betterfuture

Figure 30.3. Nurses watch over the vital signs of hundreds of patients in critical
care. This is the center of an eICU, an electronic intensive care unit.

Unfortunately, the eICU research evidence, like much research in digi-
tal healthcare systems, is limited by the small size of the relevant research
literature, and that research papers generally want to report positive results
rather than problems, or don’t want to waste space publishing corrections to
previously published works. This is publication bias, that the literature is
selective. So systematic reviews typically give more optimistic results than
are warranted. The published papers also use different methodologies that
are hard to compare, and most studies in digital health are rather small, so
they have problems with statistics.445

If that’s the “bad news” about the digital healthcare research in this area,
the good news is that digital technologies can helpwith all of those problems.
eICUs work by sharing patient data with a central monitoring facility, and
it’s then a short step to putting this data online so that researchers can use
it. For instance, the eICU Collaborative Research Database446 is a major
database that collects data from over 200,000 patient ICU admissions across
the US. The database is open access, so anyone (after some formalities) can
use it for their research. Even if it’s a story that isn’t finished yet, this is a
very positive sign of life for digital healthcare.

Part
III

⋄
Prognosis

⋄
A

betterfuture

422 | CHAPTER 30

Figure 30.4. It’s easy to overlook the many “trivial” advantages of digital. Patient
Information Leaflets (PILs) are provided with all medicines, and they are generally
complex and very hard to read. Patients are effectively discouraged from reading
all the details of how to use their medicines properly and safely. Patients with poor
eyesight are extremely disadvantaged. But information onwebsites andPDF leaflets
can be downloaded and scaled to any size, or read aloud by accessibility software.

Digital Stories

After an incident, patients, and relatives may be overwhelmed with grief, but
their complaints often encounter “delay and deny” as the hospital handles
the complaint legalistically, following set protocols. As complaints fester,
more and more causes (used holes in the Swiss Cheesea) become apparent,
and the possibility of any satisfactory resolution diminishes. Nobody wins.

Digital Stories transform this.
“Digital Storytelling” could mean almost any form of storytelling with

digital, but I’ll focus on a style of storytelling that is particularly effective in
healthcare.

Digital Storytelling gives people a voice through helping them turn their
a See Chapter 6: Swiss Cheese Model, page 61←

SIGNS OF LIFE | 423
Part

III
⋄

Prognosis
⋄

A
betterfuture

story into a two-minute video using voice recording and still pictures. A
Digital Story allows patients or staff to find the story that needs telling and
get it to an audience.

A Digital Story is a short, usually about two minutes long, simple, and
engaging video clip.

Everybody has two minutes to listen!
Digital Stories are told in the first person (“I did this…” etc). The voice

recording is edited and put together with photos or drawings using basic
video editing software.

The Digital Story communicates powerfully, but equally the person au-
thoring it has to work hard to figure out what their key story is, what story
structure it needs to work best, and how to record it clearly. It usually works
best with the help of a facilitator who listens and encourages, and deals with
the mechanics of recording the story. The listening is a careful, skilled pro-
cess, which helps focus the story, but also helps develop insights for the
story-teller. It’s a powerful process even if the story is never heard by any-
one else.

It’s important to get training in Digital Storytelling to be able to facilitate
it well.447

I, as a Digital Storyteller, can testify to the effectiveness of the process
in distilling what you want to say to maximize effectiveness. My father’s
story, which I discussed earlier,b is online at harold.thimbleby.net/dad; the
website also has the hospital’s powerful response to the story. The short
Digital Story format communicated with the hospital in a really effective way
when all of my previous conventional complaints and meetings had failed to
communicate.

The Digital Story format originally started in the Berkeley StoryCenter
(San Francisco Bay Area),448 and has been developed and used extensively
for healthcare by Prue Thimbleby, who is based in Swansea Bay University
Health Board, part of the NHS.449

Here, below, are transcriptions of eight Digital Stories, three from mem-
bers of staff and five from patients and family, all directly experiencing the
positive impact of digital healthcare.

Lisa Thomas’s story

Lisa Thomas is a ward sister, who explains how her work changed when she
started using an iPad to do patient admissions.

Lisa’s story … “Before we had the opportunity to pilot the electronic devices
to do electronic admissions, we were averaging between 25 minutes and

b See Chapter 9: Peter Thimbleby’s preventable death, page 109←

http://harold.thimbleby.net/dad

Part
III

⋄
Prognosis

⋄
A

betterfuture

424 | CHAPTER 30

Box 30.1. Early computer diagnosis

One of the world’s first digital healthcare systems wasMickie, which was de-
veloped in the late 1960s. Early versions of Mickie used a teletype, a form
of computerized typewriter and a telephone line to connect to a large main-
frame computer. Mickie had a polite and encouraging computer system; re-
searchers found that alcoholics testedweremore truthful about their drinking
habits than when talking to real human doctors — they admitted to drinking
on average 50% more! The earliest research on the system was published in
1971.450

Later versions of Mickie, as shown in the drawing above, used a micro-
computer and a simplified keyboard so patients could directly answer “yes,”
“no,” “don’t know” and “don’t understand” just by pressing buttons. You
can see the simplified keypad being used in the drawing.

The system was developed by Dr Chris Evans, an early computer pio-
neer.451

sometimes 45 minutes to do an admission. By having something of an
electronic device it reduced the timescale of our admissions. And I think
that the ease and use of the devices was really straightforward, very self-
explanatory — exactly as our unified assessment is.

Timescale-wise, the time was reduced down to about 12–15 minutes
for an admission.

The nature of the surgery that we have here is very sensitive and the
patients were having to go back over things that they had already gone
over, and they were getting upset through it all the time.

We had one particular lady who came in to us while we were doing the
pilot, shewas very apprehensive, shewas really sort of nervous, lots of prob-
lems previously with surgery. So we did what we needed to do, and she was

SIGNS OF LIFE | 425
Part

III
⋄

Prognosis
⋄

A
betterfuture

very happy for us to take the information on the iPad, but we were able to
spend more time with that lady because of the reduced time spent filling
things in on the iPad.

Time-wisewith the patient—even thoughwehad shorter timeswith the
patient — doing our paperwork side of things — we were still with patients
and supporting them but we didn’t have that paper in front of us or the
device. We could actually give emotional comfort to the patients if needed.

We had staff here that had never used an electronic device prior to this
pilot and they’ve all gone and bought iPads and various things. They’re
very happy to use these devices.”

Bella Cheham’s story

Bella Cheham has pulmonary hypertension.452 She used to have a very re-
stricted life before she used a digital portable infusion system.

Bella’s story … “I have got idiopathic pulmonary hypertension. I was orig-
inally told approximately 50% of people die within five years of diagnosis,
and approximately 100% of people die within 10 years of diagnosis, but
things are improving all the time, and thankfully it’s becoming much more
like a chronic condition. The doctor explained that the final, last ditch so-
lution for me is a lung infusion. This involves having a tube put into your
lung which sticks out of your chest and connects to a pump which delivers a
drug infusion 24 hours a day, 7 days a week, and you can never disconnect
the pump.

The introduction of the technology to my life had a number of what I
would call side effects, which I didn’t expect. The pump needed changing
at exactly the same time every 24 hours. If somebody said to me “do you
fancy going out tonight?” the answer was, “only if I can be back by half
past 10.” That’s much improved now, as I’m on an improved pump that
only needs to be changed every 48 hours.

The other side is that I have been transformed from a person who could
not walk up four steps without having to stop and catch my breath; who
could not carry my shopping home; who basically was afraid to go out be-
cause I wasn’t certain that I would maintain consciousness.

Now I can do anything and everything that I want.
I am a lot fitter than most of my friends. I am back to being able to do

the gardening, I am back to being able to do singing, dancing, and even
playing the recorder, which requires a good deal of breath.

People that do not know that I have pulmonary hypertension would not
know that I have pulmonary hypertension, and that is how I like it. I have
never in the six years since I have been using the infusion had any lung
infections or issues arising from having the pump and the line.

The pump, in my experience, is completely reliable.

Part
III

⋄
Prognosis

⋄
A

betterfuture

426 | CHAPTER 30

Figure 30.5. Nobody in the café knows Rhian Melita Morris is taking her blood
glucose reading.

My pump is reasonably simple and obvious to use, but the bottom line
is, it has transformed my life from miserable, depressed, unable to do any-
thing to being fit active and healthy — what is not to like about it?”

Rhian Melita Morris’s story

RhianMelitaMorris is a Type 1 diabetic: her body can’tmake its own insulin.
She uses the Abbott FreeStyle Libre sensor to monitor her blood glucose
levels.

Rhian’s story … “I’m a Type 1 diabetic, and I’ve been on an infusion pump
for about nine years. Even though the infusion pump can calculate the
insulin I need, it doesn’t communicate with a device yet that can tell me
what my blood glucose is so that it can do that automatically.

They’ve put me on what’s called a FreeStyle Libre sensor, which is a tiny
little disk which sticks to your arm where the needle goes in (figure 30.5),
and I can scan this with a little blood glucose monitor.

But the best thing is, I’ve downloaded an app onto my phone which can
use it.

My phone can read the scanner, and that for me has been the most
useful thing, because in my work I go to regular meetings and to pull out

SIGNS OF LIFE | 427
Part

III
⋄

Prognosis
⋄

A
betterfuture

my blood glucose monitor and do a test — it’s almost as if I feel the meeting
stops and everybody watches what I’m doing! They’re holding their breath.
Is she OK to continue? You know, especially as people don’t understand it.

But with the phone I can just put it up against my arm, and it’ll take a
reading and nobody even knows what I’ve done.

This app also has a few analysis tools and graphs so that I can track over
days when my blood sugars might rise, so that I can address that on my
pump by changing the settings to adjust my insulin. That’s been far more
helpful than just using the blood glucose monitor which, even though it
has graphs and has a tiny screen, whereas I’ve a 7 inch plus phone. We’re
all getting older — I can see it much better!

And the technology behind it is much better than on the old device.
By law, UK diabetic drivers have to check their blood glucose levels four

times a day, else they may lose their driving licenses. (If you are a bus or
lorry driver, you must also store results on a memory meter, and you must
have three months of continuous meter readings at an annual medical as-
sessment.) I do it at least four times a day; if I’m poorly, I’ll do it at least ten
or fifteen times.

So, yes, it’s made a world of difference.”

Marie Moe’s story

Dr Marie Moe is a researcher in cybersecurity, and after having what most
of us would call a heart attack (in fact a dangerous type of heart arrhythmia
called a “3rd degree AV block”) she needed a pacemaker implanted. She is
now the world-leading researcher in digital implant cybersecurity. Her life
depends on it.453

Her life with the pacemaker is so interesting, we’ve alreadymet her twice
before in this book.c,d Here’s her story of how having the digital implant
saved her life.

Marie’s story … “I woke up lying on the floor. I had no idea how I’d got
there, or how long I’d been out. I went to the emergency room at the local
hospital. It turned out I had fallen because my heart had stopped long
enough to cause unconsciousness. Luckily, it started beating again by itself,
but the resulting pulse was low and irregular.

I needed to have a pacemaker that would monitor my heart and send
an electrical signal directly to it via an electrode to keep it beating.

When I got the pacemaker, it was an emergency procedure. I needed it
to stay alive, so there really was no option to not get it. There was, however,
time to ask questions.

c See Chapter 4: Marie Moe’s pacemaker bug, page 46←
d See Chapter 19: Marie Moe’s pacemaker and cosmic rays, page 248←

Part
III

⋄
Prognosis

⋄
A

betterfuture

428 | CHAPTER 30

I am a security researcher, and at the time that I got this pacemaker my
day job was protecting the Norwegian national critical infrastructure from
cyber attacks. So I began asking about the potential security vulnerabilities
in the software running on the pacemaker and the possibilities of hacking
it. The answers were unsatisfying.

It took a fewmonths of trial-and-error tweaking before the doctors could
get the pacemaker’s tuning right, and this was complicated by a bug in the
device they used to adjust the settings. The bug caused the actual settings
of my pacemaker to differ from those displayed on the screen that the tech-
nician was seeing.

The consequence of this greatly affected my well-being.
The decision to implant a medical device is a risky one. In my case, the

benefit of having the pacemaker certainly outweighs the risk, since I don’t
think I would be alive without it. I’ve run the New York Marathon with it.”

Jelle Damhuis’s story

Jelle Damhuis was a typical active 26-year-old guy. He had his own on-
line business, played sports, and had a busy social life. And then he was
diagnosed with Non-Hodgkin Lymphoma in January 2018. After the cancer
diagnosis and chemotherapy treatment, Jelle came across theUntire app (fig-
ure 30.6), which has helped him enormously, and he’s now an enthusiastic
champion for it.

Jelle’s story … “My chemo sessions were a very exhausting period of treat-
ment, but I managed to get through them with a lot of support from friends
and family. Fortunately, my doctor gave the good news: everything was
gone! What an incredible joy and relief. It was time to celebrate with cham-
pagne and a party!

I was excited for my life to return to ‘normal,’ but no one warned me
that this would be the beginning of the most difficult period. As I sat at
home, extreme fatigue consumed me. At unexplained moments I was in-
tensely exhausted. This had a huge impact on my daily life. Meeting up
with friends became too much to do.

The fatigue was different from tiredness. This cancer fatigue came sud-
denly, out of the blue, and I would need to lie down. It felt like extreme
exhaustion. The fatigue had a huge impact on my quality of life.

Everything changed during a short walk in my neighborhood. Quite
by chance, I noticed a company called Tired of Cancer. Once I got home I
looked them up, and I found out that this company had developed an app,
the Untire app, to specifically address Cancer-Related Fatigue (CRF).

Eureka!
This is what I had been dealing with all along. Why hadn’t I heard about

this before?

SIGNS OF LIFE | 429
Part

III
⋄

Prognosis
⋄

A
betterfuture

Figure 30.6. The Untire app, used by Jelle Damhuis to help manage his CRF.

I came to find out that 40% of cancer patients and survivors deal with
CRF. Immediately, I felt recognition and acknowledgment for my problem.
I downloaded the app right away and soon found that it is not one big thing
impacting energy, but many little things that impact energy levels.

The Untire app is a free, easy to use, comprehensive self-management
program. It helped me to step back and take a good look at what was trig-
gering my fatigue. It helped me gain insight into my behavior, thoughts
and symptoms, and it showed me the actions I could take to regain energy.

Because of the Untire app, I am now more aware of my energy and
where I get my energy from. I was able to break out of my vicious circle of
fatigue, step by step. I started using breathing exercises to regain energy.
For instance, if I had dinner plans with friends later in the day I had a few
short meditations that would help me re-energize.

Soon, my energy levels improved. After not working formonths, I finally
felt like I could return to work. I am proud to say that I am now part of the
Tired of Cancer team. It gives me a good feeling to be able to contribute
from my own experience to help others with fatigue.

Looking back, I realize how much things can change in a short period
of time. I can’t emphasize enough how important it is to always keep that
in mind. A year ago, I would never have pictured my life the way it is now.
The periods of illness have cost me a lot, but now I have found a way to gain
from it. Through it all, keep moving forward, look ahead, and remember
that you will get through it.”

Part
III

⋄
Prognosis

⋄
A

betterfuture

430 | CHAPTER 30

Angela Branston’s story

Healthcare and social care are intimately connected. As in healthcare, social
workers know that they usually only get attention when their work is seen
to be substandard or when something has gone wrong. The first instinct of
almost anyone is to tell a horror story, to describe poor, mistake-ridden, and
bad practice by professionals.

In contrast, the Signs of Safety approach was developed in a spirit of
appreciative inquiry, asking social workers to describe self-defined and suc-
cessful practice in difficult situations454 — this is a Safety Two approach,e
and has made Signs of Safety a powerful tool for driving organizational im-
provement.

Angela Branston was one of the first social workers to start using a digital
version of Signs of Safety made by Liquidlogic IT.455 Her dramatic story is
about the radical transformation that good iterative designf has on work and
morale, and in improving the effectiveness in delivering care.

Angela’s story … “I’ve got to be honest, I didn’t hit the ground running with
social work. I found it so, so difficult.

I can really vividly remember sitting in front of my computer all day at
work, and not knowing what I was supposed to be writing. The forms were
just endless, and they all looked the same.

It was so overwhelming. It really knocked my confidence. I think it ac-
tually impacted my mental health. I can remember that period of time just
crying, just because I couldn’t do it. I felt like such a failure, and my confi-
dence was lower and lower and lower.

I thought ‘this new system is going to be great,’ and that I could just
look at it and all of the stuff will be there, but it wasn’t at that stage yet.
We’d had all these promises of things, and then here it was, and it wasn’t
what we thought it was going to be.

The thing that was really fantastic was that people listened, and then
they went away and changed the system. The forms drove our practice, but
in the parts where they didn’t, we could talk to them and tell them, actually
this bit doesn’t drive our practice, and if it did this instead that it would be
better.

Then we saw what they’d done with it.
Now, from being a person who sat and cried and didn’t know how to

write a plan, I’m advising the managers on what the right thing to do is,
and this is the way it’s working best. The most exciting part of it is that
when we go out and do that with the families, they understand what we’re
doing.”

e See Chapter 12: Safety One & Safety Two, page 145←
f See Chapter 23: Iterative design, page 313←

SIGNS OF LIFE | 431
Part

III
⋄

Prognosis
⋄

A
betterfuture

Isabel & Jason Maude’s story

In 1999, Isabel Maude nearly died. As a result, her father, Jason, was in-
spired to develop a digital tool to help improve diagnosis.

Jason called his diagnostic tool Isabel, after his daughter.456

Jason’s story … “The story starts when my daughter aged three became ill
with chickenpox. She was developing fever, diarrhea and was lethargic. So
we took her along to the GP. Then she got worse, and that evening we
went along to A&E [emergency department], and again it was shrugged
off as normal chickenpox. Her temperature was over 40 C [104 F], so they
focused on getting her temperature down. They got the temperature down,
which they did by using Calpol [Tylenol/paracetamol], and said go home.

She continued to get worse at home. We called up. ‘Don’t worry —
it’s normal chickenpox.’ There was no thinking about ‘could it be anything
else’? It was always ‘it’s just chickenpox.’ We got to the point where we
thought, ‘this is just not right.’

We went back to A&E, and she was seen by a pediatrician, who looked
at her and said, ‘Oh, she looks a little bit dehydrated. You may have to
stay in overnight.’ And the nurse who tried to take her blood pressure said,
‘Oh dear, the blood pressure machine looks as if it’s not working properly,’
when in fact her blood pressure was rock bottom.

Literally, about ten minutes later her eyes started rolling, and she went
into multi-system failure, and crashed. The crash team was called in. Then
it was just chaos.

From that point on, the NHS worked beautifully. The crash team was
good. And she was transferred that day by the intensive care retrieval team
to St Mary’s Hospital, London.

But it needn’t have happened.
We actually saw the Medical Director of the original hospital who had

been responsible formissing her diagnosis once Isabel had beendischarged,
and he said, ‘I trained at Mary’s in infectious diseases. I wrote one of the
papers describing exactly what had happened to Isabel: it sits in the proto-
col folder.’ So all the knowledge was there, but it wasn’t in the clinicians
that were admitting and assessing Isabel at the time.

That showed in stark relief the problem that needed to be fixed. How
do they pluck out the unusual cases within the mass of routine stuff that
comes through?

We didn’t want to create a tool that diagnosed a patient; the idea was to
help the clinician put together a differential to help with clinical reasoning.
The problem with diagnosis is there’s too much burden on the clinician to
remember everything. If you think there are 10,000 diseases in the world,
it’s just impossible for anybody to remember how those diseases present.
And that’s what computers are really good at — computers are good at go-

Part
III

⋄
Prognosis

⋄
A

betterfuture

432 | CHAPTER 30

ing through mountains of information very, very quickly, and coming up
with a shortlist.

So the tool, Isabel, first became available in 2001 — and it worked.
When the clinicians tried it, they put in classic cases, and a good list of pos-
sible diseases came up. One of our clients recently published a paper, ‘Is-
abel to the Rescue!’457 They were close to losing the patient. They decided
to use Isabel. It prompted them to think of brucellosis, which they hadn’t
thought about. They asked the patient. Yes, she’d been eating homemade
cheese in Mexico. And that’s what it turned out to be. They actually said,
‘You know, if we hadn’t used Isabel, we wouldn’t have thought about it —
we would’ve lost that patient.’

You know, Isabel is really a tried-and-tested tool, and is a great contrast
to these tools that have not been validated, or proven, or that don’t work.
Isabel is a tool that’s been out there for twenty years. We’ve had a process
of continual validation and development. We cover 6,000 diseases and
4,000 drugs. And today the system is used by over 250 institutions around
the world.

In 2012 we decided to make it available to patients. Isabel is a tool to
help the patient get much better informed. The better informed patient is
the better patient. We’re very keen on licensing the tool to other companies
that are building health information sites, so for example patient.info has
a symptom checker powered by Isabel.

The culture has been our biggest barrier to getting Isabel used, with
clinicians not thinking that they need help in this particular area.”

Sian Thomas’s story

The COVID-19 pandemic made lots of people very sick. All hospital visit-
ing stopped to reduce the spread of infection. Sian Thomas was a Pediatric
Occupational Therapist based at Neath Port Talbot Hospital. She was rede-
ployed onto an adult stroke rehabilitation ward to support the most vulner-
able patients.

Sian’s story… “It struck me that the patients were going through life chang-
ing events. It became quite apparent of the impact of them having no vis-
itors, things like no magazines and no papers on the ward because of in-
fection control. The days were really long for the patients, and they were
looking for a lot of reassurance about what was happening. They were re-
ally confused about why relatives weren’t coming to see them. Why had
they been left there? Was anyone coming back for them? It was getting to
a point where it started affecting me because I could see the impact. I felt
a bit helpless.

I was having a chat with one of the healthcare support workers one day,
just talking about our frustrations of the situation and the impact on the

http://patient.info

SIGNS OF LIFE | 433
Part

III
⋄

Prognosis
⋄

A
betterfuture

patients. She said, ‘Oh I’ve had an iPad donated in the office, it just needs
setting up.’ So we quickly got it set up, and within half an hour we were
on our first virtual call with one of the patients, who hadn’t seen his family
for weeks. His child was really unwell and was going through their own
treatment at home, so he’d a lot of fear about whether they were going
to make it, whether they were going to see each other again. Instantly, the
connection when we came on the video between the patient and family was
just amazing. There were tears in their eyes.

It really struckme: it was an incredibly powerful thing that just reminded
me of that basic human instinct that we need to connect, we’re social peo-
ple, and the love just pours through from both ends, you know? It was a
really lovely moment. It was such a simple thing to do, really, to just go and
get the iPad and make it happen. And we just decided there’s no reason we
can’t carry on doing that.

So we set up a virtual visiting book then. We had to ring some relatives,
get some details of what platform they were using.

The difference in some of the patients has been incredible: their mood
has changed, they’re more motivated to return home, and they can’t wait
to see their families.

On the other side of it, the relatives had been anxious about knowing
about what’s going on with their loved ones, and now they’ve had that daily
update it’s allayed a lot of their anxieties as well.

So, yes, it’s been a really important project, and I think we’ve learned
so much as a therapy team and how we can continue past COVID to make
this possible — there’s always going to be people in hospitals who can’t see
their relatives, and the only way is up.”

The Patient Experience Library

The 2020 Cumberlege Review, First Do No Harm, says:

Patients often know when something has gone wrong with
their treatment. All too often they are the first to know. Their
experience must no longer be considered anecdotal and
weighted least in the hierarchy of evidence-based medicine.
[Patients] who have been affected have been dismissed,
overlooked, and ignored for far too long. The issue here is not
one of a single or a few rogue medical practitioners, or
differences in regional practice. It is system-wide.458

In comparison to the universal respect for medical evidence (such as
peer-reviewed research papers in medical journals), patient-centered evi-
dence is under-valued. For example, over the years there have been many
patient-facing inquiries and initiatives (the Cumberlege Review is one such)

Part
III

⋄
Prognosis

⋄
A

betterfuture

434 | CHAPTER 30

responding to particular incidents, but as each initiative finishes its entire
body of learning — and the patient voice — disappears with it.

The Patient Experience Library therefore decided to build a website to
promote, curate, and keep patient experience accessible. Their website —
www.patientlibrary.net— has many resources, from a weekly newsletter to
major reports of patient experience and involvement. As of 2020, the library
holds over 60,000 documents.459

Even the humble website can be a sign of life to help change the world.

There aremany,manymore stories of the positive impact of digital health-
care. I want to collect more stories, particularly with a digital and Safety Two
attitude.g So if you have a story, please get in contact with me by email at
harold@thimbleby.net — if appropriate, we’ll then go through a process of
recording and editing, and with your consent we’ll add it to this book’s web-
site at www.harold.thimbleby.net/fixit

g See Chapter 12: Safety One & Safety Two, page 145←

http://www.patientlibrary.net
mailto:harold@thimbleby.net
http://www.harold.thimbleby.net/fixit

Part
III

⋄
Prognosis

⋄
A

betterfuture

Part
III

⋄
Prognosis

⋄
A

betterfuture

The horrific COVID-19
pandemic has forced
healthcare systems to
innovate in digital health.
Some changes have been
amazing, liberating patients,
and protecting healthcare
staff — but some have been
rather worrying. What can we
learn?

Part
III

⋄
Prognosis

⋄
A

betterfuture

31

The pivotal pandemic?

Roberta Shelton was the first person to die of COVID-19 in Indiana, USA,
on 19March 2020.460 Despite being isolated in hospital, she was able to say
goodbye to her partner using an iPad.

Hours after his many friends sang Happy Birthday to him using Zoom
on an iPad, Thomas Martins fell unconscious and died alone at home from
COVID-19, nine days after his mother had died of COVID-19 too.461

These tragic deaths, three out of the thousands that have numbed us,
were made a little easier to bear because digital technologies eased physical
barriers and brought people closer together.

I used to wonder why, with my neuropathy, I had to drive to the hospital,
find a parking space, and wait for hours, just to get a brief meeting with
the neurologist. The hospital neurologist’s computer couldn’t even see my
blood test results ordered by my doctor. But the pressures of working safely
during a pandemic have transformed everything. Last time, my neurologist
used Zoom: he worked from his office, and talked to me at home, and I got
a prescription fulfilled without even having to visit my GP. Easy. Efficient.

It’s awful that it takes a pandemic, but it’s proved that improving health-
care is possible. We still don’t know very much about COVID-19. COVID is
the severe acute respiratory syndrome caused by a virus called SARS-CoV-
2. COVID stands for COrona VIrus Disease, and the -19 is because COVID
was first identified in 2019, where it started in Wuhan in China. Before the
pandemic, doctors saw fewer than 1% of patients by video, and now they are
seeing over 93%.462 It “just” needs the political willpower. Until COVID-19
changed the rules, nobody had the permission or funding to seriously think
about improving. There was no imperative to change. Now there is.

I’m writing this chapter in 2020, in the middle of the pandemic — sadly,
we’re nowwell into its “secondwave,” andmore are to come. In this chapter,
I’ll cover four central topics relevant to digital healthcare: wearable comput-
ers, tracking apps, epidemiological models, and, briefly, ventilators — all ar-

Part
III

⋄
Prognosis

⋄
A

betterfuture

438 | CHAPTER 31

eas where effective digital health innovations are central to the fight against
disease, not just COVID-19 of course.

COVID-19 is a horrible disease, and as it attacks people they may deteri-
orate without noticing. If they deteriorate, patients usually have much worse
outcomes. Hospitals have to make difficult decisions: they don’t want to fill
up with patients who don’t need in-patient care, yet they shouldn’t send pa-
tients home if they’re going to deteriorate. Instead, it’s better to have some
sort of early warning system, so patients sent home after initial assessment
will know if they start to deteriorate.

Blood oxygenation is a measure of how much oxygen our blood has.
When blood oxygenation drops for no good reason, this is a sign that we’re
deteriorating. Unfortunately, we aren’t directly aware of our oxygen levels.
There’s the problem of “silent hypoxia,” where we don’t notice as we start
to deteriorate. By the time it’s noticeable, we may already be in a serious
situation.

Hospitals have been sending some at-risk COVID-19 patients homewith
personal blood oxygenation meters.463 These are small, cheap devices that
clip on your finger or ear lobe, and give you a direct measure of your blood
oxygenation. They give an early warning of deterioration if you need hospital
assessment. The scheme frees up hospital resources to focus on the patients
that need treatment.

This powerful idea raises some interesting points for digital healthcare.
Blood oxygen levels are calculated using computers — tiny, usually spe-

cialized computers are sufficient. Blood oxygenation meters are so small,
they can be fitted into watches or fitted inside the clips that fit over your fin-
ger. You can even buy kits to build your own for a few pounds.464 I never
thought a few years ago that computers would get so small that we’d be
sewing computers into clothes — there’s now a whole, vibrant, field of Com-
puter Science called wearable computing to take these ideas further. It’s
a powerful testament to how small and ubiquitous digital is.

Because of the versatility of computers,a it is nowmuch easier and cheaper
tomake thingswith computers in them than not. Gadgets like Apple’s iWatch
have the oxygen sensor and the computer in them already, and they can
do everything a blood oxygenation meter can do and send the data to your
phone or healthcare organization. Digital is everywhere, even if we can’t
see it.

Then there is something more thought-provoking. When computers are
hidden — embedded is the technical term — inside other devices, the legal
position is generally that the device is regulated as a device, not as a digital
device. So the oxygenation meter has to work. It’s the same if you have a
camera or washing machine or car or TV. They come with warranties that

a See Chapter 13: Computational Thinking, page 151←

THE PIVOTAL PANDEMIC? | 439
Part

III
⋄

Prognosis
⋄

A
betterfuture

they will work — as cameras, washing machines, cars, or TVs — yet they
have complex software inside them. If, instead, you used the same digital
features but on a computer or mobile phone, as we’ve seen,b the manufac-
turers will go to great lengths to make sure there is no guarantee anything
works. In other words, embedded software shows that the non-warranties
we are so used to are there for commercial reasons, not for any technical rea-
sons. Digital can be made reliable enough for healthcare, but won’t be while
we let manufacturers get away with it.

Finally, perhaps the most important point for digital healthcare: COVID-
19 is forcing us to think and find new solutions. Digital healthcare is up to
the challenge. It’s now very clear that digital healthcare can do better than
merely “computerize healthcare” — it can do a lot better.

One of the problems with COVID-19 is that people can be infectious
before they know they’re ill, so contact with these people silently spreads
the disease. So many people have caught COVID-19 that testing and tracing
everybody to find out the sources of infection is impractical in almost all
countries. If you can’t find the people who are infectious, it isn’t possible
— at least, without vaccines or other interventions — to limit the spread of
disease through the population.

There are proposals for tracking apps.465 The basic idea seems simple
enough. Many of us use mobile phones, and if they are tracked we know
where almost everyone is. If we get ill, our phone’s location data combined
with everyone else’s location data can then be used to track our contacts. If
lots of people who get ill had previously met me about a week ago, it’s likely
that I am the person who infected them. Analyzing the big data that track
and trace apps collect with powerful digital technology, it’s then very easy to
focus effort where it’ll be most effective.

Big data, powerful digital technology, and very easy, are constant refrains
of digital healthcare! Examples of complex problems with tracking apps are
privacy trade-offs, such as the potential for snooping going beyond epidemi-
ological needs, and interfering with other devices, like diabetes apps,466 and
the sheer complexity of designing programs that have to be very quickly de-
ployed at national and international scales, and which have to fit in with
the manufacturers’ (primarily Apple’s and Google’s) sophisticated operating
systems — which the rest of the time are designed to stop the sort of “un-
dercover tracking” activities that the apps need.467 Privacy is interesting, be-
cause many apps people use enthusiastically, like Facebook and WhatsApp,
track us already, but giving data to a system that wants to promote health is a
problem? In some countries, like South Korea, it is a legal requirement to be
tracked for COVID-19, so the privacy issues don’t arise in the same way —
except, in all countries, the more willing compliance there is with the app,

b See Chapter 15: Who’s accountable?, page 193←

Part
III

⋄
Prognosis

⋄
A

betterfuture

440 | CHAPTER 31

the more successful it will be. And “compliance” — the correct term, but
nevertheless a word with horrible overtones — isn’t about a technical issue
that apps can solve.

An important issue that makes designing apps very difficult is scams.
There are many fake text messages, emails (phishing), and websites that
convince people they are infected and then need to provide their personal
details.468 How do you design the real systems to assure people they are re-
liable, and asking for genuine information that will be protected, and at the
same time dissuade anyone from the scams?

There are lots of ethical questions. Ethics are not only complex for hu-
mans to understand, but they are very complex to program well. Some eth-
ical issues are discussed in box 31.2.

With more data, you can get more certain about the inferences from the
data, which is useful medically for managing the disease, but the more data
you collect the harder it is to ensure privacy — or to properly regulate the
companies running the systems that collect the data.

At this stage of the pandemic and the development of apps, it’s impos-
sible to have a definitive view of the issues. Needless to say, at least to
mid-2021, the cost of apps intended to help fight COVID-19 has been as-
tronomical, and with few clear gains.469 Some apps failed outright for all
the usual reasons: political, legal, and technical. Basically, the developers
rushed in and then found insurmountable bugs — in other words, they as-
sumed digital was trivial to get working. They were not professionally pre-
pared for the reality of digital complexity.470 Clearly, although innovative
digital tech sounds easy, successful digital healthcare is much harder than
politicians think, especially when (for understandable reasons) people rush
in with untested ideas that have not been rigorously developed — issues I’ve
discussed throughout this book.

An example of this “rush in with untested ideas” was England’s problem
with their Test, Trace, and Isolate systems, which came to public notice in
early October 2020.471 The idea was simple: people get tested for COVID-
19; if they are positive (more precisely, if the test says they are positive), then
their contacts are traced; people who are deemed likely to have COVID-19
are then asked to isolate so that they do not infect further people. In England,
there are lots of places where you can get tested, and lots of places where test
samples can be sent to be tested. Finally, the data from all the test centers
across the country has to be combined so that people can be traced, as well
as to generate local and national summary reports.

Unfortunately, a step in this process of managing the data involved Excel
spreadsheets, or, more precisely, it involved files in the Excel format called
XLS. XLS is obsolete and not a very good format. When lots of data were
combined, because of its limitations, theXLS format lost 15,841 test results,
meaning that up to 50,000 people were not warned that they had been in
close contact with people with COVID-19 infections. Worse, XLS lost the

THE PIVOTAL PANDEMIC? | 441
Part

III
⋄

Prognosis
⋄

A
betterfuture

data silently, and nobody noticed. Losses started to happen on 25 September
and continued at least up to 2 October, so it took a week to notice and to start
to fix the problem.

Reports of this fiasco largely focussed on the incompetence of using Ex-
cel and the old XLS file format.472 No, the incompetence was designing a
system that lost data and designing in nothing to notice errors. There was
incompetence in pulling Excel (or Excel format files) into a critical healthcare
system where it had no place. Nobody noticed the errors until several days
in a row of low numbers of tests being reported were obviously a symptom
of something going wrong.

This is the same problem that affected the XceedPro glucometers we dis-
cussed earlier.c In both cases the system was not designed professionally.
Any competent programmer expects error: they expect human error, they
expect network problems, they expect they themselves will make typos and
even have fundamental misunderstandings of the requirements and of the
code (especially of code others have written). Therefore, professional pro-
grammers use the techniques we’ve discussed in this book: their programs
check that everything is as expected.

The fundamental idea that safe programs must continually check
their assumptions was explored at some length in the chapters
Computational Thinkingd and Computer Factors.e Indeed, box 21.2,
in Computer Factors, showed that Alan Turing — arguably the most
famous computer pioneer ever — published exactly this idea back in
1947.308 It’s fair to say that developers who build critical systems like
a national Test and Trace system without continual checks (including
checking the effectiveness of the program for improving public
health), and trying to improve it given the insights of testing, seem to
be ignorant of routine, professional standards in software. They (or
perhaps their managers) unnecessarily put lives at risk.

For instance, if 1,001 COVID-19 test results are sent to another site,
the program there must check that 1,001 results are received in good order.
In the Test and Trace Excel fiasco, there was obviously no such checking.
Clearly, the people who designed and built the system implicitly expected it
to work perfectly. When it didn’t, they had no way of knowing. It hadn’t
occurred to them that they would need to know immediately if — when —
their systems were not being perfect. This is Cat Thinking on hormones.f

If you design systems assuming they are perfect, when they fail — as they
eventually will — you have nothing to fall back on. You must design systems

c See Chapter 8: Disciplinary action against 73 nurses, page 92←
d See Chapter 13: Computational Thinking, page 151←
e See Chapter 21: Computer Factors, page 277←
f See Chapter 3: Cat Thinking, page 25←

Part
III

⋄
Prognosis

⋄
A

betterfuture

442 | CHAPTER 31

to fail gracefully.g But, in addition to that big failure in design, there were at
least four other strategic issues:

A pandemic is a pandemic because infections are growing
exponentially. By definition, then, a national Test and Trace system
for a pandemic is going to have to handle lots of tests. To use a data
format that can’t handle lots of tests was naïve and a failure to
understand the basic problem.

Excel seems so easy to use, that it’s tempting to just build systems
with it, but we saw earlier that Excel is deceptive,h and losing 15,841
tests is a consequence of ignoring that fact. Involving Excel at any
stage doesn’t make sense. Excel is nice because it allows the user to
edit and organize numerical data (spreadsheets, in fact) very easily.
That is exactly what you do not want test laboratories to be doing. If
you can edit large amounts of data easily, you can also accidentally
edit lots of data too. One slip in Excel and you might delete or
mangle thousands of data items; you might delete an entire row or
column — who’d know? There should have been a custom design to
handle test results reliably, and Excel (and Excel file formats) should
have been nowhere near it.

What training did the people who made the sharp-end mistake get?
It seems that laboratories were emailing XLS files — which makes
sense if you are using Excel to handle local test data, but as I argued
above, using Excel at all was crazy. If any part of a digital healthcare
system is crazy, the whole system is crazy.

We all make errors, and there is no news in that. The thing is, you
should never have one programmer develop software of this type
working alone. There must be pair programming, code review, and
other forms of active teamwork.i The basic error wasn’t made by one
person. It wasn’t a mere slip — so where was the team (with the
appropriate skills) to spot and block the serious programming slip?
Where was the code review? It was a management failure, a failure
of management to understand that developing software is not magic.

It’s baffling that a national Test and Trace system costing over £10
billion5 (not counting the cost of earlier failed apps470) didn’t have a
lot more competent and effective professional input into its design
and monitoring. To put the cost of the Test and Trace project into
perspective, £12 billion is about a tenth of the entire NHS England
annual budget. Politicians who plan such large digital health projects

g See Chapter 21: Graceful degradation, page 292←
h See Chapter 14: Microsoft Excel, page 182←
i See Chapter 21: Computer Factors, page 277←

THE PIVOTAL PANDEMIC? | 443
Part

III
⋄

Prognosis
⋄

A
betterfuture

simultaneously think digital healthcare is trivial (else there would
have been more safeguards against error) and, at the same time, for
some reason, think the suppliers of the systems need massive
funding.

The solution, of course, is when you are designing a digital healthcare
system, in this case a national public health system for Test and Trace during
a pandemic, is that youmust use competent professional software engineers.

Given that we expect human error and other problems, tracking systems
are best designed so that they do not have to be perfect. For app tracking, we
shouldn’t need everyone to have mobile phones so they can use the app. We
just need enough people to have mobile phones. We only need to somehow
make the reproduction number (called R, the increase in the number of
cases being generated in the population) go under 1, and then the pandemic
will start to die out.

To beat the pandemic, R does not need to be pushed down to a perfect
zero, although the smaller it is, the faster the epidemic will die out. In real-
ity, R is an over-simplification — it’s an average, so it smooths over the key
impact of superspreaders and other dispersion factors, which are particularly
relevant for COVID-19.473

Oneway to reduce R is to vaccinate people. In general, we need to reduce
infection from one person to another. We can socially isolate people, wear
masks, wash our hands, ventilate well, disinfect surfaces … and we have to
test and track down infectious people and quarantine them so they don’t
infect more people. Tracking infectious people is hard work, especially as so
many people are already infected, so it’s an obvious idea to use tracking apps
to take the laborious work out of tracking.

An app can only help trace infectious people if it knows when people get
close to each other, and it can do this using Bluetooth, assuming everyone’s
mobile’s Bluetooth is switched on. In the simplest approach, the app does
not need to know who anybody is. Here’s how it works: I don’t need to
know who X is, but if I am close to X, my app records that. Similarly, X’s app
will record that they are close to somebody, Y perhaps. Later, one of us gets
COVID-19 symptoms and we take a test that confirms we do indeed have
COVID-19. The test process will include getting our mobile phone data —
so the healthcare system now knows how to get in contact with the mobile X
owns, even if it still doesn’t knowwho X is as a person. So, X’s mobile is told
they had a close encounter with somebody who is now ill, and they should
go and get tested — they don’t need to delay and wait for any symptoms to
develop.

The app is useful at this basic level, and not very intrusive, but if it col-
lected a little bit more information, it would be even more use to epidemi-
ologists. The app isn’t very motivating for anyone using it; so it needs the

Part
III

⋄
Prognosis

⋄
A

betterfuture

444 | CHAPTER 31

Box 31.1. The 1918 Spanish Flu

Although COVID-19 is not flu, the Spanish Flu pandemic of 1918 is an ob-
ject lesson in the seriousness of what we face, and what the long-term social
impacts might be.474

It’s possible thatmore people died of Spanish Flu thanwere killed in both
WorldWars combined— the Spanish Fluwas aworldwide disaster, killing 20
million in India alone. It killed and orphaned millions of people worldwide
who never got counted. Many languages died out.

In 1918 we didn’t know anything about viruses — at the time, nobody
was able to identify the agent that caused the flu. Although quarantine was
well known, people had no alternative ways of working. Nobody had com-
puters or the internet.

Today, managing the COVID-19 pandemic has been made much eas-
ier, both by advances in biomedicine and thanks to the internet and mobile
communications. In fact, most of the biomedical advances, from the elec-
tronmicroscopes that can see coronaviruses to sequencing the genome of the
SARS-CoV-2 coronavirus, are thanks to computers.

Ironically, though, some of the pandemic problems today stem from
computers too: the “infodemic” spread of fake news, especially in social me-
dia on the internet.

user to be rather altruistic. If you report symptoms, you may have to stay
at home and not go to work, so there is a financial penalty for being hon-
est. However, if the app was combined with another app, such as a general
healthcare app, it could be made much more helpful to the owner — and, at
the same time, provide higher quality information for epidemiological work
in managing the pandemic, as the epidemiologists would know things like
your age, other illnesses you might have, and so on.

UsingMachine Learning on the data is an obvious idea to help enrich the
information the app collects — we could identify and better support people
who are likely to be more susceptible to COVID-19, for instance — but the
Machine Learning will also learn some fascinating things about us (and our
contacts) that many would probably prefer to keep private!

The problem is that the tracking information we need is not just helping
to fight COVID-19, but it is also very valuable data in its own right. Even if
we completely trust themotives of the folk collecting and analyzing our data,
what if they get hacked? They are sitting on a goldmine that will definitely
attract hackers.

At the very least, then, the development of these tracking apps and the
storage of the data they collect involves tricky trade-offs, and needs careful
oversight. In the UK, the Government gave the secret service (GCHQ) per-
mission to access the data475 — like everything else with digital technology,
this cuts both ways: it means GCHQ can help improve the app’s cyberse-

THE PIVOTAL PANDEMIC? | 445
Part

III
⋄

Prognosis
⋄

A
betterfuture

Figure 31.1. My very simple epidemiological model, as run on a computer, show-
ing (given my model’s assumptions) how a high proportion of people can get in-
fected, followed by the number of infected people tailing off as people recover or
perhaps die. Note how the graph doesn’t quite start off at zero, as we need to have
some people infected to get the epidemic going. I’ve made the fully documented
code to draw this graph available online.476

curity and they can monitor personal details of citizens with ease (but they
would’ve been doing that anyway).

People will certainly worry about the use of the data the apps collect.
If too many people refuse to use the app, the app won’t be very effective.
The app’s User Centered Design — in the broadest sense of that — will be
critical.j

It’s a trade-off whether privacy is worth risking. Will the information
from tracking apps help manage COVID-19 “better” than the risks to pri-
vacy? Epidemiological research suggests that COVID-19 will be a disaster
unless we do make changes, like using apps to track infectious people and
isolating those who are infectious. The alternative is that the disease spreads
very rapidly, and many people get seriously ill so quickly that health services
are overwhelmed. At least, that’s what the epidemiological models suggest.
It’s very important, then, that epidemiological models are accurate, so that
the best public health choices are made.

Epidemiological models can be very complicated, and we have to run
computer programs to work out what they mean. Computers are needed
to work out the results predicting what will happen. Like the rest of digital

j See Chapter 22: User Centered Design, page 301←

Part
III

⋄
Prognosis

⋄
A

betterfuture

446 | CHAPTER 31

healthcare, then, it’s important that the epidemiological models are correctly
implemented and don’t have any serious bugs, otherwise governments will
be making policy decisions for the badly informed reasons — they’ll keep us
locked down for too long, causing economic problems, or release lockdown
too soon, causing health problems.

I wrote a short program to estimate infection rates based on the standard,
very simple, epidemiological model called susceptible-infected-recovered
(SIR).477 It involves having some data about the population and the disease,
and then solving some equations. Using the program, I easily drew a graph
from the SIR model (figure 31.1).

If my model had been used to inform public policy, the data driving it
would have to be carefully based onwhat is known about the disease and lots
of social factors, like how close people get on public transport, differences
between age groups, differences between men and women, how care homes
work, the role of children in schools (or not), social deprivation, digital ex-
clusion, and so on. You’d also need to carefully model knock-on problems,
like the health issues caused by hospitals filling to capacity with COVID-19
and therefore being unable to handle other problems.

My basic model ignored all those details — it didn’t even model the dif-
ference between recovery and death. It can’t, for instance, predict a second
wave of infection if lock down is relaxed too soon because, as it’s currently
programmed, it doesn’t model changes to the infection rate that would be
needed to model changes to lock down.

I designedmyprogram so you can run it yourself and see how itworks.476
I wrote it in JavaScript so it”ll run conveniently in any web browser; it just
runs a simplemodel, then draws a graph (figure 31.1). I wrote it in JavaScript
to make it easier if you want to play with it, however if I’d been writing it to
do real epidemiology to inform public health, with lives depending on the
quality of my programming, I would not have used JavaScript, C or R (a pop-
ular statistics language often used for modeling) but a safer and more robust
language, one designed specifically for high-integrity applications, such as
SPARK Ada.k

I documented the model in case you want to understand how it works.
For example, if you decrease the model’s assumption about the risks of in-
fecting each other (simulating taking precautions like handwashing or wear-
ing masks), then the model predicts a smaller proportion of the population
will get infected.

It’s a simple program, and it took just over an hour to document it to the
standard I wanted to support this book: documentation is important so that
you or anyone can understand how the code works. You might discover I
got something wrong. Or if I come back to the code in a few weeks time, it’s
likely I will have forgotten what some details do — the documentation will

k See Chapter 27: SPARK Ada, page 375←

THE PIVOTAL PANDEMIC? | 447
Part

III
⋄

Prognosis
⋄

A
betterfuture

help me get back to understanding it all.476 Documentation is always worth
the effort of writing it.

My SIR computer model highlights more obvious points:

The epidemiological model, the data, and all the social assumptions
must all be reliable;

You need to run models on a computer to make predictions; but
obviously, no predictions are any more reliable than the computer
programs used to run them.

Only if a model is properly documented do you know what it is
supposed to do.

Given the critical role of computers in epidemiology, it came as a big
surprise to me that many programs used in epidemiological modeling are
pretty wobbly.

Neil Ferguson is aworld-leading epidemiologist, and his pandemicmodel
influenced particularly the UK and the US in their COVID-19 responses.478
He tweeted that the code he used is over thirteen years old, was intended to
model flu (in fact, H1N1, the same sort of flu as the 1918 Spanish Flu) and
not COVID-19, and it is thousands of lines of undocumented C code. He
implies he wrote it on his own (figure 31.2).

As Ferguson said in an interview,

For me the code is not a mess, but it’s all in my head,
completely undocumented. Nobody would be able to use
it …479

I’ve now read up on lots of epidemiological models and looked at lots
of source code, and this relaxed approach to programming seems typical for
the field.480 Public health has the same cavalier approach to programming as
healthcare does. I want to emphasize that Neil Ferguson is a world-leading
epidemiologist and the epidemiology that he is doing isworld leading. But he
isn’t a software developer. The COVID-19 pandemic has pulled laboratory
work out into the world, and it’s now having a huge impact on public health
policies — so, at the very least, it needs proper documentation.

Poor programming risks lives in epidemiology as it does throughout digi-
tal health. It has become a public health issue. Quality software development
is essential, as lives are at stake.

I’ll explain why Ferguson’s approach raises serious problems.
First off, the programming language C is a very poor choice of language

for critical epidemiological modeling:

C has very basic data handling, so you have to do it yourself, and risk
getting it wrong. C, then, is a poor choice if your program starts off

Part
III

⋄
Prognosis

⋄
A

betterfuture

448 | CHAPTER 31

Figure 31.2. Neil Ferguson’s statement about his epidemiological model.481

by loading lots of data, as a national epidemiological model would
certainly do.

C handles floating point numbers badly. It is very easy to make
unnoticed numerical errors in C. C is a poor choice of programming
language if you are going to do numerical calculations.

C ignores many programming errors. For example, if you accidentally
store some data in the wrong place, or analyze some data looking in
the wrong place, C ignores the errors (and the program may crash
later, or — worse — just carry on but generate incorrect results).
Anything can happen.

These are very well-known problems for professional C programmers.
Of course, a good programmer would use libraries of professional code

written by other people to domany things like handling data, searching, sort-
ing, and database things. It’s a fine balance: would you trust unknown pro-
grammers? Would their code work correctly for your application? Or would
you rather just adopt their ready-made code, and get your programming fin-
ished sooner?

You could be a disciplined programmer and use a better programming
language than C. UsingMISRA C or MISRA C++ (even better, using SPARK
Ada or another high-integrity language) combined with using Formal Meth-
ods would really help, as we discussed in earlier chapters.l

But Ferguson didn’t document his program, and that raises more serious
problems:

l See Chapter 27: Formal Methods, page 379←

THE PIVOTAL PANDEMIC? | 449
Part

III
⋄

Prognosis
⋄

A
betterfuture

After over thirteen years with a program thousands of lines long,
there will inevitably be bits of code whose workings or purpose are
no longer remembered by anybody. You dare not tidy up or delete
these bits of code, because they may be critical for some no longer
known reasons. So the code you are using now works in completely
unknown ways.

All programs need debugging. A basic form of debugging is to run a
program, spot any errors, and then fix the causes of those errors. If
there is no documentation, it is impossible to tell the difference
between “fixing bugs” and “fiddling the program to get the results
you want.” A debugged program may get the results you expect,
rather than the results your model would have predicted.

Over thirteen years, shifting a program from modeling flu (in
Thailand) to modeling COVID-19 in a Western country requires
major changes. It isn’t clear how anyone could reliably keep track of
many changes in such a large program without careful
documentation and automatic version control.

If the programmer moves on or gets ill, as may happen, nobody else
will have a clue how the program works, how to maintain it, or how
to use it. Neil Ferguson says his code is not documented, and he says
he’s the only person who understands it.479 He was lucky he didn’t
get debilitatingly ill from COVID-19 just when he was needed.482

If a program supports research, and science is to be advanced by its
insights, it is important that the program is open to peer-review. If a
program is not documented, it cannot be reliably reviewed, because
nobody will know what it’s supposed to do. Indeed, Neil Ferguson
has not made his program available in any publication, so it has never
been reviewed or put up to independent scrutiny.

Finally, in science, especially laboratory sciences, it is a normal
expectation to keep notebooks.483 Notebooks are an essential record
for all sorts of purposes, from ensuring legal priority to helping plan
experiments and to track progress. In programming, computers can
keep the lab notebooks almost entirely automatically, so there is no
excuse not to keep even minimal documentation.484

Ventilators make another controversial digital health story.
A tragic final stage of COVID-19 is respiratory failure, and patients need

supporting in intensive care and putting on ventilators to help them breathe.
Many countries have experienced a shortage of ventilators as a result, and
there has been an understandable push to get more ventilators made to fill
the gaps in supply.

Part
III

⋄
Prognosis

⋄
A

betterfuture

450 | CHAPTER 31

Box 31.2. Simple ethical questions?

Ethics makes us ask: how do we ensure people — especially the users —
benefit? It isn’t yet clear to me what benefits a tracking app gives to the
person who uses it. At the very least, a tracking app is going to use up battery,
so what does the user get in return for being able to use their phone less?

A key concept in ethics is reciprocity. If I am going to do something
to you, what can you do to rebalance the power? One answer to the probing
question might be to quote the Golden Rule: I will treat others as I would like
them to treat me.

Before COVID-19, Birmingham and Solihull Mental Health NHS Foun-
dation Trust was already developing a tracking app to assess mental
health.486 The idea is that the app tracks a person’s location and calls, and
then combines this information to predictmental health crises. Patient track-
ing data has already been given to a foreign private company, Telefonica.
Telefonica make money, so what are they giving in return to their vulnerable
users? This a question of reciprocity, a basic ethical concept.

In the case of a COVID-19 tracking app, the user of the mobile phone
gives away data to the State or to a private company. What do they get back
from that relationship? If reciprocity is not thought through, the individual
is likely to lose rights — they may lose more data (such as their location and
other private data) than they expect, as their data is linked to other informa-
tion. The new owner of the data gains a lot of power — so much so that the
UK Parliamentary Committee on Human Rights said the NHS’s design may
break the law487 — so what is reciprocated to the user?

Unfortunately, the more useful an app is made for epidemiologists to
help understand a pandemic, the more tempting the data becomes to use for
other purposes. Tracking tax evaders or terrorists? And it’s very tempting for
hackers: if everyone is using the same app on their mobile phones, a hack
like WannaCry could bring a country to a standstill.

Imperial College has made the design of their open source ventilator,
JAMVENT, publicly available.485 They are to be applauded for that, but there
are qualifications. The UK medical device regulator, the MHRA, has relaxed
requirements for approving devices. And Imperial College has not made the
essential program available yet, because the team haven’t finished it. I’m
surprised that the MHRA can approve a device that depends critically on
computers (and software) for everything it does, without assessing the com-
puters or their programs at all.

As I’ve shown throughout this book, there’s a gap between what we hope
digital can do for healthcare, and what we end up actually getting it to do.
Healthcare professionals have got much better things to be doing than wor-
rying about the details of digital health. Epidemiologists, too, have better
things to be doing. Even ventilator engineers have better things to be doing

THE PIVOTAL PANDEMIC? | 451
Part

III
⋄

Prognosis
⋄

A
betterfuture

than programming well and safely. The trouble is, everything depends on
software.

A very similar problem happens with ethics.
Few medical scientists have time to think about ethics, so (to cut a long

story short) Ethics Boards were invented. An Ethics Board is a panel that
has some ethics experts sitting on it, and it reviews all proposed research to
check it ethically and to approve it. For instance, if an experiment is going
to be done on a childhood disease, who is going to look after the children’s
best interests? Or if a drug is being tested, what are the plans if the drug
turns out to be dangerous — or if it turns out to be an amazing cure, and
the patients stuck on the control arm of the experiment are not being treated
with it? Should the experiment continue, should the problems be ignored,
or what?

An Ethics Board makes sure all such questions are raised and appropri-
ately explored. Any project will be delayed until there are satisfactory an-
swers (or the plans are changed to remove the problems). Ethics Boards are
standard practice across healthcare systems, research institutions, and gov-
ernment agencies.

Admittedly, some people don’t like Ethics Boards, because they can slow
things down and they often seem to be excessively bureaucratic. I’m sure
there are problems, but some are due to researchers not thinking about ethics
until the last moment, and the problems are trivial compared to the alterna-
tives.488

I propose that, like Ethics Boards (or Institutional Review Boards), we
now need Software Engineering Boards to help digital healthcare im-
prove.

A Software Engineering Board would have professional programmers on
it, probably senior software engineering professors and programmers from
the aviation or nuclear power industries. It would give quality advice.

Software Engineering Boards would help researchers, hospitals, doctors,
developers, and, of course, regulators. In short, Software EngineeringBoards
would help improve digital healthcare.

All research journals would, as medical journals already do with ethics
clearance, refuse to publish anything without the clearance of a proper Soft-
ware Engineering Board. Medical device regulators would require to see evi-
dence of the Software Engineering Board clearance, andmedical devices and
computer systems would not be approved unless they had proper Software
Engineering Board clearance. The pressure of COVID-19 has pressurized
many regulators to relax standards, so that solutions can be rushed through,
but ultimately, nobody will benefit if programs have bugs. Getting the right
balance between thoroughness and speed is tricky, and ideal work for Soft-
ware Engineering Boards. Indeed, Software Engineering Boards would be
able to suggest computerized ways to make software more reliable — asking
somebody to program “more thoroughly” doesn’t just give them more work

Part
III

⋄
Prognosis

⋄
A

betterfuture

452 | CHAPTER 31

0%

1%

2%

3%

4%

C
hi
ld
C
O
V
ID
–1
9
m
or
ta
lit
y,

%
of
al
lc
hi
ld
m
or
ta
lit
y

Data for ages 10–19 (USA 5–14)

Data for ages 0–9 (USA 0–4)

N = 0

N = 11 N = 13

N = 134

N = 18

N = 29

N = 26

South
Korea

France Germany USA Italy UK Spain

Figure 31.3. It’s been said that child mortality in COVID-19 is rare. A 2021 paper
published in The Lancet Child & Adolescent Health Journal looked at the published
data, and found that the Spanish child COVID-19 death rate (in proportion to all-
causes child death) was shockingly high compared to other countries. Then the
Spanish Government admitted that deaths for people aged 100, 101, 102 … had
been incorrectly classified as deaths for people aged 0, 1, 2 …489 — yet, if this bug
was the explanation, some of the excess must have been from Spaniards aged 110
plus! In any case, the bug is the same as the 20-year-old, very well-known Millen-
nium Bug, discussed at the start of this book.

to do, it can transform how they work, so they use more tools and more ad-
vanced software engineering techniques.

Obviously details need to be worked out. For example, a Software En-
gineering Board would have to set proportionate criteria. If something is
intended for informing national public health policies, you need to be very
thorough. If something is intended for doing Down syndrome calculations,
or national mortality (figure 31.3), you need to be very thorough.m On the
other hand, a pilot research project might not need to be so thorough; per-
haps it just needs to be documented enough so that other people can work
on it. Again, the right balance is tricky, but Software Engineering Boards
could stop people aimlessly drifting from toy programs for research projects
into serious safety-critical programming for national emergencies.

In the long run, education is needed so that better and more reliable pro-
gramming is available and happens in healthcare and in public health. How

m See Chapter 4: Millennium Bug (Y2K problem) and Down syndrome tragedy, page 34←

THE PIVOTAL PANDEMIC? | 453
Part

III
⋄

Prognosis
⋄

A
betterfuture

much should Software Engineering Boards be involved in this? Where will
the funding come from? Will their involvement be in monitoring, certifying,
policing, or just encouraging? These are important details that need working
out some time, but the uncertainties don’t all need to be sorted out at once,
otherwise Software Engineering Boards will never happen in any form.

One critical detail is getting the right balance. Ethics Boards typically re-
quire researchers to fill in forms and to provide details — researchers know
if they are doing experiments in petri dishes in a lab or on children at home,
for instance, so the forms are relatively easy to fill in (if often quite tedious).
On the other hand, few healthcare and medical researchers understand soft-
ware and programming, so they are not able to fill in software forms on their
own. Software Engineering Boards need to know how well engineered the
software really is, not how good its developers think it is. As typical pro-
grams are enormous, Software Engineering Boards are either going to need
resources to evaluated programs, or they are going to need to set up inde-
pendent bodies that can do it for them. There may be other ideas to help
make Software Engineering Boards work, but it’s clear they are part of the
solution and we must not let perfection be the enemy of the good. Software
Engineering Boards don’t need to be perfect on day one, but they do need
to get going in some shape or form to start making their vital contribution to
improving digital healthcare.

The economic impact of COVID-19 on the world is astronomical. It has
been estimated that the US economy will take a $16 trillion hit — which
corresponds roughly to a £1.6 trillion hit for the UK.490 The predicted eco-
nomic losses can be viewed as a business opportunity to motivate making
positive interventions. Even small improvements to test and trace reliability
would have huge economic and health benefits — offering an economic ben-
efit to the country at least thirty times higher than the cost of the investment.
Making epidemiological simulations more reliable to better assess different
public health strategies would make huge economic and health sense. Yet
governments are not investing inmaking digital health safer or more reliable;
in theUK, at least, they have been investing in buying negligently engineered
systems that are unreliable and not fit for purpose.

In contrast, as the opening stories of this chapter showed, our human
response toCOVID-19, particularly transforming howweuse digital to relate
to and to support patients, shows that we can improve digital health when
we want to.

The pandemic could be a pivotal moment in so many ways. I suggest
that Software Engineering Boards could be one of the positive strategic out-
comes from the pandemic — certainly governments urgently need effective
Software Engineering Boards.

The next chapter explores more ways in which we can make lasting im-
provements to digital health.

Part
III

⋄
Prognosis

⋄
A

betterfuture

There’s a future world where
digital healthcare works, and
works well. Here’s how to get
there.

Part
III

⋄
Prognosis

⋄
A

betterfuture

32

Living happily ever after

The day after the car crash that my son Isaac survived,a he got to his wedding
in one piece. Isaac married Debs, and, as they say in the best fairytales, they
lived happily ever after (figure 32.1).

It would be very nice if everyone going into hospital lived happily ever
after too. The harsh reality is that people do get ill and that nobody can live
forever. But there would be a fairy tale ending if lives were not shortened by
unnecessary errors.

About one in ten patients suffer an error in hospital. Every healthcare
worker is stressed and overworked, despite, often because of, digital systems.
It’s time to improve the systems.

I think the digital systems are the best place to start: if we improve those,
everything will improve, for computers are already everywhere. You can’t
even book an appointment without one.

Unfortunately, it’s too easy to think getting the latest digital solutions is
the same as improving things. Computers should be more of an effective
team player to help reduce errors, rather than, as we’ve seen throughout this
book, create problems — and often in unnoticed, yet often complex, ways,
so the digital systems are thenmisunderstood and the wrong people blamed.

When things go wrong, as they do, we seek answers by blaming staff.
We overlook the digital risks, bugs, and causes. We then dream of buying
a new digital system that will magically fix the problems. We are certain it
will, for exactly the same reasons we were certain the last one would. Until
we change our culture, we are doomed to repeat this cycle.

We need to increase awareness of the risks of digital healthcare, and we
need to increase understanding of the solutions.

It’s time to take action.
I’ve divided up the action in this chapter under the following headings:

Improving qualifications, training, and education; Improving digital health-
a See Chapter 11: Isaac Thimbleby’s car crash, page 137←

Part
III

⋄
Prognosis

⋄
A

betterfuture

456 | CHAPTER 32

Figure 32.1. How all the best fairytales end.

care regulation; Improving awareness and knowledge; and the final section,
Going forward.

It’s worth emphasizing that the ideas in this chapter align closely with
the Safety Two attitudeb — they’re about improving the quality and safety
of digital healthcare systems, rather than worrying about the problems. This
chapter therefore collects and organizes the positive ideas, the Safety Two
thinking, this book has promoted throughout.

Improving qualifications, training, and education

Risks are not just buggy digital technology, but our—healthcare’s— inability
to think professionally about complex systems, especially the latest digital
ideas.

Organizations like the IEEE and the ACM— the world’s largest
computer societies — should provide accreditation and training
courses specifically for digital healthcare.

Hospitals and other healthcare organizations should recruit properly
IT-qualified staff for digitally related jobs. Some staff at least should

b See Chapter 12: Safety One & Safety Two, page 145←

LIVING HAPPILY EVER AFTER | 457
Part

III
⋄

Prognosis
⋄

A
betterfuture

have Computer Science degrees. Chief Information Officers should
have relevant qualifications, including degrees, and up-to-date
training.

Existing Continuous Professional Development (CPD) schemes need
supplementing with digital CPD schemes to ensure Human Factors
and digital knowledge is up-to-date in healthcare. Appropriate digital
syllabuses (including Human Factors, UCD, and so on) ought to be
taught in nursing and medical schools. Developers and regulators
need more advanced digital qualifications than healthcare workers.

Current recruitment in both healthcare and in healthcare industries
should involve knowledgeable digital thinkers and leaders (such as
university professors) in all stages of the process, from job
specification to interview and beyond, to mentoring. I think this
simple step would be the best way to start to rapidly improve.

We need to change healthcare management structures so people with
mature digital skills have real roles to play, with mutual trust and
shared understanding. A recent advert asks for a nurse to lead
national digital transformation. While we absolutely need nurses, we
also need people with high-level training in digital — postgraduate,
doctoral training, even. The advert makes it clear that healthcare
thinks the problem is that digital doesn’t understand nursing, so we
need a nurse leader. Isn’t it equally clear that healthcare doesn’t
understand digital? I argued for multi-disciplinary teams earlierc —
you can’t get effective “digital transformation” skills in one person,
and we need structures where multi-disciplinary expertise is
respected and nurtured.

All this will take resources, and healthcare is stretched already. Digital
enthusiasm is no longer sufficient.

The FBI, well known for its role in US gangster stories, is warning about
widespread cybersecurity problems like ransomware targeting healthcare:

In September [2020], a ransomware attack hobbled all 250
US facilities of the hospital chain Universal Health Services,
forcing doctors and nurses to rely on paper and pencil for
record-keeping and slowing lab work. Employees described
chaotic conditions impeding patient care, including mounting
emergency room waits and the failure of wireless vital-signs
monitoring equipment.491

c See Chapter 8: Multi-disciplinary teams and skill mapping, page 105←

Part
III

⋄
Prognosis

⋄
A

betterfuture

458 | CHAPTER 32

The problems go way beyond just the patient-facing healthcare we can
see; they also affect international infrastructure, such as path labs and diag-
nostic labs,492 the development of vaccines, and more …

The National Cyber Security Centre (NCSC) dealt with a
record of 723 incidents [about 100 a month] with a quarter
related to the COVID-19 pandemic. Paul Chichester, the
NCSC’s director of operations, said cyberattacks by hostile
states were focused on vaccine research, while criminal groups
were also targeting hospitals and healthcare bodies.493

When the attacks are already happening, it’s clear that healthcare will be
on its knees if it does not up its game. Digital healthcare has bugs that cause
problems, like harming patients and staff, but in cybersecurity hackers de-
liberately and systematically exploit these buggy weaknesses. It is no longer
a question of one patient and plastering over the consequences with insur-
ance, but whole hospitals and regions going under — and, if they are lucky,
“only” having to pay massive ransoms to recover (which anyway isn’t rec-
ommended). Cybersecurity failures are, I hope, very motivating, but don’t
forget they are just a symptom of buggy digital systems, buggy management
of digital systems, and buggy day-to-day running of digital systems (plus a
world of nasty people and States willing to exploit those oversights).

It’s more strategic and is good business to invest in doing digital health-
care maturely — and seeing it as going beyond cybersecurity, essential as
that is, to every topic addressed in this book. This message has to be heard
and understood from politicians down.

For every dollar or pound spent on digital, 50% should be spent on
digital maturity: primarily human resources — hiring and recruiting
properly skilled digital professionals, supporting digital CPD
throughout the organization, improving IT support, building
multi-disciplinary teams, and so on. It’s not a matter of hiring IT
technicians — there needs to be qualified dedicated expertise all the
way to the top, in directors, managers, and more. You can discuss the
50%, but it needs to be much higher than goodwill.

Improving digital healthcare regulation

Digital systems should be at least as strictly regulated as the clinical proce-
dures they control, collect data for, advise, or prescribe for. However, digital
healthcare regulation is not just about clinical effectiveness and safety —
there’s a lot more that needs to be regulated.

Imagine a hospital thinking of buying an ambulance, a very familiar form
of healthcare technology. Obviously, the clinical effectiveness and safety

LIVING HAPPILY EVER AFTER | 459
Part

III
⋄

Prognosis
⋄

A
betterfuture

need to be confirmed, and if the ambulance complies with clinically rele-
vant regulations, then buying one will be much easier because those features
don’t need re-checking.

The hospital will no doubt have some simple requirements: the ambu-
lance needs a siren, the hospital logo painted on it, and space for the first
aid equipment. However, the hospital will take it for granted that the ambu-
lance is roadworthy. Roadworthiness covers a lot of technical issues, covered
by very detailed regulations. The ambulance won’t emit too high a level of
greenhouse gases. Its tires will be safe in the wet, and at speeds the am-
bulance is expected to go. The airbags will work. The windscreen will, in
an accident, shatter safely. And so on, through a very long list evolved over
more than a century experiencing engineering and safety problems with ve-
hicles. It’s so easy to focus just on the clinical requirements alone, and forget
about the other critical issues because the regulations for them work so well.

Unfortunately, digital regulations do not work very well, yet the need for
them — for effective regulations — cannot be ignored.

Digital healthcare regulation must explicitly cover the reliability of the
technology, not just its clinical effectiveness and safety. Indeed, digital health-
care regulation must explicitly cover the reliability of the technology as used
in the clinical environment and with patients — including when they are at
home and likely have no professional supervision. Will the digital technol-
ogy be cybersecure? Is there post-market surveillance? What are the con-
tractual terms for fixing bugs? Is patient data sold on by the manufacturer?
Does the user interface subtly influence clinical decisions? Is it interoper-
able? And more. It’s possibly a much longer list than the clinical require-
ments. In fact, this whole Fix IT book has been about how the reliability and
safety of digital healthcare has been ignored and has caused misunderstood
problems. I called it digivigilance, or DVig for short,d as it’s so important I
think it needs a catchy name.

Usually regulation is seen as a tricky balancing act between achieving the
best outcome (in this case, for patients), the cost of adhering to the regula-
tion, the cost of policing compliance with the regulations, and the poten-
tial for stimulating a black market in products that benefit by circumventing
regulation. For example, there is a huge market in fake medical devices, be-
cause a device that doesn’t bother to comply witg regulations can be made
very much more cheaply, and hence sold at a huge profit. Sometimes, pa-
tients will knowingly buy fake products because they are so much cheaper
and they may work well enough (especially if the patient is desperate).

A less conventional approach is that good manufacturers want to make
good products, so creating an environment where regulators and manufac-
turers collaborate is probably going to be much more effective. This is called
co-regulation.494 Using social media might be part of co-regulation: man-

d See Chapter 8: Digivigilance, DVig, page 83←

Part
III

⋄
Prognosis

⋄
A

betterfuture

460 | CHAPTER 32

Box 32.1. Introducing the IEC 61508 standard

Digital healthcare regulation is a mish mash, spread across many regulators.
There are numerous exceptions: medical devices used for law enforcement,
sexually transmitted diseases, diagnostic equipment, even office equipment.
The overall structure classifies according to medical use: Class I — generally
regarded as low risk; Class IIa — generally regarded as medium risk; Class IIb
— generally regarded as medium risk; Class III — generally regarded as high
risk. But that isn’t how software works. For example, spreadsheets are office
software, so they aren’t covered by medical regulations, yet spreadsheets are
also used for hazardous medical calculations, such as radiation dosage. Or
a spreadsheet used in a hospital might suffer a cyberattack, and open the
entire hospital to hackers— the fact that the spreadsheet is classified as “office
software” doesn’t stop it compromising every medical class.

As this book has shown, lots of awful digital systems are in widespread
use, despite regulation. On the other hand, industry worries about the cost of
adhering to regulation, the so-called regulatory burden, and the potential
to stifle innovation if regulation is too harsh. Where is the middle ground?

A different approach would be to start again from safety, rather than from
the medical traditions that were established long before digital was even on
the horizon. We should follow industries where safety is core, such as nu-
clear power and aviation, where it’s recognized that any software has a wide
range of components, and therefore has varying requirements for safety. Just
because it’s an airplane, doesn’t mean the entertainment software is safety-
critical, nor, conversely, that the autopilot can be treated as lightly as a pas-
senger game. Each part of software has a specific risk analysis, and the rele-
vant requirements for it flow from that.

The IEC standard 61508 is a good place to start with a new perspec-
tive.495 Start off with a risk analysis, and (through a process we won’t de-
scribe here) get to a safety integrity level, or SIL. Simply, in regulated
industries, the higher the SIL, the more competent and professional the soft-
ware and its development must be.

ufacturers want a good reputation, and regulators using social media with
manufacturers could be of mutual benefit — it would mean disseminating
successes as well as failures, and would therefore move regulators away from
a Safety One culture (like the FDA MAUDE database, which only reports
problems) to a Safety Two culture.e

Manufacturers are, by definition, good at manufacturing, so they tend to
follow the cutting-edge of the technologies they are using. They knowmore
about digital than the regulators. Co-regulation would therefore help regu-
lators keep abreast of the latest innovations. Manufacturers would be asking
“what’s the best way we can regulate this idea?” Co-regulation, then, is a
win-win. The problem is how to transition from regulation to co-regulation

e See Chapter 12: Safety One & Safety Two, page 145←

LIVING HAPPILY EVER AFTER | 461
Part

III
⋄

Prognosis
⋄

A
betterfuture

without losing the safeguards of regulation — it’s a bit beyond the scope of
my book, but we need to think about the culture of manufacturing and regu-
lation working together so that digital gets fixed, and that fixed digital drives
improvement and patient safety, rather than the current culture of reluctantly
doing as little as possible to satisfy the regulators.

Organizations like the UK’s NAMDET, the National Association of Med-
ical Device Educators & Trainers,496 which joins members from healthcare
and from industry, show how co-operation can begin. They — and inter-
national organizations like them — could start getting active members from
regulators, and then they would be getting co-regulation off to a good start.

Co-regulation is a new name for an old idea. Many medical regulatory
bodies, like the UK’s General Medical Council, which was established in
1858 as a statutory body, include practicing medical experts to help in regu-
latingmedical experts. Indeed, the GMCneeds up-to-datemedical expertise
in order to regulate medicine knowledgeably and effectively, including set-
ting teaching syllabuses and qualifications. The risk, of course, is regulatory
capture, when the foxes start running the chicken coop — as happened in
the 737 MAX story. One of many standard solutions to this is for different
regulatory bodies to review each other’s work.

Regulations will always be catching up with technology, and we need
to develop “agile regulations,” co-regulation, and other methods, like
expert panels, to keep them relevant as technology continues to push
boundaries. This is an area that needs a lot of good thinking.
This is not a matter of adding new rules. Like, this year we need new
regulations on AI — but what will we need next year? No, it requires
research to look ahead and find new, effective, ways to regulate and
stay on top of the continual digital innovations.497

Regulators and standards organizations should work together towards
developing a safety rating scheme.f Meanwhile, safety labeling could
be started by a voluntary organization or by individual manufacturers.
The best safety labeling would be developed by co-regulation.

Regulators should review software warranties and have basic
standards to revolutionize current practice.g Closely related, we must
increase accountability for patient harms caused — whether by
omission or commission — by digital systems. We need to fix
warranties, especially gag clauses and DeWitt clauses. This will no
doubt require legislation.

The incident reports should record details of digital systems that may
have contributed to the incident, and the investigation must identify

f See Chapter 29: Safety rating, page 404←
g See Chapter 15: Who’s accountable?, page 193←

Part
III

⋄
Prognosis

⋄
A

betterfuture

462 | CHAPTER 32

systems that should then be improved. This requires a national
(ideally, an international) database of all digital systems and where
they are used. (Incident reporting systems should pass the
orange-wire test.)144h

Incident investigation teams need to be multi-disciplinary, and
include both Human Factors experts and digital experts.i It is notable
that the investigation into the Y2K Down syndrome bugs had
neither, and it made mistakes, and therefore had negligible
generalizable learning that anyone else could benefit from.23 As with
recruitment, the simplest way to fix these problems would be to
involve university professors in investigations.

All healthcare systems should be developed using best practice in
UCD and Formal Methods, including being developed in
programming languages such as SPARK Ada or others specifically
designed for high-integrity applications. Sadly, programming
languages designed for healthcare, as I’ve discussed in this book,
have generally failed to be reliable.

Digital regulation in healthcare should include “office systems” (like
spreadsheets and calculators used in hospitals, surgeries and
laboratories) that currently escape effective regulation.j

Finally, regulators should require manufacturers and procurers to use
and share safety cases, which are explicit structured documents that
show that the reasons for believing in safety have been worked
through carefully. I would argue that if a manufacturer can’t produce
an adequate safety case for their products, courts should assume their
products are unsafe; equally, if a hospital can’t produce a safety case
for their procurement (that is, that the products, even if assumed to
be technically safe, are fit for purpose within the particular hospital
context they were bought for), then the hospital shares liability.19

… A good safety case would be a good antidote to the current practice
of providing long unreadable lists of reasons why the manufacturers
are not responsible for the safety of their products!k

Improving awareness and knowledge

When things go wrong in healthcare, the default response is to close down,
to delay and deny, and to become secretive, lest anymore problems are found

h See Chapter 12: Orange-wire-test, page 148←
i See Chapter 8: Multi-disciplinary teams and skill mapping, page 105←
j See Chapter 14: Risky calculations, page 177←
k See Chapter 15: Who’s accountable?, page 193←

LIVING HAPPILY EVER AFTER | 463
Part

III
⋄

Prognosis
⋄

A
betterfuture

and exposed. Besides, isn’t this what everybody else does? Nobody wants
to talk, in case they implicate themselves as accessories. Serious problems
tend to end up in litigation, and everything rapidly becomes confidential.

In contrast, in aviation it is very difficult to hide error. When things go
wrong, there is vivid TV and media coverage and there are investigations
and public reports. If you want to fly on an A380 — I just picked a random
example: you can find and read a complete 285-page report on the failure of
one of its Rolls-Royce Trent 900 engines.227 Furthermore, the report is free
for the public to download. The learning is public and available for everyone
to see. Every airline worldwide that runs A380s will have read the report and
made sure they service the Rolls-Royce engines more carefully. Rolls-Royce
have issued a software upgrade to make sure their planes monitor engine
speed and don’t fail catastrophically. And so on. The world is now a safer
place.

The aviation culture is simple: if you want to learn, you need to know.
In healthcare there are a feworganizations trying valiantly to spread learn-

ing from incidents. In England, there is the Healthcare Safety Investigation
Branch (HSIB)498 which is a statutorily (that is, defined in law to be) inde-
pendent organization that runs investigations that don’t apportion blame or
liability.

Crucially, HSIBmakes their reports public, and anyone and everyone can
learn from them. They have a fascinating website.

We need more organizations worldwide like HSIB. The sad thing is, at
the time of writing there were only three countries in the world with orga-
nizations like HSIB: Norway, South Korea, and England — HSIB only has a
mandate for England, a fraction of the UK. The values that led to the found-
ing of HSIB need spreading around a lot more.

Funding bodies should fund digital healthcare research, including
safety, as fields in their own right. Research in safety hasn’t been
funded very well — it isn’t as glamorous as fighting diseases (like
cancer) — but the returns on investment are likely to be much higher.
To put it bluntly, a few thousand pounds spent on safety research
would make a difference, but a few thousand pounds spent on cancer
would hardly be noticed.

Digital healthcare is an international issue, and funding bodies and
organizations like HSIB must collaborate internationally. Although
there is funding for exciting digital (AI and big data), there is
inadequate funding, and no joined-up funding for digital safety and
quality improvement. This must be changed. This book is full of
questions and informed guesses, because we don’t know the
answers: this is unacceptable in an area like healthcare when reliable
knowledge is just a bit of funding away from being achieved.

Part
III

⋄
Prognosis

⋄
A

betterfuture

464 | CHAPTER 32

Cat
Thinking

Digital
is easy

Latest
is best

Avoid regulatory burden

Figure 32.2. The attraction of Cat Thinking is that it’s its own reward — the exciting
hormones make it so. There’s nothing else to do: everything is exciting and easy.
We can just rush in, grabbing the latest stuff, and it’ll all be exciting. There’s no
need to make sure it is safe, because it’s exciting.

Lack of awareness of digital health safety and cybersafety is a global
problem. We need an international organization for improving digital
healthcare. WHO (World Health Organization499), IMDRF (the
International Medical Device Regulators Forum500), or IHI (the US
Institute for Healthcare Improvement501) may be good places to start;
certainly these (and all analogous national organizations) need digital
departments, and they are well placed to take leadership.

We need to raise awareness of the value of good incident reporting.
An error may happen just once in our lifetime and we may not think
it’s significant, but if we report it all, the reports might show the
problem is happening “once” everywhere. Without reporting nobody
will ever realize there are problems to fix.

Healthcare and digital need to align and meet half way. Digital is not
a solution to a badly thought-through healthcare system, but working
out how to align healthcare and digital will improve both. This
requires close co-operation between clinicians and developers.

Many people will argue that we already have good enough digital qual-
ifications, and that regulation is getting tighter all the time. Every product
has already passed the current regulations, which, they will point out, are
already very onerous. All we need to do is to update our computer systems
to the latest stuff. Certainly, they’ll argue, we don’t need the extra burden of
safety ratings

LIVING HAPPILY EVER AFTER | 465
Part

III
⋄

Prognosis
⋄

A
betterfuture

Computational
Thinking

Digital
qualifications

Safety
ratings

Better digital regulation

Figure 32.3. The power of Computational Thinking is that it is a solid foundation
for rigorous qualifications, regulation, and safety ratings, which applied together
will make healthcare safer and more effective.

But after enjoying this book, you now know many tragic stories that
prove that people are deceived by Cat Thinkingl (figure 32.2). The problem
with Cat Thinking is that people think everything is obvious and wonderful;
they’re already perfectly happy on dopamine, so it never crosses their mind
to be more rigorous. We need something more professional, and a founda-
tion of that something is Computational Thinking,m driving improvements
in regulation and in qualifications — in other words, objectively, from out-
side of our hormone-influenced heads (figure 32.3).

Since getting new digital systems introduce new risks, digital systems
(including all the devices with embedded computers in them, like infusion
pumps, which you may not immediately think of as “digital”) you must al-
ways do a safety case, a rigorous documented analysis of how the new digi-
tal stuffwill affect safety.19 Certainly, without a safety case, you do not know
what risks you are running — and of course, even with a safety case you may
miss risks (safety cases should always be externally reviewed). Crucially,
doing safety cases quickly highlights what we don’t know — how much of
our “safety” really depends on guesswork.

Throughout this book, I’ve been aware that some of the advice I give is
partly guesswork. Take UCD for example.n UCD seems, like Cat Think-
ing, obvious and wonderful, but does it really work, and, in healthcare, how
should you do it professionally — respecting patient confidentiality and all
the other perfectly reasonable constraints of real healthcare? If everything

l See Chapter 3: Cat Thinking, page 25←
m See Chapter 13: Computational Thinking, page 151←
n See Chapter 22: User Centered Design, page 301←

Part
III

⋄
Prognosis

⋄
A

betterfuture

466 | CHAPTER 32

to be improved depends on UCD, we need to know how to do it properly.
But we don’t know how to. Worse, everyone is using different variations of
UCD, so all evaluations — whether on usability or safety — are impossible
to compare properly.

A recent research paper showed that physicians in hospitals spent 5 hours
using computers for every 8 hours of clinical time, and computer time is
higher for female physicians.502 How is this supposed to be an improve-
ment? We have no idea. We don’t even know if using a computer for 8
hours is better or worse than using a computer for 7 hours!

Until we have scientifically rigorous, widely accepted methods, we can-
not reliably compare how effective any digital systems are, and therefore we
cannot improve (except by chance). Funders need to stop saying everyday
techniques like UCD and Iterative Design are fine; in healthcare, they aren’t.
They aren’t scientifically sound, they aren’t reliable, they aren’t standard-
ized, they aren’t easy to do. And, while we haven’t got any useful qualifi-
cations, you have no idea how to hire people who are better at designing,
building or buying better digital systems.

Can we start doing enough of this to make a difference?
We’ve got a problem like the movie industry had back in the 1920s. The

movie industry was small, disorganized and producing substandard movies.
The Oscars, the prizes for the industry, were invented to promote the indus-
try when it was just getting going. Oscars promote both artistic and technical
merit — and they have become hugely successful.

Following the ideas of Safety Two, we toomust celebrate stories of safety
and success, and spread good practice — and make everyone aware of it. In
digital healthcare, then, we need ways to raise consciousness — for patients,
nurses, technicians, politicians, everyone — of the benefits of high-quality
digital solutions. Safety and reliability are achievable.

Prizes, celebrations, and parties are needed. Wouldn’t it be nice if health-
care safety successes hit the mainstream news once a year, like the Oscars
do?

In some areas, like the cybersecurity of mobile phones, manufacturers
already provide bug bounties, which are prizes for discovering bugs,503 yet
in healthcare, manufacturers would rather not know.504 Digital health needs
bug bounties, prizes, and competitions for safer and more effective digital
healthcare. Prizes for improving digital healthcare would, as a constructive
side effect, challenge the “we’re not accountable and don’t want to know”
culture that currently dominates healthcare.o

Professional societies, healthcare organizations, funders, and other bod-
ies could start prizes in digital healthcare improvement.

If we have prizes, we’ll raise awareness of the issues and the solutions
— but we’ll be begging questions about the criteria for the prizes. Those

o See Chapter 15: Who’s accountable?, page 193←

LIVING HAPPILY EVER AFTER | 467
Part

III
⋄

Prognosis
⋄

A
betterfuture

sorts of questions naturally motivate having better evidence for safety and
dependability, which in turn underlies the safety rating ideas we discussed
earlier.p Good ideas work together.

NCAP is the New Car Assessment Program, which I mentioned earlier,q
and it has worked out how to assess car safety. What can we learn from it?

NCAP started in the US in 1979 and started testing cars the same year.
NCAP has been instrumental in making cars safer. Car manufacturers like
NCAP because they can show off how safe their cars are getting, and people
who buy or sell cars like NCAP ratings because it helps them negotiate and
think clearly about safety and quality.

NCAP is so successful, it has gone global. The Global NCAP has a nice
eight-pointmission statement, which I’d like to quote from, except I’m taking
the liberty of changing their “safer car” words into “safer digital healthcare”
words.505 So in digital healthcare we need an organization, like NCAP, but
to:

1. Support safer healthcare in emerging markets by offering support,
guidance, and quality assurance.

2. Provide a co-operation platform for healthcare organizations around
the world to share best practice, to further exchange information, and
to promote the use of information to encourage the manufacture of
safer digital healthcare across the global market.

3. Promote digital healthcare safety with proven effectiveness and
encourage its accelerated use across the globe by increasing
awareness and, where appropriate, by supporting mandatory
application.

4. Support training initiatives in safety regulatory and rating systems to
promote policy making capacity, particularly in low- and
middle-income countries (LMICs).

5. Promote the use of safer digital technologies by hospitals and
healthcare providers in both the public and private sector. This will
include competitions and awards for promoting best practice.

6. Recognize achievement in safety, innovation in safety-related
technologies and practices, and products through a global awards
scheme.

7. Target to halve preventable healthcare deaths and injuries by 2020.

8. Support improvements in evidence-based consumer information to
inform patients about the performance of digital healthcare.

p See Chapter 29: Safety ratings will improve healthcare, page 401←
q See Chapter 11: NCAP: New Car Assessment Program, page 140←

Part
III

⋄
Prognosis

⋄
A

betterfuture

468 | CHAPTER 32

And, as digital healthcare is way behind transport, I need to add these three
very important points that NCAP itself doesn’t need:

9. Provide digital healthcare qualification frameworks so that digital
competence improves, and so that healthcare providers,
manufacturers, and healthcare regulators can employ accredited and
digitally competent staff responsible for digital leadership. (You
could, of course, do this with virtual training academies, enabling
universal training and accreditation across the globe.)

10. Once there are qualifications, we must require healthcare providers
and manufacturers to be accredited: in order to practice, they must
have qualifications at the appropriate level. This, in turn, must be
regulated through an appropriate professional body.

11. NCAP takes it for granted that car engineering is good enough and
will improve, but digital healthcare needs additional steps. It must
explicitly require Formal Methods in software development.

Those last two points are a good place to start. Without digital maturity
and competence, everything else will hit inertia and denial.

So NCAP shows it’s totally possible and very effective. We could do this
in digital healthcare too.

Maybe a leading organization like theWHOshould start a “GlobalNCAP,”
perhaps called a Global Health IT Improvement Program (Global HITIP)?

If a Global Health IT Improvement Program isn’t possible, it’s still wide
open for any country to take the initiative and get things going. Which coun-
try wants to be the world leader? It may be a long-term vision — the car in-
dustry’s Global NCAP took 40 years to get where it is today — but we know
it’s achievable.

We just need to start, and this book has given the directions to set off in.

Going forward

If you’d like to make things happen, I give lectures, interactive lectures, and
workshops on digital healthcare, and on any and all issues raised in this book.
I also mentor people who want to work out how to be more effective — par-
ticularly in the digital health area.

I’m building up helpful resources on my website:

www.harold.thimbleby.net/fixit

Please do contact me if you find things that are helpful, if you want to
correct errors, or if you have an idea you’d like me to add to the website or
to new editions of this book.

By email, contact me on: harold@thimbleby.net
Or if you want everyone to know, tweet me on: @haroldthimbleby

http://www.harold.thimbleby.net/fixit
http://harold@thimbleby.net
http://twitter.com/haroldthimbleby

LIVING HAPPILY EVER AFTER | 469
Part

III
⋄

Prognosis
⋄

A
betterfuture

Figure 32.4. Fix IT off started with a picture of the oldest surviving written Hip-
pocratic Oath.1 For centuries, the Oath has framed and motivated the culture of
healthcare. It’s now time to have a digitally-relevant Fix IT Oath.

Here’s a first proposal for a Fix IT Oath, based on the updated form of the
Hippocratic Oath from theWorld Medical Association’s latest Declaration of
Geneva:506

As a member of the Healthcare IT Profession:
I solemnly pledge to dedicate my life to the service of
humanity;
THE HEALTH AND WELL-BEING OF MY SYSTEMS’
PATIENTS AND USERS will be my first consideration;
I will ensure I have the most appropriate professional training
and qualifications to perform my duties;
I will use the highest standards of program development,
following best practice in human factors engineering, user
centered design, software engineering, and cybersecurity;
I will use rigorous development processes to ensure my
software is safe and helps the patients and staff who may use
it;
I will work with diverse multi-disciplinary teams, including
relevant clinical expertise and patient representation;
I MAKE THESE PROMISES solemnly, freely and upon my
honor.

Can you make a better Fix IT Oath to adopt?

This book isn’t the end of the
story about digital healthcare,
and its problems and
solutions. This chapter on
recommended reading gives
lots of suggestions to help
take your thinking further.

33

Good reading

If we were having a chat, I’d listen to you and listen to your interests, and
maybe I’d say “you need to read this book.” Sadly, we’re not having a face-
to-face chat, so this chapter tells you lots of things you could read — but
please see it as a conversation: skim the headings and topics, and pick out
what you are interested in.

Starting at the beginning and reading through to the end of this chapter
isn’t really what it’s about; please skim this chapter (there is a mini-table of
contents to help), then dive into the bits that pique your interest. Pursue
your interests and concerns, and temper them with my suggestions of new,
interesting things you want to follow up.

This book’s aim is to raise awareness of risky digital healthcare and to
trigger change. I hope you now want to start doing things, and that my book
has left you with lots of questions and wanting to find the answers.

Keeping up with the latest in digital health

Every day something bad happens in digital health. It’s a full-time job keep-
ing up.

In just the last week I was working on this book, there was interesting
news about the development failures of the NHS COVID-19 tracing app,507
and about a new widespread cybersecurity problem called RIPPLE20.508

RIPPLE20 affects almost all medical devices that have an internet con-
nection; a related bug is known to affect billions5 of devices.509 These bugs
make any devices using them very easy to hack. There are huge problems
establishing which devices are not vulnerable to RIPPLE20 hacks. It’ll be
important to monitor internet traffic to see if any hackers are trying to ex-
ploit the bugs.

But the point, surely, isn’t to keep up with the latest news of problems,
but to keep up with the solutions.

472 | CHAPTER 33

You can go on to Google or Wikipedia and search out huge amounts of
stuff about anything that you knew you were looking for. My list here is
brief, obviously tiny compared to the internet, but it’s selected to help you
answer your questions and, especially, to help raise new ideas and questions
to explore further. So here’s what this chapter covers:

Good reading table of contents
Keeping up with the latest in digital health 471
If you are interested in patient safety 472
If you want to hear from patients 475
If you want to know more about healthcare culture 477
If you are interested in improving 479
If you are doing incident reporting 481
If you are interested in law and regulation 482
If you don’t know about UCD, UX, or HCI 482
If you are interested in Human Factors 483
If you are a developer or a programmer 484
If you are a healthcare programmer 487
What about AI? Robotics? Implants? Cybersecurity? 488
If you are a researcher 489
Out-of-the-box thinking 490
Pharma and the medical device industry 491
If you want the big picture of digital health 492
Excitement 493

If you are interested in patient safety

By far the quickest way to get into the patient safety area is to watch Mike
Eisenberg’s 77-minute 2019 film, To Err is Human: A Patient Safety Docu-
mentary. The film stars the usual suspects this book has already mentioned:
Lucian Leape, Albert Wu, Don Berwick, and other experts. The film has a
website at www.toerrishumanfilm.com — including links to Amazon and
iTunes to watch it. The website also has lots of links to lots more resources
and is really worthwhile to explore. The film has had a bit of criticism for
being one-sided and overly simplistic,510 and I’d criticize it for ignoring the
role of digital in any error. But it’s a very good introduction to the field of
patient safety.

There are lots of good books, too, as well as reports and textbooks on pa-
tient safety, but here I’ve chosen a selection of excellent, well-written books
that you’ll enjoy and that’ll give you insights to both support and follow on
from my arguments.

Atul Gawande’s book about his life as a surgeon, Complications: A Sur-
geon’s Notes on an Imperfect Science (Profile Books, 2008) is amazing, and

http://www.toerrishumanfilm.com

GOOD READING | 473

reads like a page-turner, frankly discussing his triumphs, his failures, and er-
rors. It is a very enjoyable way to start thinking your way into real healthcare.

Don Berwick reviewed patient safety following the Francis Report and
the Mid-Staffordshire hospital problems. His report, A promise to learn — a
commitment to act: Improving the safety of patients in England, is powerful
and profound. It emphasizes the human side of safety. The report does not
explicitly mention digital — but digital must be designed to be the servant to
support the culture that Don celebrates. His report is available at

www.gov.uk/government/publications/
berwick-review-into-patient-safety

Suzette Woodward has written two excellent books: Rethinking Patient
Safety (CRC Press, 2017), and, more recently, Implementing Patient Safety
(Routledge, 2019). Both of her books are very well-written introductions
to, and broad reference works on, patient safety.

Suzette writes from on-the-ground experience. Her books are full of
ideas to make safety work. The second book’s clear theme is “a balanced
approach to safety addressing the culture, conditions, and values that help
people work safely.” In fact, neither book explores digital system safety in
healthcare, so they complement Fix IT well.

Suzette has a blog, which in turn points to many other useful resources,
and which will keep things up-to-date: suzettewoodward.org

Peter Pronovost and Eric Vohr, Safe Patients, Smart Hospitals (Penguin,
2011) gives the full story of Peter’s insights into central line infections and
working to improve patient safety.a

Ross Koppel and Suzanne Gordon, First, Do Less Harm: Confronting
the Inconvenient Problems of Patient Safety — The Culture and Politics
of Health Care Work (ILR Press, 2012) is an excellent edited collection of
chapters on patient safety, with a particular emphasis on digital healthcare.

Charles (Chick) Perrow, Normal Accidents: Living with High Risk Tech-
nologies (Princeton University Press, 1999). Chick’s idea is that accidents
happen all the time, but most of them do not turn into catastrophes, except
by a chancemisfortune. So, accidents are normal, and we should learn from
them, so we can stop the catastrophes happening.

Chick’s normal accidents idea is a bit like this book’s approach to error.
Error is normal (and should be blame-free). Indeed, error is good if we can
learn from it. The problem is harm. The other problem is that one of the best
ways to reduce harm is to design better systems, especially digital systems,
to reduce harm— but for some reason there is too much focus on the sharp-
end of error rather than on the Wedge Thinking at the strategic blunt end of
designing out error.b

a See Chapter 24: Peter Pronovost, page 330←
b See Chapter 24: Wedge Thinking, page 325←

http://www.gov.uk/government/publications/berwick-review-into-patient-safety
http://suzettewoodward.org

474 | CHAPTER 33

Perrow is basically expanding on the Swiss CheeseModelc —an accident
is anything unwanted that gets stopped by any defense, and a catastrophe is
when all holes in the defenses line up. In other words, the defenses work
most of the time, and the problem is that we tend to ignore the normal work-
ing of the defenses and hence learn nothing from their successes. Something
went wrong — there was an accident — but instead of thinking about it, we
ignored it because there was no catastrophe, such as patient harm.

Perrow has lots of powerful examples of his ideas in practice, from the
Bhopal disaster (where 500,000 people were exposed to a toxic gas) to nu-
clear power station accidents and near misses.

So accidents (in Chick Perrow’s terminology) are normal, and we should
learn what we can from them to avoid future catastrophes. I’ve heard med-
ical people objecting to Chick’s ideas because they don’t like the word “ac-
cident,” which to them implies an incident is unpredictable and therefore
(they say) unavoidable, so in principle nobody is to blame. Most harms in
healthcare are preventable, at least in hindsight, which, in contrast, means
that somebody must be to blame.511 The word incident (or the terms ad-
verse incident or serious untoward incident, SUI) are usually preferred
in healthcare.

I think words are slippery. If we ban the word “accident” and start using
“incident,” in a few years’ time the word incident itself will come to mean
the same thing — it’ll become another word we don’t like. What is more
important than lexical pedantry is to think clearly. Chick Perrow certainly
does that, and he makes a very good case for using the term accident.

We can’t have a list of safety reading without encouraging you to find
everything you can by: Sidney Dekker, Liam Donaldson, Erik Hollnagel,
James Reason, and Charles Vincent — these safety leaders have all written
or edited classic books as well as lots of research papers you can find on
PubMed, Google Scholar, or in digital libraries like the ACM Digital Library
— or just do standard web searches. Start here:

James Reason, Human Error (Cambridge University Press, 1991).

Erik Hollnagel, Safety-I and Safety-II (Routledge, 2014).

Sidney Dekker, Just Culture (Routledge, 2016).

Charles Vincent and René Amalberti, Safer Healthcare: Strategies for
the Real World (Springer, 2016).

Liam Donaldson, Walter Ricciardi, Susan Sheridan, and Riccardo
Tartaglia, editors, Textbook of Patient Safety and Clinical Risk
Management (Springer, 2021). DOI: 10.1007/978-3-030-59403-9

c See Chapter 6: Swiss Cheese Model, page 61←

http://www.doi.org/10.1007/978-3-030-59403-9

GOOD READING | 475

I listed these books in chronological order; the last one, printed in 2021,
is both authoritative and excellent in coverage (it has 34 chapters written
by numerous world-leaders). It also has the huge advantage of being open
access — so it’s free to read in PDF or EPUB formats. However, apart from
a chapter on UCD, digital healthcare doesn’t get a mention.

There are also many good websites.
Check out the Clinical Human Factors website, chfg.org, which has a

wide range of resources, including videos and contacts for people who can
give lectures or run workshops. Lots of useful resources can also be found at
the Institute for Safe Medication Practices, ismp.org, and at the ECRI Insti-
tute, ecri.org. Or look at ehrseewhatwemean.org, the US MedStar Health
National Center for Human Factors in Healthcare. Once you start searching,
there is no real limit — and, of course, your searches will stay up-to-date in
a way that this book cannot.

This list of good reads on patient safety would not be complete without
mentioning the classic report that started the patient safety movement: To
Err is Human (US Institute ofMedicine, 1999). The report says that thema-
jority of errors are caused by faulty systems that lead people tomakemistakes
— and that’s why fixing digital systems is so important.

One of the earliest articles about patient safety is disappointingly anony-
mous. It’s of interest because it is, at least to our ears, so quirky. Written
by “F” in 1846, “Some of the causes and sources of error in medicine,” was
published in the Boston Medical and Surgical Journal, 34:377–380, DOI:
10.1056/NEJM184606100341903

The article points out several valid sources of error, such as having an
“improper regard to the authority of professors of medicine,” but it also says
that ignoring planetary influences and atmospheric vicissitudes causes error!
In other words, the article has insights about medical error, yet it mixes them
up with old superstitions.

As the Hawai‘i Pacific Health “Getting Rid of Stupid Stuff” authors said:d
everything that we now call stupid (like planetary influences, odd patient
safety ideas, or stupid computer system features) was thought to be a good
idea at some point. So, what are we overlooking now that will make any of
our ideas today seem as stupid in the future? It begs the question, then, what
are we doing (such as UCD) to find out what we’re overlooking?

If you want to hear from patients

Patient stories are vital. The patient’s view is very different from the “in-
stitutional view” of healthcare, of doctors, and of nurses. Curiously, patient
storiesmaymake little sense unless you’ve “been there” and seen the strange

d See Chapter 29: Getting Rid of Stupid Stuff, page 413←

http://chfg.org
http://ismp.org
http://ecri.org
http://ehrseewhatwemean.org
http://www.doi.org/10.1056/NEJM184606100341903
http://www.doi.org/10.1056/NEJM184606100341903

476 | CHAPTER 33

world of healthcare from the other side. The following are patient stories that
are engaging, profound and, frankly, shocking. I recommend them.

Oliver Sacks was a world-leading neurologist, perhaps most famous for
his book The Man Who Mistook His Wife for a Hat (Picador, 2011). How-
ever, his book, A Leg to Stand On (Picador, 1991), is about when he became
a patient. He broke his leg, but, more profoundly, he damaged his femoral
nerve and had paralysis, and he saw his leg as some kind of alien. To me
his book is a powerful exposé of the gulf between the hospital staff’s clinical
view and the patient’s experience.

A Sea of Broken Hearts, by John James (AuthorHouse, 2007). This is
John James’s book about the death of his son, Alex, who died from inatten-
tiveness and preventable errors. He takes you on a shocking journey, which
leads to powerful suggestions for improvements to patient safety legislation
and a charter of patient rights. He says that patients should have care based
on the best scientific evidence available.

John James is also the author of the important patient safety paper on the
rates of patient harms I cited earlier.110

I’d like “best scientific evidence available” to include the best computer
science evidence as well — computer science underpins every area of health-
care. We should not limit our scientific standards and aspirations for best
patient care to the conventional sciences (let alone always demanding RCTs
when they don’t work too well with digital health).

Collateral Damage, by DanWalter (CreateSpace Independent Publishing
Platform, 2010), is the story of a nurse, Dan’s wife Pam, who became a
patient at Johns Hopkins Hospital after a heart operation that went badly
wrong. More details can be found at collateral-damage.net

Joshua’s Story, by JamesTitcombe (AndersonWallace Publishing, 2015),
is about Joshua, who died in Morecambe Bay NHS Trust when he was just
9 days old. His father, James, embarks on the hard pilgrimage of finding out
what happened, against the fog and misdirection of unfathomable barriers,
denial, and cover-up. It is a heartbreaking read.

The next two books are powerful patient stories that made me cry — a
good thing! Like the others here, at first sight they have nothing to do with
digital healthcare. Yet if healthcare is so removed from patients, and digital
is so removed from healthcare, then digital is far, far too removed from pa-
tients. The cure is to get digital experts to connect directly with patients, and
understand what healthcare is really all about. This is what digital healthcare
is for.

In Shock: How Nearly Dying Made Me a Better Intensive Care Doctor,
by Rana Awdish (Bantam Press, 2018). Rana is an intensive care doctor
who lost her first child in pregnancy and spent months fighting for her life in
hospital. The book is takes us from her dying to her profound insights into
compassion, told through her direct first-person stories and her colleagues’
stories. It’s a stunning book that I can’t recommend highly enough. (Rana’s

http://collateral-damage.net

GOOD READING | 477

book has been mentioned elsewhere in Fix IT.85)
In Shock is, in Rana’s own words, “a call to arms for doctors to see each

patient not as a diagnosis but as a human being.” Indeed, it’s a call to arms
for all digital developers to see each patient and healthcare professional as a
human being. In addition, Rana’s book explains the impact of confirmation
bias, the confusion of using unfamiliar digital systems, and a few other things
we’ve discussed directly in this book.

Finally,WhenBreath Becomes Air by Paul Kalanithi (Vintage, 2017) can
only be described as poetry on the meaning of life as you and your family
face death — as we all eventually will. This is a book you cannot forget. Paul
Kalanithi was a neurosurgeon who died in 2015, survived by his wife, Lucy,
and their daughter. Lucy finished this powerful book.

If you want to know more about healthcare culture

Any list of books about healthcare would be incomplete without these three
powerful books:

Caroline Elton, Also Human: The Inner Lives of Doctors (Penguin,
2018).

Adam Kay, This is Going to Hurt: Secret Diaries of a Junior Doctor
(Picador, 2018).
In just the year after it was first published, this book sold 650,000
copies, had been translated into 24 languages, been number one for
four months, and was being made into a BBC series. It’s very good,
and rightly deserves to be so popular.

Christie Watson, The Language of Kindness: A Nurse’s Story
(Penguin, 2018).

These are all page-turner books. They are worth reading if only to ad-
mire the skill of stories and good writing powerfully sucking you in. And,
with these books, you’ll absorb a lot about the day-to-day life of doctors and
nurses.

Healthcare, though, is just a part of the bigger picture of public health.
It’s been a long time since I’ve read such a relevant and insightful book as
Michael Lewis’s The Premonition: A Pandemic Story (Allen Lane, 2021),
a book I strongly recommend. The suspense and urgent problem-solving
of the COVID-19 pandemic makes for a gripping thriller. From its first
story about 13-year old Laura Glass’s school computer project tomodel pan-
demics, The Premonition is a totally engrossing page-turner.

The Premonition is not just a good book about our response to COVID-
19, though, as there are many insights about healthcare culture and digital
to be taken from it. Here are a few of my thoughts from it:

478 | CHAPTER 33

At ground-level, there were many competent and very worried
people working on infectious diseases and the pandemic, but the
culture at the top, in Government and healthcare organizations,
didn’t want to upset anyone. People stalled because that seems safer
than being decisive.

Good digital systems — from computerized virus genome analysis to
epidemiological models — were absolutely crucial to understand the
pandemic and how best to handle it. Unfortunately, some digital
systems were awful, yet just having reliable digital systems was only a
small part of the story, as there also had to be a competent culture to
recognize the value of having reliable digital. That was rare.

One of the bad computer models that misled people was done in
Excel. The Excel model misleadingly showed that, even if nothing
was done, California’s hospital beds could easily manage the
pandemic. But Excel shouldn’t be used to run computer models that
any lives depend on.e Indeed, even deciding to use Excel for this
purpose says a lot about the dearth of digital skills available to public
health advisors. The Excel programmer would have been unaware of
their own limited skills, and, in turn, the State relying on the Excel
model was unaware of its bugs.

Here’s one more stunning story from the book. With Chan
Zuckerberg’s support, Joe DeRisi set up free and fast COVID-19
testing, but nobody seemed to want to use it. When Joe’s team called
the Zuckerberg San Francisco General Hospital to find out why even
they didn’t want free and fast tests, they were told that their
computers wouldn’t allow ordering a zero cost test!
It’s possible that the rejection of a zero cost was a deliberate design
decision, but I think it’s more likely a bug. The program probably
treated zero as meaning that the user hadn’t entered anything, so it
would ask for a number, even if the user had already entered 0. It’s a
common problem of badly programming interactive numerals.55 In
fact, here it’s the standard problem of poor types:f “has the user
entered a number” and “the value of the number” are values of
different types, and if a single numeric variable handles both, there
will be bugs, as then zero ambiguously also means the user hasn’t
entered a number. That bug would make it impossible to enter zero.

As I read The Premonition, I was shocked by howmany decision-makers
didn’t have a clue about infection control, pandemics, exponential growth—

e See Chapter 14: Microsoft Excel, page 182←
f See Chapter 21: Programming with types, page 282←

GOOD READING | 479

basic stuff, one might have thought. It matters that there aren’t adequate sci-
entific skills available at the highest levels. I was struck how this is so like
digital healthcare culture, too — so few leaders, who can make a difference,
don’t have or have access to the professional digital skills they need. It mat-
ters that digital has specialist skills, yet everybody rushes ahead as if it is easy
and as if they understand everything. As with pandemics, you can only get
away with ignorance for so long.

Lastly, Wears and Sutcliffe’s book, Still Not Safe: Patient Safety and the
Middle-managing of American Medicine is a litany of healthcare culture’s
impact on delaying the development of the patient safety movement. This
book stands back a bit, and is really quite an academic look at patient safety
culture, but I’ll specifically recommend it as really useful for researchers be-
low.g

If you are interested in improving

A very accessible article on improving safety in healthcare, and essential
reading, is Sir Liam Donaldson’s classic “An Organisation with a Memory”
(in Clinical Medicine, 2:452–457, 2002). This classic article is more readily
available than the full NHS report, An Organisation with a Memory: Report
of an Expert Group on Learning from Adverse Events in the National Health
Service, published by Stationery Office Books in 2000. The full report is at
tinyurl.com/yyujuv28

CharlesKenney, TransformingHealthCare: VirginiaMasonMedical Cen-
ter’s Pursuit of the Perfect Patient Experience (Productivity Press, 2010).
Back in 2001, Virginia Mason, a failing hospital in Seattle, USA, set out to
improve by adopting the Toyota Production System (TPS). The hospital’s
transformation for the better was dramatic, and proof that to improve you
just need to start (and follow a sensible method). The first question they
asked was “what are we trying to do?” They got surprising answers, and
then pursued improving the quality of what they really wanted to do. They
have a useful website: www.virginiamasoninstitute.org

Amaturity model is a way an individual or organization can assess how
mature their approach to their work is. There are maturity models in supply
chains, software development, cybersecurity, and more. See en.wikipedia.
org/wiki/Maturity_model for a good overview. The idea, basically, is by
making your maturity explicit you can think about it and then point in the
right direction to get better. If you are not assessing your maturity, you aren’t
mature!

These books are particular ideas, checklists, maturity models, and so on.
More generally, healthcare also has to change how it thinks in order to take
full advantage of what digital has to offer. That means manufacturers should

g See Chapter 33: Still Not Safe, page 489→

http://tinyurl.com/yyujuv28
http://www.virginiamasoninstitute.org
http://en.wikipedia.org/wiki/Maturity_model
http://en.wikipedia.org/wiki/Maturity_model

480 | CHAPTER 33

not offer exactly what healthcare says it wants, but should offer better things;
for instance, things that stretch current practice toward a more interoperable
future. This requires what is called disruptive innovation—manufactur-
ers should disrupt current thinking, not play along with it.

Clayton M. Christensen has been arguing this for years. His book The
Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail
(reprint edition, Harvard Business Review Press, 2016, but first published
in 1997) has become a classic. The subtitle of the book might well have
beenWhenNew Technologies Cause the Problems of Healthcare to Become
Visible.

The generic business insights of Christensen’s The Innovator’s Dilemma
have more recently been focused specifically onto healthcare:

Clayton M. Christensen, Jerome H. Grossman, and Jason Hwang, The
Innovator’s Prescription: A Disruptive Solution for Healthcare
(McGraw-Hill, 2009).

Karl Popper transformed science, or at least how we approach and think
about experiments.512 If you plan a successful experiment, and it succeeds,
what can you learn? You will have no idea what specifically made the exper-
iment successful. Instead, Popper’s insight was that a scientist must develop
risky experiments that are intended to be on the edge of being successful
— they may fail. If a risky experiment succeeds, then taking risks has ex-
posed your ideas to rigorous scrutiny, and where you took risks turns out
to be right — in other words, the deliberate acceptance of error drives new
learning, whereas the avoidance of error — planning to do successful exper-
iments — seriously limits scientific learning.

In a fascinating article,513 Karl Popper and Neil McIntyre pointed out the
many parallels between pre-Popperian scientific thinking and today’s health-
care thinking. Healthcare wants to avoid errors, so it has difficulty learning.
Errors are concealed, and what is learned has limited value. Instead, they
argue to change the ethics of medicine so errors are accepted and learning
becomes routine.

Popper and McIntyre’s insights about healthcare culture could equally
well be leveled at programmers. Most programmers build programs expect-
ing them to work. They do not program defensively, because they under-
estimate and indeed wish to hide their propensity for error. Instead, a sort
of Popperian approach to programming, planning to be fallible, planning to
learn from errors — that is, adopting the scientific method to programming
— will produce, in the long run, far more reliable programs, and hence safer
healthcare. In other words, good programmers should treat programming as
an experimental discipline.

I think of myself as a Computer Scientist, and I think that if the field
of Computer Science wants to be taken seriously as a science, it should take

GOOD READING | 481

Popper (and his many successors) seriously, and of course not just Computer
Science as a field should do this, so should everyday programming and de-
velopment. Popper and McIntyre’s article is a good place to start, provided
their mentions of “medicine” are updated in your mind to include “computer
science” and “digital healthcare.”

If you are doing incident reporting

Learn about incident reporting if you want to learn how not to have your
systems or staff end up in any incident investigations.

If you are going to do a root cause analysis (in fact, if you are going to
avoid doing one, you should know why) — a rigorous analysis of why an
incident occurred — you should read the standard IEC 62740, Root cause
analysis (RCA), which you can find at webstore.iec.ch/publication/21810

Far and away the best incident report must be Charles Haddon-Cave’s
review into the 2006 RAF Nimrod plane that had a catastrophic mid-air fire
over Afghanistan, which killed the entire crew of twelve as well as two mis-
sion specialists — fourteen people in all. Read it, and you’ll not only learn
about the horrific incident and what failures led up to it, but you’ll see a
master investigator at work, at the same time also explaining clearly how the
investigation is being done and how he’s thinking.

Charles A. Haddon-Cave, The Nimrod Review — An independent
review into the broader issues surrounding the loss of the RAF
Nimrod MR2 Aircraft XV230 in Afghanistan in 2006: A failure of
leadership, culture and priorities (The Stationery Office, 2009).

The Nimrod review introduced the fantastic, pejorative term Power-
Point Engineering, whichmeans drawing pictures that only look technical,
but then everyone taking them to be rigorous ideas. It looks like a clear plan,
but actually—what nobody notices or questions— is that it’s just been drawn
to look good. In the Nimrod story, there were plenty of nice PowerPoints.
Everybody just assumed that some serious thinking had gone into them and
that they made sense and were connected to reality. They weren’t.

People often design digital healthcare systems using PowerPoint. It isn’t
good enough. Some much better ideas are discussed below.h

Mitre’s Common Vulnerabilities and Exposures database, cve.mitre.org,
and the US FDA’s MAUDE database are large repositories for reporting and
recording problems. MAUDE has a long URL; just Google “FDA MAUDE”
to find it easily.

If you are thinking of buying or you are using a device or system, look
it up in these systems. If you have an incident, please report it to MAUDE
and preferably cve.mitre.org as well as your national system. In the UK, the

h See Chapter 33: If you are a developer, page 484→

http://webstore.iec.ch/publication/21810
http://cve.mitre.org
http://cve.mitre.org

482 | CHAPTER 33

current system is the NHS National Reporting and Learning System, NRLS,
report.nrls.nhs.uk/nrlsreporting

In the UK, in the first instance when you want to report an incident you
will probably use your local system, such as Datix; otherwise you should
contact the HSIB, the Healthcare Safety Investigation Branch at www.hsib.
org.uk for up-to-date and helpful advice.

The UK MHRA has its reporting system too; see www.gov.uk/report-
problem-medicine-medical-device. While you can report problems, the
website does not cover design problems or bugs; as it says, you can report
when someone’s injured (or almost injured) by a medical device, either be-
cause its labeling or instructions aren’t clear, it’s broken, or it’s beenmisused.
That statement reinforces our culture that once a device is approved for use,
it couldn’t be problematic, could it?

If you are interested in law and regulation

The authoritative and up-to-date law book on electronic evidence is Stephen
Mason and Daniel Seng, editors, Electronic Evidence and Electronic Signa-
tures (fifth edition, Institute of Advanced Legal Studies, 2021). It includes
excellent discussions of all things digital as they relate to the law and legal
procedures. It does not shy away from being critical of the legal system and
discussing its deep problems — including various clashes between the legal
system and healthcare.

Electronic Evidence and Electronic Signatures is open access, and it’s
available at humanities-digital-library.org/index.php/hdl/catalog/book/
electronic-evidence-and-electronic-signatures

I talked a lot about electronic evidence in the chapter Side effects and
scandals, especially with the Princess of Wales Hospital and the Post Of-
fice Horizon cases.i The notes added some more details on the bizarre legal
presumption that computers are reliable.98

If you don’t know about UCD, UX, or HCI

UCD, UX, and HCI are abbreviations for User Centered Design, User eXpe-
rience, and Human-Computer Interaction, respectively. All are about ways
of putting the user — patient, clinician, manager … — at the center of com-
puter system design.

UCD is critical for making successful systems, but there is a problem: it
is not sufficient for success. You may end up with something that is nice,
easy, and pleasurable to use, but it’s the wrong thing altogether. You also
have to address the larger design issues about what to design — and what

i See Chapter 8: Side effects and scandals, page 81←

http://report.nrls.nhs.uk/nrlsreporting
http://www.hsib.org.uk
http://www.hsib.org.uk
http://www.gov.uk/report-problem-medicine-medical-device
http://www.gov.uk/report-problem-medicine-medical-device
http://humanities-digital-library.org/index.php/hdl/catalog/book/electronic-evidence-and-electronic-signatures
http://humanities-digital-library.org/index.php/hdl/catalog/book/electronic-evidence-and-electronic-signatures

GOOD READING | 483

things need changing — users may be stuck doing things inefficiently, and
computerizing things so that they can do what they are already doing better
may not be the best thing to do. Computers can improve how organizations
work, as well as improving how people do things.

It is obvious that systems should be designed around user needs (UCD
and so onj): but do you know how to find out what the users’ needs are,
and what to do when they change as systems are implemented? Do you
knowwhat to dowhen the UCD insightsmean re-engineering the healthcare
systems rather than the digital systems?

There are hundreds of books in the UCD area, and you should look care-
fully at several to find which best meet your needs.

Alan Cooper, Robert Reimann, and David Cronin, About Face 3
(Wiley Publishing Inc., 2007) is very readable. It’s aimed at
developing desktop applications, websites, and apps. It’s into its third
edition, which is a good sign of its popularity.

One of my own books, Press On: Principles of Interaction
Programming (MIT Press) covers a lot of user interface design best
practice, and is particularly aimed at programmers and producing
reliable, dependable, and safe user interfaces. It covers all forms of
user interface design, which includes digital healthcare. If digital
health systems do not have well-designed user interfaces, then
nothing done with them will be safe.

Ben Shneiderman, Catherine Plaisant, Maxine Cohen, Steven Jacobs,
Niklas Elmqvist, and Nicholas Diakopoulos, Designing the User
Interface: Strategies for Effective Human-Computer Interaction
(sixth edition, Pearson, 2016).
Shneiderman’s book has got to its sixth edition already, so it’s both
popular and staying up-to-date. It’s always a promising sign when a
book runs into many editions: indeed, Shneiderman et al’s textbook
is, I think, the best general textbook on HCI design.

If you are interested in Human Factors

The best book on Human Factors has a blog site, and you can start exploring
it there: hfeinpractice.wordpress.com— the book itself is: Steven Shorrock
and ClaireWilliams, Human Factors and Ergonomics in Practice: Improving
system performance and human well-being in the real world (CRC Press,
2016).

j See Chapter 22: User Centered Design, page 301←

https://mitpress.mit.edu/books/press
https://mitpress.mit.edu/books/press
http://hfeinpractice.wordpress.com

484 | CHAPTER 33

There’s a huge “toolkit” of Human Factors insights for design. The tools
have great names like affordance, fatigue, stress, task, leadership, forcing
functions, task saturation, and more.

An excellent place to start is DonNorman’s fantastic and deservedly pop-
ular book, The Design of Everyday Things, now in a revised and expanded
edition (MIT Press, 2013). The book was originally called The Psychology
of Everyday Things, but whatever it’s called it is the classic book on thought-
ful design. Do get it and read it.

Sidney Dekker’s book Patient Safety: A Human Factors Approach (CRC
Press, 2011) is directly focused on healthcare and patient safety, acknowl-
edging their complexity. I said it above, but I think it’s worth reading every-
thing Dekker writes.

The US FDA has been using Human Factors for over 30 years, and their
website has lots of free resources. I won’t give specific URLs, as this is a
lively area of development — go and have a look and find the most recent
white papers and tutorials. Here’s the FDA’s home URL: www.fda.gov

An important part of Human Factors is cognitive psychology, the Human
Factors of how we think. The chapter on Cat Thinking introduced a few
ideas,k but here are some outstanding books and articles to read more:

Carol Tavris and Elliot Aronson, Mistakes Were Made (But Not by
Me): Why We Justify Foolish Beliefs, Bad Decisions, and Hurtful
Acts (revised edition, Mariner Books, 2015).14

Daniel Kahneman, Thinking, Fast and Slow (Penguin, 2012).15

… and Elizabeth Kolbert wrote a fun and thought-provoking review
of some books and their ideas in “Why Facts Don’t Change Our
Minds: New discoveries about the human mind show the limitations
of reason,” The New Yorker, 20 February 2017. www.newyorker.
com/magazine/2017/02/27/why-facts-dont-change-our-minds

If you are a developer or a programmer

Sometimes programmers just implement the systems they are told to imple-
ment. Really, this is called coding; it isn’t programming, thinking carefully
through how to make things work. Programming means thinking about the
requirements and carrying them through to a working implementation, and
revising that implementation as experience with how it is really used accu-
mulates.

Thinking like a programmer who is solving problems has become called
Computational Thinking.l It’s extremely useful, helps people work out

k See Chapter 3: Cat Thinking, page 25←
l See Chapter 13: Computational Thinking, page 151←

http://www.fda.gov
http://www.newyorker.com/magazine/2017/02/27/why-facts-dont-change-our-minds
http://www.newyorker.com/magazine/2017/02/27/why-facts-dont-change-our-minds

GOOD READING | 485

better solutions to their problems (before rushing in to program the wrong
things). Computational Thinking is under-rated but it’s very easy — and
fun — to start using it effectively: read Paul Curzon and Peter McOwan’s
The Power of Computational Thinking: Games, Magic and Puzzles to Help
You Become a Computational Thinker (WSPC, Europe, 2017).

One of the earliest books that mentions Computational Thinking, and
one of the easiest to read, is Seymour Papert’s famous Mindstorms: Chil-
dren, Computers, and Powerful Ideas (Basic Books, 1980). Seymour Pa-
pert was a hugely inspirational teacher of computing’s powerful ideas. This
is a book to inspire your (or anyone’s!) children to get into computing. It’ll
inspire you too.

I think no serious book on programming, like Fix IT, can fail to praise
Donald Knuth’s books, which are widely recognized as defining the field of
Computer Science. They are quite hard work to read, but if you can cope,
they are thorough reference books to help solve any programming problem.
They should convince you that programming, properly understood, is a real
engineering discipline. They come in a boxed set, along with lots of addi-
tional volumes. Read them! Donald E. Knuth, The Art of Computer Pro-
gramming (third edition, Addison-Wesley, 2011).

Knuth’s approach to programming assumes that you know that what you
are doing is the right thing to be doing; but Knuth does not explore how
to program the right things, which is more the concern of Formal Methods
(and software engineering more generally). Daniel Jackson’s book, Software
Abstractions: Logic, Language, and Analysis (revised edition, MIT Press,
2011) gives an introduction to his Alloy system as well as a nice overview
of alternative approaches. It’s a fun, insightful, and very readable book, and
comes with a tool that can be downloaded and easily used on real problems.
I noted a shorter (and cheaper!) description of Alloy earlier in this book.405

You’ll seek out books and online sources when you know you’ve got a
problem that you want to solve. If, say, you want a random number, then
Knuth has the answer — he’s the best source on the planet for every detail
in Computer Science. But there is a very different sort of book, one you
wouldn’t think of reading to seek out an answer to a question: a book that
changes how you think. Under this heading, there are a few programming
books that will change how you think, rather than answer any questions you
thought you already had:

Richard Feynman, Feynman Lectures On Computation (Westview
Press, 2000). Feynman won the Nobel Prize in physics, and his
clear, lucid, fun lectures on computation explain basic concepts in
computer science. Suddenly, you realize you never really understood
anything until he blew your horizons away.

Harold Abelson and Gerald Jay Sussman, Structure and Interpretation
of Computer Programs (second edition, MIT Press, 1996). This

486 | CHAPTER 33

book is a hands-on undergraduate course in programming from MIT.
Structure and Interpretation of Computer Programs starts with a
famous quote from Alan Perlis,

it’s extraordinarily important […] that we keep fun in
computing

… and it certainly lives up to that exhortation.

Chris Hanson and Gerald Jay Sussman, Software Design for
Flexibility: How to Avoid Programming Yourself into a Corner (MIT
Press, 2021).
Agile methodsm encourage continually modifying programs to make
them suit user needs, but many bugs arise because we try to modify
programs that are hard to modify, and we make mistakes as we
change them. Instead, we could design programs to be flexible, and
then they would be easy to modify because we intended them to be
easy to modify — they would be flexible. Domain-specific languages
(DSLs) are just one way of being flexible. If you can program in
Scheme, this is a fantastic book, and if you can’t program in Scheme
— every programmer should know Scheme! — Structure and
Interpretation of Computer Programs, mentioned above, is where
you should start to learn it — it’s a powerful and inspiring language
that grows with you.

DSLs are such a good idea, there are lots of places to read up about
them. I recommend exploring DSLs starting with ANTLR, not only
because ANTLR is a good place to start and has a very stimulating
philosophy about good programming, but it and its ideas are also very
good tools to have in your programming toolbox. The book on
ANTLR is Terence Parr’s The Definitive ANTLR 4 Reference (The
Pragmatic Programmers, 2012).

Most of us programmers are not as good as we’d like to be. Systems
take too long to implement, and have far too many bugs when
delivered. Watts Humphrey’s PSP: A Self-improvement Process for
Software Engineers (Addison-Wesley, 2005) provides a powerful
way to improve. He also wrote Winning with Software, which is the
book to get your managers or senior executives to read, so they
understand what software is all about. If they don’t read this book,
then they are likely to drive their programmers with unrealistic goals
that will end in failure and in poor products. Maybe getting
manufacturing executives and healthcare Chief Information Officers

m See Chapter 27: Agile method, page 378←

GOOD READING | 487

to read this book (as well as my own book, Fix IT !) will improve
healthcare safety more than anything else.

Adacore is a leading international software developer for safety-critical
systems. Adacore supplies SPARK Ada and other tools, primarily for safety-
critical software for the aviation industry. They could help digital healthcare,
too: see www.adacore.com and also look up sparkpro on their website. It’s
fair to say there are many other companies in the area, but Adacore’s website
is a good place to start looking.

Nancy Leveson, Engineering a Safer World: Systems Thinking
Applied to Safety (MIT Press, 2017). This is arguably the textbook
on engineering safe and reliable systems. The book also covers
Nancy’s STAMP method. It is full of insightful analyses of real
examples and, crucially, methods that work.

John Knight’s book, Fundamentals of Dependable Computing for
Software Engineers (CRC Press, 2012) is aimed more at
programmers. It does a very good job of explaining why safe
programming matters and how to do it well.

Ross Anderson’s book, Security Engineering: A Guide to Building
Dependable Distributed Systems (third edition, John Wiley & Sons,
2021) is the bible for security (including cybersecurity), which is
essential for healthcare systems. Cybersecurity changes every day, so
get the latest details from Ross’s web site at
www.cl.cam.ac.uk/~rja14/book.html

If you are a healthcare programmer

If you are a programmer working specifically in healthcare, there are more
targeted books than the generic books I summarized above, including these
two:

Peter Spurgeon, Mark-Alexander Sujan, Stephen Cross, and Hugh
Flanagan, Building Safer Healthcare systems (Springer, 2019).

David A. Vogel, Medical Device Software (Artech House, 2011).

If you want to find out how a serious safety-critical industry, aviation,
does its programming, Leanna Rierson’s book, Developing Safety-Critical
Software (CRC Press, 2013) is the best place to start. This book provides a
thorough overview of compliance with the aviation standard DO-178C. In
my view, the simplest and quickest way to improve digital healthcare would

http://www.adacore.com
https://www.adacore.com/search/results?q=sparkpro
http://www.cl.cam.ac.uk/~rja14/book.html

488 | CHAPTER 33

be to require compliance with this standard — at least healthcare organi-
zations should say “we won’t pay up until you show you’ve followed DO-
178C.” We know it works.

While the DO-178C standard is great, it has a problem. It costs about
£250, and that’s far toomuchmoney to invest when no regulators are requir-
ing its higher standards in healthcare; it’s also too much money for training
companies or universities to invest in. If we want safety, we need to make
safety standards (and this goes for Snomed, HL7, ISO, IEC, BSI, … too)
much cheaper, if not free. Rierson’s book, fortunately, is a lot cheaper.

It’sworth noting that some standards are supported by apps, whichmakes
using them and compliance with them very much easier. For instance, ISO
13485, which is about quality management for medical devices and require-
ments for regulatory purposes, has an app, Greenlight Guru, which is avail-
able at www.greenlight.guru

What about AI? Robotics? Implants? Cybersecurity?

I think digital healthcare’s excitement about AI is a bit premature. Certainly,
it has lots of potential, but it raises all sorts of unsolved issues, from pri-
vacy to introducing new bugs and hard-to-understand errors. Whether AI
is an improvement on balance begs some careful experiments, which to my
knowledge haven’t been attempted yet. That said, Eric Topol’s book, Deep
Medicine: How Artificial Intelligence Can Make Healthcare Human Again
(Basic Books, 2019), is a fine place to start. Eric Topol is a doctor, and his
excitement in this book is palpable. You can also see the very diverse, almost
scattergun, impact AI is potentially having. The book palpably conveys the
excitement for AI from the medical profession’s perspective.

Eric Topol doesn’t saymuch about technologies beyondAI in this book of
his — he doesn’t explore technologies like robotics, implants, telemedicine,
blockchain, or digital security, let alone cybersecurity, and lots more; nor
does he say much about the ethics, the harsh realities of market drivers, or
the problems of interoperability (getting excited about each AI innovation,
rather than fixing integration of all the separate innovations).

Cybersecurity is a dynamic area (there’s an entire chapter on it in this
book,n as well as several discussions of cyber failures), and it’s important
to get up-to-date advice. Start by going to your national cybersecurity cen-
ter, such as the UK’s National Cyber Security Centre, www.ncsc.gov.uk or
the US’s National Cybersecurity Center, cyber-center.org or their National
Cybersecurity and Communications Integration Center, www.cisa.gov

There’s also the US National Cybersecurity and Communications Inte-
gration Center at ics-cert.us-cert.gov

However, for focused healthcare cybersecurity, the University of Michi-
n See Chapter 17: Cybersecurity, page 211←

http://www.greenlight.guru
http://www.ncsc.gov.uk
http://cyber-center.org
http://www.cisa.gov
http://ics-cert.us-cert.gov

GOOD READING | 489

gan’s Archimedes Center for Medical Device Security is an excellent source
of information. Archimedes is atwww.secure-medicine.org—they also run
regular workshops you might like to attend.

My own article,87 “Misunderstanding IT: Hospital cybersecurity prob-
lems in court” (in Digital Evidence and Electronic Signature Law Review,
15:11–32, 2018. DOI: 10.14296/deeslr.v15i0.4891) not only has lots of
useful advice on cybersecurity, but it also has a full description of a major
incident that could happen to any hospital.o The story will perhaps help the
cybersecurity advice to be taken more seriously.

If you are a researcher

For this list of further reading (which will never be sufficiently up-to-date
anyway) the best advice is to go online, and look up new health technolo-
gies — and be very careful! Avoid misleading, fake information, and see if
you can find any randomized controlled trials, systematic reviews, or at least
peer-reviewed papers backing up claims before you get too excited. Unfor-
tunately, many papers about digital healthcare ideas are written by the devel-
opers and therefore have a conflict of interest. Indeed, if you can find papers
that aren’t written by any of the originators, that at least shows somebody
independent is interested in following up on the ideas!

Have a look at www.chi-med.ac.uk, which was a large project that in-
spired much of this book. There’s lots more to do.

If you go to the websites of the main research funders for the sort of
work explored in this book (in the UK there are the Engineering and Physical
Sciences Research Council and the Wellcome Trust): they mostly want to
fund new innovation, like AI, and cybersecurity, but — as of the time of my
writing this book — they show little interest in making digital healthcare less
risky and safer.

Robert Wears was a world leader in patient safety, and his authoritative
book,

Robert L. Wears and Kathleen M. Sutcliffe, Still Not Safe: Patient
Safety and the Middle-managing of American Medicine (Oxford
University Press, 2020)

is a very substantial history of patient safety since its beginnings. It has some
insightful, if depressing, discussion about the statistics of patient safety, the
varying estimates of patient harms, a topic we explored briefly in this book.p

The emphasis in Still Not Safe is how healthcare culture has eaten patient
safety and medicalized it — isolating it from the “real” safety professions
like Human Factors, Psychology, Safety Science, and Engineering. It’s an

o See Chapter 8: Abbott XceedPro glucometer, page 92←
p See Chapter 9: The scale of the problem, page 109←

http://www.secure-medicine.org
http://www.doi.org/10.14296/deeslr.v15i0.4891
http://www.chi-med.ac.uk

490 | CHAPTER 33

ultimately sad book, but it’s very telling on how healthcare really works, seen
from the inside. It gives many insights into how digital healthcare may be
undermined, though there is no mention of digital healthcare as such. There
is nothing on the way digital has reified managerialism, despite the book’s
focus on the forces of professionalism and management. This is strange,
because Wears had previously been enthusiastic about using computers to
reduce error.514

Nevertheless, Still Not Safe is fascinating for its mature perspective from
one of the leaders of the field. It has numerous key references any serious
researcher will wish to explore.

Out-of-the-box thinking

I’vehighlighted in bold key books and papers in theNotes chapter,q which,
to save space, I will not repeat here.

In addition, please read this classic book:

Ralph Nader, Unsafe at Any Speed: The Designed-in Dangers of the
American Automobile (Basic Books, 1965).

I’ve mentioned Ralph Nader’s book several times,138 and it’s worth get-
ting hold of a second-hand copy (or going to a library), being shocked at how
bad the stories he tells are, but being encouraged that so much has improved
in car safety since he wrote it.

Unsafe at Any Speed was written well over 50 years ago but, today, read-
ing Nader’s classic is just like reading a story about modern healthcare — like
my Fix IT — if you imagine he’s writing about digital healthcare rather than
cars. How the car industry has been transformed and become so much safer,
and so quickly, should encourage us that we can do the same with digital
healthcare.

It’s all very well feeling inspired but then not working out how to ap-
ply ideas to make change happen. Here are two helpful books to encourage
thinking about change and achieving successful change:

Anders Ericsson and Robert Pool, Peak: Secrets From the New
Science of Expertise (Penguin, 2016). If you have heard that you
need 10,000 hours to become an expert, Ericsson and Pool show
you that it’s not the hours you spend, but how you use them.

Mathew Syed, Black Box Thinking: Marginal Gains and the Secrets
of High Performance (John Murray, 2015). Syed’s book starts off
contrasting the culture of healthcare — with the stories of Martin and
Elaine Bromileyr — with the culture of aviation improving,s learning

q See Chapter 34: Notes, page 497→
r See Chapter 20: Elaine Bromiley tragedy, page 263←
s See Chapter 26: Planes are safer, page 347←

GOOD READING | 491

from accidents and putting that learning into good use.
While both these stories are covered in Fix IT, Syed focuses on the
reasons why learning does and doesn’t happen — and how to ensure
it does happen.

Pharma and the medical device industry

None of the following books discuss digital healthcare as such, but they
throw a very worrying light onmedical research, medical industry, andmed-
ical regulation. While it is arguable that digital healthcare needs more re-
sourcing, these three books are a warning that the regulatory incentives (in-
cluding patent rules)must be very carefullyworked out if patients and health-
care providers are going to benefit in the long run.

Ben Goldacre, Bad Pharma: HowMedicine is Broken, and HowWe Can
Fix It (Fourth Estate, 2013) — Ben’s book is a gripping and shocking exposé
of the pharmaceutical industry. If all this goes on in the pharma industry
post-thalidomide, which Ben documents extremely well, what is going on in
digital healthcare, which is even less well regulated than pharmaceuticals?

Goldacre’s Bad Pharma is primarily about the mess of the science be-
hind pharmaceuticals and how it could be improved. Far more shocking
is Jeanne Lenzer’s book The Danger Within Us: America’s untested, un-
regulated medical device industry and one man’s battle to survive it (Little,
Brown, 2017). Medical devices like hip implants may disintegrate and lead
to mental problems when the metal bits wear down and get into the blood
stream and thenmess with the brain. It is understandable that if you sell mil-
lions of hip implants, there may well be a few awful stories, but the damning
thread in Jeanne Lenzer’s book is the utter failure of the US regulators to
manage medical devices. (Jeanne doesn’t cover digital devices or healthcare
IT systems.)

Jeanne’s book is one of the key sources behind the Netflix documentary,
The Bleeding Edge.214 It’s really worth reading the book or watching the film:
after the damning — and well-written — evidence, it finishes with a chapter
with suggestions on what we can do to improve things.

For twenty years Marcia Angell was the Editor in Chief of the world-
leading medical journal, The New England Journal of Medicine. Her book,
The Truth About The Drug Companies (Random House, 2005) is a sus-
tained and authoritative indictment of drug regulation, the drug industry,
and how doctors typically do their jobs under the influence of commercial
pressures. The entanglement of commercial interests and government has
led to huge profits and diminishing benefit to patients, particularly older pa-
tients — who are typically both poorer and have multiple conditions that
need treatment.

492 | CHAPTER 33

It’s not all bad news, though. For example, Civica Rx is a new joint hos-
pital and philanthropist-led consortium to develop cheap generic drugs to
undercut the huge costs of commercially made drugs.515 Perhaps similar
collaborative business models, thinking outside the small box of the usual
business models, could also be developed to drive digital healthcare to scale
up and to improve quality.

If you want the big picture of digital health

I tried to ensure that the digital healthcare issues discussed in this book are,
at least in principle, common across the world, but healthcare systems vary
enormously from country to country, and evenwithin countries. Politics, or-
ganizational structures, regulations, managing patients, all vary enormously.
International healthcare — digital or not — is hard to understand. My view
remains that if we don’t get the details right, as Fix IT discussed, whatever
systems or levels of systems you are concerned with, then digital healthcare
will remain unnecessarily risky for everyone involved, patients as well as
healthcare professionals.

If you work in any healthcare system, even at the local level, system fac-
tors are very intrusive: they affect everything from training, registering pa-
tients, treating them, transferring them around the system, to reporting in-
cidents, and, finally, deaths — to say nothing of handling laboratory results,
classifying diseases and patient pathways, and much more besides. Typi-
cally, there are many computer systems — frommany diverse manufacturers
— that handle the various phases of getting patients through the systems.
They also handle getting paid, and many other things.

If youmove jobswithin healthcare, youwill almost always need to retrain
so you know how to do the job you’ve been doing for years, so now you
can do it using different systems. You’ll also very likely have fun with your
system accounts, as Beth Griffith’s story, told in box 33.1, shows.

Fix IT has already hinted at the range of digital problems with discus-
sions on training,t interoperabilityu and internationalization (particularly in
box 25.1). The increasing popularity of international travel and internet
communication ensures system differences often collide without needing to
move where you work. Indeed, the regular updates and replacements of dig-
ital systemsmeans that your job changes even when you stay still. Often, the
old legacy systems, their data, and their habits, will remain and make new
technology improvements increasingly quirky, as they compromise to bal-
ance keeping the old and benefiting from the new. Fortunately, lots of peo-
ple have thought deeply about these problems: Marianne Bellotti, Kill it with
Fire: Manage Aging Computer Systems (and future proof modern ones), No

t See Chapter 24: Anesthetics training, page 325←
u See Chapter 19: Interoperability, page 245←

GOOD READING | 493

Box 33.1. Digital chaos nearly had a doctor removed by Security

BethGriffith is an AcuteMedicine Registrar. Here’s her digital chaos story:516

Some NHS hospitals have recently merged, which has led to merging
their IT systems over the last few weeks. Because I’ve moved jobs, I had
two accounts. To rectify this, my IT Department deleted one of them —
except they deleted the wrong one: the one from my old job, which I hadn’t
worked at since 2019. So when I tried to log in to a computer in my current
hospital, my account had been disabled.

So I rang IT, and asked them to unlock my account, but IT wasn’t able
to. Somehow, they were confused by my two accounts, and they decided I
wasn’t allowed to work there because my contract had ended in 2019.

They didn’t tell me.
They rang Security.
Security searched the hospital to get me out. However, I’d already gone

home, so they decided that I must have “absconded.”
The following day, I went to work and my IT account was active again. I

had some email from IT saying something about a duplicate account being
deleted and all was fine. I thought that was the end of it.

Except that one of the junior doctors had witnessed the security drama,
but didn’t know it was all a misunderstanding. He’d spent weeks believing
I was a fake doctor, and unknown to me, the rumor had spread.

The next thing I knew, when I was seeing a patient, Security came rac-
ing in. They’ve had reports that a fake doctor who’d been escorted off the
premises a few weeks ago had come back.

I was excited about the drama. I didn’t put two and two together. Then
Security called out my name. The “fake doctor” was me.

Starch Press, 2021, is a very readable introduction to properly engineering
“system modernization.”

For the UK, a brief 150 page summary of digital healthcare in the NHS is
Gary McAllister’s An Introduction to Digital Healthcare in the NHS, second
edition, 2021. Gary self-published the book, and it can be ordered easily
from Amazon. It quickly introduces topics like Health Level 7 (HL7), Fast
Healthcare Interoperability Resources (FHIR), portals, AI, clinical coding,
and COVID-19, as well as lots of specifically NHS systems. The book cer-
tainly conveys the complexity of national systems, as well as some of the
additional politically-imposed complications.

I’m tempted to provide more good reading for other countries — there’s
plenty of it — but you should really search for what’s best for you.

494 | CHAPTER 33

Excitement

Cat Thinkingv might explain our hormone-driven excitement, but there are
also objective reasons to be excited by digital healthcare. Computers have
huge potential, and they can transform how everything is done. Computers
are now inside many people — they’re in heart pacemakers, cochlear im-
plants, insulin pumps, artificial limbs, telemedicine, AI for mental health,
and much more. In the future, computers will transform what it means to
be human, let alone what it means to be a healthy human. AI is just a small
strand. There’s robotics, exoskeletons, all the way to androids, VR hologram
doctors … the sort of future that science fiction can only dream of.

There is, of course, tons of stuff to read about exciting futures. I recom-
mendMarkO’Connell’s prize-winning book as a good read: ToBe aMachine
(Granta, 2017). Books can’t really hope to keep up with the pace of digi-
tal innovation, but the magazine Wired and its website, www.wired.com,
comes out regularly and will keep you up-to-date, in so far as anything will.

Dreams of a future, safer, more effective digital healthcare?
That’s a good point to end Fix IT on.

v See Chapter 3: Cat Thinking, page 25←

http://www.wired.com

Supporting this book are over
500 notes and references on
digital healthcare and patient
safety incidents. These notes
cover media stories,
peer-reviewed cutting-edge
research, as well as national
and international reports.

Notes in bold are especially
good sources for further
reading.

34

Notes

This chapter collects all the notes from the book. All the notes are cross-
referenced back to the pages where they were raised in the book, so you can
more easily go backward and forward. Notes highlighted in bold are key
books and documents that are highly recommended reading.

Many documents referenced in these notes have a DOI, a digital object
identifier. You can type this identifier into a form on the DOI organization’s
website, doi.org, or you can write the DOI into a URL directly using doi.org/
identifier. So for this DOI: 10.1098/rsif.2010.0112, as given in this book,
in full you’d type http://doi.org/10.1098/rsif.2010.0112 into your browser (as
a URL). In this case, the DOI gets you the full text of the Harold Thimbleby
and Paul Cairns open access paper, “Reducing number entry errors: Solving
a widespread, serious problem.”51 Of course, if you are using an electronic
version of this book, all URLs and DOIs can be clicked on directly.

The idea of DOIs is that they stay the same forever and always refer to the
same thing, even if the websites and URLs they refer to get reorganized.517
In fact you’re probably better off taking the title of anything I cite and doing
an internet search on it: that way, you’ll find all the additional — and later
— discussions about it. If you follow the DOI alone, you’ll typically only get
the original and none of the future improvements.

1 How to read this book
1. Pages 2, 469, 509. Although Hippocrates flourished in around 400 BC, the Edwin

Smith Papyrus dates medical insights to much earlier. It’s a long ancient Egyptian
papyrus scroll, dating from around 1600 BC, covered in medical, not magical, details
of injuries and treatment. See en.wikipedia.org/wiki/Edwin_Smith_Papyrus

http://doi.org
http://doi.org/
http://www.doi.org/10.1098/rsif.2010.0112
http://doi.org/10.1098/rsif.2010.0112
http://en.wikipedia.org/wiki/Edwin_Smith_Papyrus

498 | CHAPTER 34

2 We don’t know what we don’t know
2. Page 15. A good source on Ignaz Semmelweis is K. Codell Carter and Barbara R.

Carter, Childbed Fever, Transaction Publishers, 2005.
3. Page 15. Christine Hallett, “The Attempt to Understand Puerperal Fever in the

Eighteenth and Early Nineteenth Centuries: The Influence of Inflammation Theory,”
Medical History, 49(1):1–28, 2005. DOI: 10.1017/s0025727300000119

4. Page 18 twice. Practice Fusion is owned by Allscripts Healthcare Solutions Inc.
A news report on the case is: “In secret deal with drugmaker, health-records tool

pushed opioids to doctors,” Los Angeles Times, 30 January 2020.
www.latimes.com/business/story/2020-01-30/health-records-company-pushed-
opioids-to-doctors-in-secret-deal

The US Department of Justice’s press release on the case is here: “Electronic
Health Records Vendor to Pay $145 Million to Resolve Criminal and Civil
Investigations Practice Fusion Inc Admits to Kickback Scheme Aimed at Increasing
Opioid Prescriptions,” Press Release Number: 20-94, 27 January 2020.
www.justice.gov/opa/pr/electronic-health-records-vendor-pay-145-million-
resolve-criminal-and-civil-investigations-0

5. Pages 19, 29, 114 twice, 179, 207, 215, 220, 226 twice, 241, 344, 347, 359, 393,
442, 471. This book tries to be precise about numbers: lives can depend on getting
them right. Unfortunately the word “billion” is easily misunderstood, as there are
incompatible ways of writing large numbers. For instance, in old British English
(pre-1974) and in modern French, billion means a million million, but in modern
English, as used throughout this book, the word billion means one thousand million,
1,000,000,000.

6. Page 19. Twenty-three professors of Computer Science, of whom I was one, ran a
campaign. It’s now a good few years ago, and starting to get harder to find on the web.
Try the Health Committee Publications, Evidence ordered by the House of Commons,
22 March 2007: Brian Randell, “Evidence submitted by Professor Brian Randell (EPR
20),”
publications.parliament.uk/pa/cm200607/cmselect/cmhealth/422/422we64.htm
and examples like www.bcs.org/content/conWebDoc/18051

7. Pages 20, 245, 298. BBC, “Outdated IT leaves NHS staff with 15 different computer
logins,” 4 January 2020. www.bbc.co.uk/news/health-50972123

8. Page 20. Gareth Iacobucci, “Government’s plan to digitise NHS risks wasting billions,
MPs warn,” BMJ, 371:m4317, 2020. DOI: 10.1136/bmj.m4317

9. Page 20. Duncan P. Thomas, “The Demise of Bloodletting,” Journal of the Royal
College of Physicians Edinburgh, 44:72–77, 2014. DOI: 10.4997/JRCPE.2014.117

10. Page 22. The Bill & Melinda Gates Foundation is at www.gatesfoundation.org

3 Cat Thinking
11. Page 25. Kung Fu Panda is a fun computer-animated cartoon film by Paramount

Pictures, released in 2008.
12. Page 27. David W. Bates, et al, “Incidence of Adverse Drug Events and Potential

Adverse Drug Events,” Journal of the American Medical Association, 274(1):29–34,
1995. DOI: 10.1001/jama.1995.03530010043033

13. Page 27. Our largely uncritical enthusiasm for computers causes special concern when
children get drawn in and are affected socially, and — as usual — our personal
experience belies the significance of the scale of what is going on across the world. See,
for example, this report of a large US study: The Common Sense Census: Media Use
by Kids Age Zero to Eight, Common Sense, 2017. www.commonsense.org/research

14. Pages 28, 270, 484. Carol Tavris and Elliot Aronson, Mistakes Were Made

http://www.doi.org/10.1017/s0025727300000119
http://www.latimes.com/business/story/2020-01-30/health-records-company-pushed-opioids-to-doctors-in-secret-deal
http://www.latimes.com/business/story/2020-01-30/health-records-company-pushed-opioids-to-doctors-in-secret-deal
http://www.justice.gov/opa/pr/electronic-health-records-vendor-pay-145-million-resolve-criminal-and-civil-investigations-0
http://www.justice.gov/opa/pr/electronic-health-records-vendor-pay-145-million-resolve-criminal-and-civil-investigations-0
http://publications.parliament.uk/pa/cm200607/cmselect/cmhealth/422/422we64.htm
http://www.bcs.org/content/conWebDoc/18051
http://www.bbc.co.uk/news/health-50972123
http://www.doi.org/10.1136/bmj.m4317
http://www.doi.org/10.4997/JRCPE.2014.117
http://www.gatesfoundation.org
http://www.doi.org/10.1001/jama.1995.03530010043033
http://www.commonsense.org/research

NOTES | 499

(But Not by Me): Why We Justify Foolish Beliefs, Bad Decisions, and Hurtful
Acts, revised edition, Mariner Books, 2015.

15. Pages 28, 484. Daniel Kahneman, Thinking, Fast and Slow, Penguin, 2012.
16. Page 29. Trisha Greenhalgh, “How to improve success of technology projects in health

and social care,” Public Health Research and Practice, 28(3):e2831815, 2018. DOI:
10.17061/phrp2831815

17. Page 29. Clayton M. Christensen, The Innovator’s Dilemma: When New Technologies
Cause Great Firms to Fail, Harvard Business Review Press, 1997.

18. Page 29. Boundless Mind’s website is boundless.ai
A good popular article is Haley Sweetland Edwards, “You’re Addicted to Your

Smartphone. This Company Thinks It Can Change That,” Time, 13 April 2018.
time.com/5237434/youre-addicted-to-your-smartphone-this-company-thinks-it-
can-change-that

19. Pages 30, 462, 465. Safety cases are required in many industries and are being
increasingly promoted for use in healthcare. Unfortunately, safety cases
don’t much help with “unknown unknowns.” For example, two recent
reports advocating safety cases completely overlook bugs and reliable
software engineering — perpetuating the myth, which I hope this book has
dispelled, that digital healthcare is intrinsically easy to get right.

See: The Health Foundation, Using safety cases in industry and
healthcare, 2012, www.health.org.uk, which is an excellent introduction to the
value of safety cases. However, while it mentions that cybersecurity should
figure in a safety case, it overlooks that a case also needs to be made that the
software itself is safe and dependable.

More recently, the UK Healthcare Safety Investigation Branch (HSIB) in
reviewing some adverse incidents with so-called smart infusion pumps
published Procurement, usability and adoption of ‘smart’ infusion pumps,
Report I2019/009, 2020, www.hsib.org.uk

The HSIB report strongly promotes safety cases to help healthcare
proactively manage safety, but, again, the HSIB report assumes that
equipment (in this case, smart pumps) is safe, so the issue that’s left is for
the users of pumps, primarily the hospitals, to make a case that their use of
the systems is going to be safe.

It would be better, I think, if any safety case made in healthcare included
a statement something like “we have seen and professionally reviewed the
safety case made by the vendors” as well, and in turn the safety case for the
systems they are procuring should say that the manufacturers have used
UCDa and rigorous development methods to avoid and manage bugs — in
fact, that they can provide a safety case that they have properly addressed all
the topics covered in this book.

4 Dogs dancing
20. Page 33. Of course, I’m simplifying when I say I would’ve been a year old in 1956.

Before my first birthday, I wouldn’t have been a year old. I was born in July, so I’d be a
year old in July 1956, in fact, on my birthday on the nineteenth. Fortunately, the
month detail doesn’t make any difference to the Y2K problem (or the explanation),
and so for simplicity I’m going to ignore it, as if I’d been born on the first day of 1955.

21. Page 34. The Millennium Bug has developed its own conspiracy theory: that huge
amounts of money were spent on a non-existent problem. In fact, the problem was
solved precisely because huge amounts of efforts and money were directed at solving it.

a See Chapter 22: User Centered Design, page 301←

http://www.doi.org/10.17061/phrp2831815
http://www.doi.org/10.17061/phrp2831815
http://boundless.ai
http://time.com/5237434/youre-addicted-to-your-smartphone-this-company-thinks-it-can-change-that
http://time.com/5237434/youre-addicted-to-your-smartphone-this-company-thinks-it-can-change-that
http://www.health.org.uk
http://www.hsib.org.uk

500 | CHAPTER 34

Martyn Thomas has a short and authoritative article on it: “The millennium bug
was real — and 20 years later we face the same threats,” The Guardian, 31 December
2019. www.theguardian.com/commentisfree/2019/dec/31/millennium-bug-face-
fears-y2k-it-systems

22. Pages 34, 287. Northern General Hospital NHS Trust, Report of the Inquiry
Committee Into The Computer Software Error In Downs Syndrome Screening,
undated.

23. Pages 34, 35, 248, 462. How did the Down syndrome calculation go wrong?
Here’s how the Down syndrome program worked:
Dates in the program were stored as strings of ten characters, such as 11/10/1970.

In itself, this is bad practice (dates should be stored as objects, not as strings — strings
can have syntax errors, for instance).

To get the year to do a mother’s age calculation, the Down syndrome program
extracted the ninth and tenth characters from the string, getting the last two digits of
the year of birth. So a date like 11/10/1970 gives the two characters 70. They did the
same thing with the current year. So if the year is 2000, the two digits extracted give
00. So in the year 2000, a mother born in 1970 would seem to be aged –70, since the
computer would do the calculation 00 – 70 (zero minus seventy = minus seventy),
rather than doing the correct calculation 2000 – 1970 (= plus thirty).

There is no justification whatsoever (such as limited computer memory) for only
extracting two digits when four are needed. The program is already storing dates as
long ten character strings — so, clearly, there’s plenty of memory. There is also no
justification for a program not to check that a calculated mother’s age falls within a
sensible window, say 12 to 60 years, which would immediately trap invalid, indeed
insane, ages like –70. It should always be standard practice to build such sanity
checks into programs, just in case they have unknown bugs. This program had bugs
and clearly did no useful sanity checks.

In fact, there was another bug in the program, detected earlier, in 1994, that
involved the program failing to notice it was doing incorrect calculations with mothers
with an impossible zero weight. Unfortunately, the programmer didn’t learn from this
earlier incident that checks are standard programming practice.

The obvious fix to the Y2K bug is to extract all four year digits from a date. Then a
date like 11/10/2000 would give 2000 rather than 00, and the age calculation would be
correct. The Inquiry report explains how this works using the example date 3/4/2000,
for which the seventh to tenth characters are 00 and not 2000 — did you notice that
the report used 3/4 and not 03/04? This is surely an ironic bug for an inquiry into
bugs, but it does illustrate why it is such bad practice to store dates as strings of
characters (after all, the string 3/4/2000 is as good a string as 03/04/2000 is).

The obvious fix to a program’s problems, however, is distracting. A much better fix
is to ask: why are we even doing this? Repeatedly parsing strings to extract dates is a
symptom of poor programming. Instead, the user interface should use a standard,
properly developed API to convert the date to a timestamp, and the program would
never need to covert dates, as it would all be done in the standard, accredited code
throughout the program.

It’s a shame that all critical healthcare software and documentation is not open
source, and therefore available for the wider community to check and improve. If the
Down program had been made open source, the community would have helped
improve it — and it’s clear from the Inquiry that it had many avoidable bugs.
Moreover, with open source, every hospital would have been able to use the improved
system, so bugs in other hospitals would also have been better managed.

24. Pages 35, 286. Bill Goodwin, “Hospital software failure shows Y2K bug can still bite,”
Computer Weekly, 27 September 2001, www.computerweekly.com/feature/
Hospital-software-failure-shows-Y2K-bug-can-still-bite

This article also says the program was written in Basic, which is a totally
inappropriate programming language to use.

http://www.theguardian.com/commentisfree/2019/dec/31/millennium-bug-face-fears-y2k-it-systems
http://www.theguardian.com/commentisfree/2019/dec/31/millennium-bug-face-fears-y2k-it-systems
http://www.computerweekly.com/feature/Hospital-software-failure-shows-Y2K-bug-can-still-bite
http://www.computerweekly.com/feature/Hospital-software-failure-shows-Y2K-bug-can-still-bite

NOTES | 501

25. Page 35. Martin Wainwright, “NHS faces huge damages bill after millennium bug
error,” The Guardian, 14 September 2001.
www.theguardian.com/uk/2001/sep/14/martinwainwright

26. Page 35. Bill Goodwin, “Y2K hitch exposes NHS skills deficit,” Computer Weekly, 20
September 2001. www.computerweekly.com/news/2240042406/Y2K-hitch-
exposes-NHS-skills-deficit

The NHS has a publication Risk Calculation Software Requirements for Down’s
Syndrome Screening (by Dave Wright, Barry Nix, Steve Turner, David Worthington,
and Andy Ellis, published in 2013), but it baffles me. There are so many vague ideas:
it does not provide useful requirements for software engineers wanting to implement
Down syndrome calculations reliably. There is nothing in the requirements about
error, proving programs correct, or signing off projects; there is no reference to
professional software engineering practice at all. There is not even any mention that a
mother’s age must be positive — so the errors of the Y2K could get through again. In
other words, bugs in software can extend much wider — here, there are bugs in the
software’s requirements and management.

Later chapters, particularly Computer Factorsb will give some positive ideas for
solutions.

27. Page 36. I made a video of the simulation which is available at
www.youtube.com/watch?v=brNbDWnHDVs— “Problems with a syringe pump,”
YouTube, 2008. The general methodology, and in particular the simulation of the
Graseby syringe driver, is described here: Harold Thimbleby, “Interaction
Walkthrough: Evaluation of Safety Critical Interactive Systems,” Proceedings
International Workshop on Design, Specification and Verification of Interactive
Systems — DSVIS 2006, Lecture Notes in Computer Science, 4323:52–66,
Springer-Verlag, 2007. DOI: 10.1007/978-3-540-69554-7_5

28. Pages 40, 41, 42. Yong Y. Han, Joseph A. Carcillo, Shekhar T. Venkataram, Robert S.
B. Clark, R. Scott Watson, Trung C. Nguyen, Hülya Bayir, and Richard A. Orr,
“Unexpected Increased Mortality after Implementation of a Commercially Sold
Computerized Physician Order Entry System,” Pediatrics, 116:1506–1512, 2005.
DOI: 10.1542/peds.2005-1287

My graph is based on the paper’s figure 1, but unfortunately the paper provides no
exact data for each quarter. An erratum appears in Pediatrics, 117(2):593–594, 2006.

29. Page 41. Sam Sachdeva, “Testing times for Epic at Cambridge,” digitalhealth, 25
November 2014.
www.digitalhealth.net/2014/11/testing-times-for-epic-at-cambridge

30. Page 41. There are many papers to carry on reading. Here are two:
Mary G. Amato, Alejandra Salazar, Thu-Trang T. Hickman, Arbor J. L. Quist, Lynn

A. Volk, AdamWright, Dustin McEvoy, William L. Galanter, Ross Koppel, Beverly
Loudin, Jason Adelman, John D. McGreevey III, David H. Smith, David W. Bates, and
Gordon D. Schiff, “Computerized prescriber order entry-related patient safety reports:
Analysis of 2522 medication errors,” Journal of the American Medical Informatics
Association, 24(2):316–322, 2017. DOI: 10.1093/jamia/ocw125

Gordon D. Schiff, Mary G. Amato, T. Eguale, J. J. Boehne, AdamWright, Ross
Koppel, A. H. Rashidee, R. B. Elson, D. L. Whitney, T-T. Thach, David W. Bates, and
A. C. Seger, “Computerised physician order entry-related medication errors: Analysis
of reported errors and vulnerability testing of current systems,” BMJ Quality & Safety
Online, 24(4):264–271, 2015. DOI: 10.1136/bmjqs-2014-003555

31. Page 42. Raj M. Ratwani, Michael Hodgkins, and David W. Bates, “Improving
Electronic Health Record Usability and Safety Requires Transparency,” Journal of the
American Medical Association, 320(24):2533–2534, 2018. DOI:
10.1001/jama.2018.14079

32. Page 43. “Bawa-Garba: timeline of a case that has rocked medicine,” PULSE, 13

b See Chapter 21: Computer Factors, page 277←

http://www.theguardian.com/uk/2001/sep/14/martinwainwright
http://www.computerweekly.com/news/2240042406/Y2K-hitch-exposes-NHS-skills-deficit
http://www.computerweekly.com/news/2240042406/Y2K-hitch-exposes-NHS-skills-deficit
http://www.youtube.com/watch?v=brNbDWnHDVs
http://www.doi.org/10.1007/978-3-540-69554-7_5
http://www.doi.org/10.1542/peds.2005-1287
http://www.digitalhealth.net/2014/11/testing-times-for-epic-at-cambridge
http://www.doi.org/10.1093/jamia/ocw125
http://www.doi.org/10.1136/bmjqs-2014-003555
http://www.doi.org/10.1001/jama.2018.14079
http://www.doi.org/10.1001/jama.2018.14079

502 | CHAPTER 34

February 2018. www.pulsetoday.co.uk/news/gp-topics/gmc/bawa-garba-timeline-
of-a-case-that-has-rocked-medicine/20036044.article

33. Page 43. Lyvia Dabydeen, Hilary Klonin, Nigel Speight, Sethu Wariyar, Sanjay Gupta,
and Sanjiv Nichani, “An account by concerned UK paediatric consultants of the tragic
events surrounding the GMC action against Dr Bawa-Garba,” 54000doctors,
54000doctors.org/blogs/an-account-by-concerned-uk-paediatric-consultants-of-
the-tragic-events-surrounding-the-gmc-action-against-dr-bawa-garba.html

34. Page 44. BBC News, “Hadiza Bawa-Garba: Medics rally behind struck off doctor,” 29
January 2018. This article has the text of the letter: Nick Bostock, “More than 5,000
GPs sign Bawa-Garba protest letter,” GP Online, 29 January 2018.
www.gponline.com/5000-gps-sign-bawa-garba-protest-letter/article/1455743

35. Page 44. There is far more to this case than the IT failure. Please also read University
Hospitals of Leicester NHS, Investigation Report, Final Report re: , Unexpected
Death, Incident Report Form Ref No W65737, STEIS Log No 2011/3518, 24 August
2011/updated 3 January 2012. See also much discussion in the BMJ, e.g., Deborah
Cohen, “Back to blame: the Bawa-Garba case and the patient safety agenda,” BMJ,
359:j5534, 2017. DOI: 10.1136/bmj.j5534 and lots of discussion on the Twitter
handle #IAmHadiza

36. Page 44. The NHS has an excellent — and brief — Just Culture guide, “A just culture
guide: Supporting consistent, constructive and fair evaluation of the actions of staff
involved in patient safety incidents,” which can be found on the Just Culture web
pages at www.england.nhs.uk/patient-safety/a-just-culture-guide

37. Page 45. MCG Health Inc., COMPUTERIZED PROVIDER ORDER ENTRY Superuser
Reference Manual, 2008. paws.gru.edu/pub/cis/training/documents/pdfs/
manuals/cpoesuperuserreferencemanual09_26_08.pdf

38. Page 45. Rachel Clarke, “Hadiza Bawa-Garba could have been any member of
frontline staff working in today’s overstretched NHS,” BMJ, 8 December, 2017.
blogs.bmj.com/bmj/2017/12/08/rachel-clarke-hadiza-bawa-garba-could-have-
been-any-member-of-frontline-staff-working-in-todays-overstretched-nhs

39. Pages 45, 117. The Mid Staffordshire NHS Foundation Trust Public Inquiry, chaired
by Robert Francis QC (February 2013), www.gov.uk/government/publications/
report-of-the-mid-staffordshire-nhs-foundation-trust-public-inquiry

40. Page 45. Clare Dyer, “Bawa-Garba is free to practise again without restrictions after
tribunal ruling.” BMJ, 374:n1690, 2021. DOI: 10.1136/bmj.n1690

41. Page 46. Dr Marie Moe works at the Norwegian University of Science and Technology
(NTNU). She’s got YouTube movies, including a great 2016 TEDx talk, “Can hackers
break my heart?” at www.youtube.com/watch?v=W1YWpVMpPi8

Marie has also written some very interesting articles on her experiences. See lots
more on her web home page: www.ntnu.edu/employees/marie.moe

42. Page 46. Payam Safavi-Naeini and Mohammad Saeed, “Pacemaker Troubleshooting:
Common Clinical Scenarios,” Texas Heart Institute Journal, 43(5):415–418, 2016.
DOI: 10.14503/THIJ-16-5918

43. Page 47. See our paper: Yi Zhang, Paolo Masci, Paul Jones, and Harold Thimbleby,
“User Interface Software Errors in Medical Devices,” Biomedical Instrumentation &
Technology, 53(3):182–194, 2019. DOI: 10.2345/0899-8205-53.3.182

5 Fatal overdose
44. Page 49. AIM stands for Ambulatory Infusion Manager.
45. Pages 49, 50. Nurses program infusion pumps to deliver a specific dose, typically by

pressing buttons on them. Confusingly, the same word, “programming,” is also used
when programmers program infusion pumps by writing their software. The main
difference in usage is that the nurse’s programming will change as needed for each

http://www.pulsetoday.co.uk/news/gp-topics/gmc/bawa-garba-timeline-of-a-case-that-has-rocked-medicine/20036044.article
http://www.pulsetoday.co.uk/news/gp-topics/gmc/bawa-garba-timeline-of-a-case-that-has-rocked-medicine/20036044.article
http://54000doctors.org/blogs/an-account-by-concerned-uk-paediatric-consultants-of-the-tragic-events-surrounding-the-gmc-action-against-dr-bawa-garba.html
http://54000doctors.org/blogs/an-account-by-concerned-uk-paediatric-consultants-of-the-tragic-events-surrounding-the-gmc-action-against-dr-bawa-garba.html
http://www.gponline.com/5000-gps-sign-bawa-garba-protest-letter/article/1455743
http://www.doi.org/10.1136/bmj.j5534
http://www.england.nhs.uk/patient-safety/a-just-culture-guide
http://paws.gru.edu/pub/cis/training/documents/pdfs/manuals/cpoesuperuserreferencemanual09_26_08.pdf
http://paws.gru.edu/pub/cis/training/documents/pdfs/manuals/cpoesuperuserreferencemanual09_26_08.pdf
http://blogs.bmj.com/bmj/2017/12/08/rachel-clarke-hadiza-bawa-garba-could-have-been-any-member-of-frontline-staff-working-in-todays-overstretched-nhs
http://blogs.bmj.com/bmj/2017/12/08/rachel-clarke-hadiza-bawa-garba-could-have-been-any-member-of-frontline-staff-working-in-todays-overstretched-nhs
http://www.gov.uk/government/publications/report-of-the-mid-staffordshire-nhs-foundation-trust-public-inquiry
http://www.gov.uk/government/publications/report-of-the-mid-staffordshire-nhs-foundation-trust-public-inquiry
http://www.doi.org/10.1136/bmj.n1690
http://www.youtube.com/watch?v=W1YWpVMpPi8
http://www.ntnu.edu/employees/marie.moe
http://www.doi.org/10.14503/THIJ-16-5918
http://www.doi.org/10.2345/0899-8205-53.3.182

NOTES | 503

occasion, but exactly the same software programming is intended to work in all
circumstances (barring bugs).

46. Pages 49, 50, 54, 63. Institute for Safe Medication Practices Canada, Fluorouracil
Incident Root Cause Analysis, 2007.
www.ismp-canada.org/download/reports/FluorouracilIncidentMay2007.pdf

47. Pages 51, 503, 517. Harold Thimbleby, “Calculators are Needlessly Bad,”
International Journal of Human-Computer Studies, 52(6):1031–1069, 2000. DOI:
10.1006/ijhc.1999.0341

A more mathematical analysis, using matrices (which is much easier than it
sounds), of some of the crazy problems of calculators can be found in: Harold
Thimbleby, “User Interface Design with Matrix Algebra,” ACM Transactions on
Computer-Human Interaction, 11(2):181–236, 2004. DOI:
10.1145/1005361.1005364

48. Page 51. When somebody makes an error because they thought they were doing the
right thing, this is called an intentional error. Here, if the nurses thought 28.8 was
the right rate, then not dividing by 24 would have been an intentional error. Had they
thought 28.8 was a daily rate and therefore that they needed to divide by 24, but they
made an error and didn’t divide by 24, then that would be a slip. In other words, the
same error and outcome have different formal descriptions, depending on what the
people were intending.

I don’t like the term intentional error. In healthcare, it’s a dangerous term: nobody
intends to make an error. The term makes it sound like that making the error was
intentional! The nurses didn’t intend to make any errors; they intended to do the right
thing, but what they did happened to be an error, whether they thought they were
doing the right thing, whether it was a slip, or had some other cause.

49. Page 52. The app is open source and written in HTML5, so you can see how it works
if you want to. A description of the app and its motivation is available at: Harold
Thimbleby, “Ignorance of Interaction Programming is Killing People,” ACM
Interactions, 52–57, September+October 2008. DOI: 10.1145/1390085.1390098

50. Page 53. Over the years I’ve written a lot about calculators: see note 47 for some of my
papers. A paper on the design and analysis of a calculator (as a simple finite state
machine) is: Harold Thimbleby, “Contributing to Safety and Due Diligence in
Safety-critical Interactive Systems Development,” Proceedings ACM SIGCHI
Symposium on Engineering Interactive Computing Systems — EICS’09, 221–230,
ACM, 2009. DOI: 10.1145/1570433.1570474

51. Pages 53, 497. Harold Thimbleby and Paul Cairns, “Reducing number entry errors:
solving a widespread, serious problem,” Journal of the Royal Society Interface,
7:1429–1439, 2010. DOI: 10.1098/rsif.2010.0112

52. Page 55. Abbott Laboratories, ABBOTT aim plus, System Operating Manual, List
13967-04 (Rev 2/96), 1996.

53. Page 55. Institute for Safe Medication Practices (ISMP), List of Error-Prone
Abbreviations, 2017.
www.ismp.org/recommendations/error-prone-abbreviations-list

54. Page 56. ISMP Canada, “Death Associated with an IV Compounding Error and
Management of Care in a Naturopathic Centre,” ISMP Canada Safety Bulletin, 18(1),
4 January 2018.

Other examples include Gary Bradshaw, who died after handwriting a lab
technician misread calcium as cancer: George Greenwood, “Lost notes and illegible
records risking lives of NHS patients,” The Times, 16, 2 October 2019.

55. Pages 57, 182, 190, 285, 383, 385, 409, 478. Everybody should know about
“interactive numerals,” whether you use numerical systems (nurses do all
the time) or you are a programmer of digital healthcare systems. Harold
Thimbleby and Paul Cairns, “Interactive numerals,” Royal Society Open
Science, 4:160903, 2017. DOI: 10.1098/rsos.160903

http://www.ismp-canada.org/download/reports/FluorouracilIncidentMay2007.pdf
http://www.doi.org/10.1006/ijhc.1999.0341
http://www.doi.org/10.1006/ijhc.1999.0341
http://www.doi.org/10.1145/1005361.1005364
http://www.doi.org/10.1145/1005361.1005364
http://www.doi.org/10.1145/1390085.1390098
http://www.doi.org/10.1145/1570433.1570474
http://www.doi.org/10.1098/rsif.2010.0112
http://www.ismp.org/recommendations/error-prone-abbreviations-list
http://www.doi.org/10.1098/rsos.160903

504 | CHAPTER 34

56. Page 58. The quotation in the text uses my emphasis for “took an exceptional step.”
The original source is: ISMP, “Fluorouracil Error Ends Tragically, But Application of
Lessons Learned Will Save Lives,” 20 September 2007. www.ismp.org/resources/
fluorouracil-error-ends-tragically-application-lessons-learned-will-save-lives

A short follow-up report has a good summary of the recommendations: ISMP
Canada, “Fluorouracil incident RCA: follow-up,” ISMP Canada Safety Bulletin,
7(4):1–4, 2007. www.ismp-canada.org/download/safetyBulletins/ISMPCSB2007-
04Fluorouracil.pdf

An alternative source is Matthew Grissinger, “Fluorouracil Mistake Ends With a
Fatality Applying the Lessons Learned Can Save Lives,” Pharmacy & Therapeutics,
36(6):313–314, 2011. DOI: 10.1007/s10389-020-01371-3

6 Swiss Cheese
57. Page 62. More details of the Swiss Cheese Model are in Good reading,c as well as in

this paper: Yunqui (Karen) Li and Harold Thimbleby, “Hot Cheese: A Processed Swiss
Cheese Model,” Journal of the Royal College of Physicians Edinburgh,
44(2):116–121, 2014. DOI: 10.4997/JRCPE.2014.205

58. Page 63. Here’s a systematic review of double checking: Alain K. Koyama,
Claire-Sophie Sheridan Maddox, Ling Li, Tracey Bucknall, and Johanna I. Westbrook,
“Effectiveness of double checking to reduce medication administration errors: A
systematic review,” BMJ Quality & Safety, 2019.

59. Page 63. The story is taken from Medical Malpractice Lawyers.com, “Pharmacy Error
Was The Cause Of Chicago Infant’s Death,” 15 April 2012.
www.medicalmalpracticelawyers.com/blog/pharmacy-error-was-the-cause-of-
chicago-infants-death

Some more details, including a video, can be found here: Alex Perez, “Couple Says
Park Ridge Hospital Killed Their Baby,” NBC 5 Chicago, 5 April 2011. www.
nbcchicago.com/news/health/genesis-burkett-malpractice-suit-119272599.html

60. Page 64. This book promotes SPARK Ada as a powerful, flexible, and dependable
language for all healthcare applications. Many readers will question this — there are
many alternatives — but please remember that this book is not a programming course,
and there isn’t the space to present and discuss lots of alternatives, so I focused on one
or two.

While readers may have their own preferred programming language preferences —
C++, Eiffel, Erlang, Go, Haskell, Kotlin, ML, Rust, Scala, Swift, to name but a few —
the point of this book is not preferences as such, but dependability in the complex
environment of healthcare. Do the programming languages you like and would
promote make the programs you write more reliable? Easier to analyze? Easier to
maintain? Easier to document? Easier to get qualified professional support? What
you are good at and like isn’t necessarily what is good, unfortunately — and that’s
surely true of my own ideas too. Keep thinking, when I use Ada as a recurring
example: how does your favorite language compare?

The index entries “Programming language” and “Programming tools” are pointers
to the programming language discussions to be found in this book.

61. Page 65. Cliff Kuang with Robert Fabricant, USER FRIENDLY: How the Hidden Rules
of Design Are Changing the Way We Live, Work, and Play, Penguin (WH Allen),
2019.

62. Page 65. Brian MacKenna, Seb Bacon, Alex J. Walker, Helen J. Curtis, Richard Croker,
and Ben Goldacre, “Impact Of Electronic Health Record Interface Design On Unsafe
Prescribing Of Ciclosporin, Tacrolimus and Diltiazem: A Cohort Study In English NHS

c See Chapter 33: James Reason’s Human Error book, page 474←

http://www.ismp.org/resources/fluorouracil-error-ends-tragically-application-lessons-learned-will-save-lives
http://www.ismp.org/resources/fluorouracil-error-ends-tragically-application-lessons-learned-will-save-lives
http://www.ismp-canada.org/download/safetyBulletins/ISMPCSB2007-04Fluorouracil.pdf
http://www.ismp-canada.org/download/safetyBulletins/ISMPCSB2007-04Fluorouracil.pdf
http://www.doi.org/10.1007/s10389-020-01371-3
http://www.doi.org/10.4997/JRCPE.2014.205
http://www.medicalmalpracticelawyers.com/blog/pharmacy-error-was-the-cause-of-chicago-infants-death
http://www.medicalmalpracticelawyers.com/blog/pharmacy-error-was-the-cause-of-chicago-infants-death
http://www.nbcchicago.com/news/health/genesis-burkett-malpractice-suit-119272599.html
http://www.nbcchicago.com/news/health/genesis-burkett-malpractice-suit-119272599.html

NOTES | 505

Primary Care,” Journal of Medical Internet Research, in press, 2019.
preprints.jmir.org/preprint/17003

7 Victims and second victims
63. Page 69. Arthur M. Johnston, Unintended overexposure of patient Lisa Norris during

radiotherapy treatment at the Beatson Oncology Centre, Glasgow in January 2006,
Scottish Executive, 2006. The URL for The Beatson West of Scotland Cancer Centre
is www.beatsoncancercharity.org/about-us/the-beatson-west-of-scotland-cancer-
centre

64. Page 71. Richard I. Cook, Christopher P. Nemeth, and Sidney Dekker, “What went
wrong at the Beatson Oncology Centre?” edited by Christopher P. Nemeth and Erik
Hollnagel, Resilience Engineering Perspectives, 1: Remaining Sensitive to the
Possibility of Failure:225–236, Ashgate Publishing, 2008.

65. Page 71. Daily Mail Reporter (anonymous), “Mother-of-four dies after blundering
nurse administers TEN times drug overdose,” Daily Mail, 23 February 2011.
www.dailymail.co.uk/health/article-1359778/Mother-dies-nurse-administers-
TEN-times-prescribed-drug.html

66. Page 74. Details of the beam calculation came from Investigation on an accidental
exposure of radiotherapy patients in Panama. Report of a Team of Experts, 26 May–1
June 2001, International Atomic Energy Agency. For a nice article on problems with
software quality, including a good analysis of the Panama incident, see: D. Cage and J.
McCormick, “We did nothing wrong: Why software quality matters,” Baseline, 2004.
www.baselinemag.com/c/a/Projects-Processes/We-Did-Nothing-Wrong

67. Pages 74, 177, 561. Albert Wu, “Medical error: The second victim,” BMJ,
320:726–727, 2000. DOI: 10.1136/bmj.320.7237.726

68. Page 74. Cobalt 60, 60Co, is a radioisotope that emits gamma rays. Cobalt 60 has a
half-life of five years, and therefore requires frequent replacement: the short half-life,
and the problems of managing the radioactive waste, is one reason why cobalt
machines are being replaced by linear accelerators.

69. Page 79. Nancy Leveson and Clark Turner’s famous article about the
Therac-25 should be required reading for anybody using, buying, designing
or manufacturing radiotherapy systems, or indeed any critical digital
healthcare systems. This is the classic paper all programmers should read:
Nancy G. Leveson and Clark S. Turner, “An Investigation of the Therac-25
Accidents,” IEEE Computer, 26(7):18–41, 1993. DOI:
10.1109/MC.1993.274940

If you can’t easily get hold of their paper, Nancy Leveson’s book,
Safeware: System Safety and Computers (Addison-Wesley, 1995) is fantastic
and has a full description of the Therac-25 problems.

70. Page 79. Nancy G. Leveson, “The Therac-25: 30 Years Later,” IEEE Computer,
50(11):8–11, November 2017. DOI: 10.1109/MC.2017.4041349

8 Side effects and scandals
71. Page 81. Sunday Times Insight Team, Suffer the Children: The Story of Thalidomide,

Viking Press, 1979.
72. Page 82. Thalidomide Society, Thalidomide FAQs,

www.thalidomidesociety.org/what-is-thalidomide, 2017; see also The Guardian
article, “Thalidomide: how men who blighted lives of thousands evaded justice,” by
Harold Evans, www.theguardian.com/society/2014/nov/14/-sp-thalidomide-pill-
how-evaded-justice, 2014.

http://preprints.jmir.org/preprint/17003
http://www.beatsoncancercharity.org/about-us/the-beatson-west-of-scotland-cancer-centre
http://www.beatsoncancercharity.org/about-us/the-beatson-west-of-scotland-cancer-centre
http://www.dailymail.co.uk/health/article-1359778/Mother-dies-nurse-administers-TEN-times-prescribed-drug.html
http://www.dailymail.co.uk/health/article-1359778/Mother-dies-nurse-administers-TEN-times-prescribed-drug.html
http://www.baselinemag.com/c/a/Projects-Processes/We-Did-Nothing-Wrong
http://www.doi.org/10.1136/bmj.320.7237.726
http://www.doi.org/10.1109/MC.1993.274940
http://www.doi.org/10.1109/MC.1993.274940
http://www.doi.org/10.1109/MC.2017.4041349
http://www.thalidomidesociety.org/what-is-thalidomide
http://www.theguardian.com/society/2014/nov/14/-sp-thalidomide-pill-how-evaded-justice
http://www.theguardian.com/society/2014/nov/14/-sp-thalidomide-pill-how-evaded-justice

506 | CHAPTER 34

73. Page 82. James Badcock, “Spain’s forgotten Thalidomide victims see glimmer of
hope,” www.bbc.com/news/world-38386021, 2016.

74. Page 83. Morton Mintz, “Heroine of FDA Keeps Bad Drug Off of Market,” The
Washington Post, 15 July 1962.

75. Page 84. In 2019, Gosport War Memorial Hospital’s website has since disappeared;
Wikipedia has an entry that should be up-to-date:
en.wikipedia.org/wiki/Gosport_War_Memorial_Hospital

76. Page 84. The Right Reverend James Jones, Gosport War Memorial Hospital The
Report of the Gosport Independent Panel, Her Majesty’s Stationery Office, 2018.
www.gosportpanel.independent.gov.uk

77. Page 85. Nick Carding, “ ‘Disregard for human life’ — 450 patients killed by
painkillers at hospital, report says,” Health Service Journal, 20 June 2018.
www.hsj.co.uk/patient-safety/disregard-for-human-life-450-patients-killed-by-
painkillers-at-hospital-report-says/7022705.article

There are huge ongoing criminal investigations into the Gosport tragedy. See:
Clare Dyer, “Gosport: new criminal investigation is launched into hundreds of deaths
at hospital,” BMJ, 365:I1991, 2019. DOI: 10.1136/bmj.l1991 and “Gosport hospital
deaths: Inquiry reviews 15,000 death certificates,” BBC, 15 March 2021,
www.bbc.co.uk/news/uk-england-hampshire-56404256

78. Page 85. Note that I have no idea why Anne Grigg-Booth committed suicide — she
was certainly under pressure and would have felt in the focus of blame. She may have
committed suicide for many reasons; perhaps because she felt she was going to be
exposed as guilty, or because of the pressure, which there certainly was on her.

See Paul Stokes and Nigel Bunyan, “Nurse’s suicide leaves mystery of how many
patients died at her hands,” The Telegraph, 31 Aug 2005.
www.telegraph.co.uk/news/uknews/1497300/Nurses-suicide-leaves-mystery-of-
how-many-patients-died-at-her-hands.html

Grigg-Booth denied responsibility for any deaths, but relatives of the patients are
relieved she died. As one said, “Why anyone would do such an evil and pointless thing
is beyond me.” Of course, that depends on whether she did. Is she a scapegoat? Did
she feel remorse? Both? In any case, as a nurse she was presumably following orders.
Indeed, much of the debate about this sorry case has been about whether the patients
should have been prescribed opiates at all, as most were not in pain or terminally ill.

It would be helpful for everyone to have an investigation, with full awareness of
digital risk, and determine whether the Graseby syringe driver played a significant part,
rather than automatically blaming the nurse at the sharp-end.

79. Page 86. There’s a good programming rule: if you can use a FSM, you should
use a FSM. They are fast, efficient, easy to program, and — useful for
safety-critical applications — they are easy to analyze to check they do what
you want and have whatever properties you require. My book Press On:
Principles of Interaction Programming (MIT Press) explains how using FSMs
can help design high-quality user interfaces.

80. Page 88. National Patient Safety Agency, Rapid Response Report
NPSA/2010/RRR019: Safer ambulatory syringe drivers, 2010.

81. Page 88. The National Patient Safety Agency says milliliters is abbreviated as ml, but
best practice is to abbreviate it as mL, to reduce the chance of confusing the letter l as
the digit 1.

82. Page 89. Victoria Ward, “Gosport inquiry panel accused of ‘NHS cover up’ over faulty
syringe drivers,” The Telegraph, www.telegraph.co.uk/news/2018/06/23/gosport-
inquiry-panel-accused-nhs-cover-faulty-syringe-drivers

83. Page 89. “UK’s unsafe syringes found their way to Indian hospitals: Report,” The
Times of India, 8 July 2018. timesofindia.indiatimes.com/india/uks-unsafe-
syringes-found-their-way-to-indian-hospitals-report/articleshow/64907985.cms

84. Page 89. www.apple.com/uk/shop/trade-in (accessed 2019).

http://en.wikipedia.org/wiki/Gosport_War_Memorial_Hospital
http://www.gosportpanel.independent.gov.uk
http://www.hsj.co.uk/patient-safety/disregard-for-human-life-450-patients-killed-by-painkillers-at-hospital-report-says/7022705.article
http://www.hsj.co.uk/patient-safety/disregard-for-human-life-450-patients-killed-by-painkillers-at-hospital-report-says/7022705.article
http://www.doi.org/10.1136/bmj.l1991
http://www.bbc.co.uk/news/uk-england-hampshire-56404256
http://www.telegraph.co.uk/news/uknews/1497300/Nurses-suicide-leaves-mystery-of-how-many-patients-died-at-her-hands.html
http://www.telegraph.co.uk/news/uknews/1497300/Nurses-suicide-leaves-mystery-of-how-many-patients-died-at-her-hands.html
https://mitpress.mit.edu/books/press
https://mitpress.mit.edu/books/press
http://www.telegraph.co.uk/news/2018/06/23/gosport-inquiry-panel-accused-nhs-cover-faulty-syringe-drivers
http://www.telegraph.co.uk/news/2018/06/23/gosport-inquiry-panel-accused-nhs-cover-faulty-syringe-drivers
http://timesofindia.indiatimes.com/india/uks-unsafe-syringes-found-their-way-to-indian-hospitals-report/articleshow/64907985.cms
http://timesofindia.indiatimes.com/india/uks-unsafe-syringes-found-their-way-to-indian-hospitals-report/articleshow/64907985.cms
http://www.apple.com/uk/shop/trade-in

NOTES | 507

85. Pages 90, 149, 477. The Principle of Dual Effect goes back to Thomas Aquinas,
Summa Theologica, 1265–1274. A brief and very powerful discussion can be found
in the page-turner by Rana Awdish, In Shock: How Nearly Dying Made Me a Better
Intensive Care Doctor, Penguin, 2017.

In Shock is a stunning and very human book documents some tragic healthcare
suicides, where healthcare staff feel inadequate against the perfection standards they
had been pressurized to live by.

86. Page 90. Graseby MS-16A advert by auctiontraderrsuk, who are no longer active.
87. Pages 93, 98, 134, 489, 557. The official report is Angela Hopkins, Commissioned

Review, June to September 2016. Review of the Blood Glucometry Investigations in
Abertawe Bro Morgannwg University Health Board. Establishing lessons learned.
Abertawe Bro Morgannwg University Health Board, Wales, 2016.

I’ve written a peer-reviewed paper about my own work as an expert witness in the
case: Harold Thimbleby, “Misunderstanding IT: Hospital cybersecurity and IT
problems reach the courts,” Digital Evidence and Electronic Signature Law Review,
15:11–32, 2018. DOI: 10.14296/deeslr.v15i0.4891

In addition, the Judge has published his ruling on the case: R v Cahill; R v Pugh 14
October 2014, Crown Court at Cardiff, T20141094 and T20141061 before HHJ
Crowther QC, Digital Evidence and Electronic Signature Law Review, 14:67–71,
2017. DOI: 10.14296/deeslr.v14i0.2541

The Princess of Wales Hospital at the time of the incident was in the Abertawe Bro
Morgannwg University Health Board, which was renamed Swansea Bay University
Health Board in 2019, but in the revision, the Princess of Wales Hospital was taken
over by Cwm Taf University Health Board. Ironically for a book on digital health, their
respective websites are not all correctly updated — which isn’t helped by their helpful
archived websites, which Google also finds, that predate the renamings and mergers.

88. Page 93. In the UK, expert witnesses work for the court, rather than for the defense or
prosecution. An expert witness’s job is to find out and tell the truth within their area of
expertise. In the case described here, I was briefed by and worked closely with the
defense team, since only they thought there was something wrong with the evidence.

89. Page 93. Reliable databases usually have auditing, so you know what operations have
been performed on them. Or databases have checksums and other integrity checks, so
you can tell if there’s been any corruption. PrecisionWeb had absolutely nothing to
audit, stop, detect, or recover from errors.

90. Page 96. XceedPro Good Design Award,
www.g-mark.org/award/describe/36688/?locale=en

91. Page 96. Once the court found that the data used as evidence was rubbish, the case
collapsed and the court didn’t need to work out why the glucometer data was rubbish. I
suspect it was corrupt long before Abbott was called in to fix it. I suspect that the
Princess of Wales Hospital had all but ignored the state of the data in the
PrecisionWeb database until the police asked for it. I read the hospital’s extensive
written evidence to the court on how they managed the database, and it showed
considerable technical naïvety about managing clinical databases — but, of course,
because of that very naïvety it didn’t discuss what it didn’t know!

92. Page 97. Incident and device reporting systems — in the US the FDA’s MAUDE, and
in the UK the MHRA’s NRLS.

93. Page 97. Baystate Health System acknowledged their problems (rather than taking
their nurses to court) and were able to improve their processes and managed to reduce
the errors to just 3 per month — a twenty times improvement. See: Gaurav Alreja,
Namrate Setia, James Nichols, and Liron Pantanowitz, “Reducing patient identification
errors related to glucose point-of-care testing,” Journal of Pathology Informatics, 2:22,
2011. DOI: 10.4103/2153-3539.80718 available at
www.ncbi.nlm.nih.gov/pubmed/21633490

http://www.doi.org/10.14296/deeslr.v15i0.4891
http://www.doi.org/10.14296/deeslr.v14i0.2541
http://www.g-mark.org/award/describe/36688/?locale=en
http://www.doi.org/10.4103/2153-3539.80718
http://www.ncbi.nlm.nih.gov/pubmed/21633490

508 | CHAPTER 34

94. Page 97. I’ve just reported a bug to the UK’s postal service, the Royal Mail. They
replied to me, and asked me to provide a screenshot, a link to the URL (there’s only
one, so they should know what it is!), the browser I used, its version number, and a
description of the device I was using. None of that is my job, and I still can’t use their
system!

95. Pages 97, 156, 171, 246, 532. Harold Thimbleby, “Three laws of paperlessness,”
Digital Health, 5:1–16, 2019. DOI: 10.1177/2055207619827722

96. Page 98. PrecisionWeb Point of Care Data Management System User’s Manual, QC
Manager 3.0, page 1–1, Abbott Diabetes Inc, ART12275 Rev.B04/09, 2009.

97. Pages 99, 100. One person’s case in the Horizon scandal is discussed in detail in Paul
Marshall, “The harm that judges do — misunderstanding computer evidence: Mr
Castleton’s story. An affront to the public conscience,” Digital Evidence and Electronic
Signature Law Review, 17, 2020. DOI: 10.14296/deeslr.v17i0.5172

98. Pages 100, 101 twice, 103, 482. The profound nature of the legal problems is
discussed in Peter B. Ladkin, Bev Littlewood, Harold Thimbleby, and Martyn Thomas,
“The Law Commission presumption concerning the dependability of computer
evidence,” Digital Evidence and Electronic Signature Law Review, 17, 2020. DOI:
10.14296/deeslr.v17i0.5143

99. Pages 100, 105. Stephen Mason, “Electronic evidence: A proposal to reform the
presumption of reliability and hearsay,” Computer Law & Security Review,
30(1):80–84, 2014. DOI: 10.1016/j.clsr.2013.12.005

Stephen has also edited the the reference book on digital evidence.d

100. Page 100. Chris Baynes, “Hundreds of Post Office workers ‘vindicated’ by High Court
ruling over faulty IT system that left them bankrupt and in prison,” The Independent,
17 December 2019. www.independent.co.uk/news/business/news/post-office-
high-court-case-it-horizon-postmaster-prison-latest-a9249431.html

See www.bbc.co.uk/news/video_and_audio/must_see/51120545/post-office-
assisting-review-of-postmasters-convictions for a powerful video summary, and
Stephen Mason, “Case Transcript: England & Wales – Regina v Seema Misra,
T20090070 – Commentary and Index to the transcript by Stephen Mason,” Digital
Evidence and Electronic Signature Law Review, 12, 2015. DOI:
10.14296/deeslr.v12i0.2217 for an overview of the cases.

More recent details are here: Jonathan Ames and Andrew Ellson, “Call to prosecute
bosses after postmasters cleared,” and “Bankruptcy, imprisonment and suicide on the
long journey to justice,” The Times, (73454):10–12, 24 April 2021. www.thetimes.
co.uk/article/postmasters-convictions-quashed-by-court-of-appeal-50pn7qm8v

101. Page 100. Horizon was originally developed by ICL, but ICL was taken over by Fujitsu
in 2002.

102. Page 102. The Abbott XceedPro has many internal checks, but from the Princess of
Wales Hospital case, it seems that there are very few if any checks on data reliability
once patient data has left the device.

103. Page 103. The survey only looked at Picture Archiving and Communication Systems
(PACS) using the Digital Imaging and Communications in Medicine (DICOM)
protocol. Greenbone Networks GmbH, Information Security Report: Confidential
patient data freely accessible on the internet, 2019. www.greenbone.net

104. Page 103. Ross Koppel and Craig Kuziemsky, “Healthcare Data Are Remarkably
Vulnerable to Hacking: Connected Healthcare Delivery Increases the Risks,” Studies
in Health Technology and Informatics, 257:218–222, IOS Press, 2019.

105. Page 106 twice. Rachel Krause, “Skill Mapping: A Digital Template for Remote
Teams,” 4 October 2020. www.nngroup.com/articles/skill-mapping— this helpful
reference explains how to use skill maps and also provides a skill map template.

d See Chapter 33: Electronic Evidence, page 482←

http://www.doi.org/10.1177/2055207619827722
http://www.doi.org/10.14296/deeslr.v17i0.5172
http://www.doi.org/10.14296/deeslr.v17i0.5143
http://www.doi.org/10.14296/deeslr.v17i0.5143
http://www.doi.org/10.1016/j.clsr.2013.12.005
http://www.independent.co.uk/news/business/news/post-office-high-court-case-it-horizon-postmaster-prison-latest-a9249431.html
http://www.independent.co.uk/news/business/news/post-office-high-court-case-it-horizon-postmaster-prison-latest-a9249431.html
http://www.bbc.co.uk/news/video_and_audio/must_see/51120545/post-office-assisting-review-of-postmasters-convictions
http://www.bbc.co.uk/news/video_and_audio/must_see/51120545/post-office-assisting-review-of-postmasters-convictions
http://www.doi.org/10.14296/deeslr.v12i0.2217
http://www.doi.org/10.14296/deeslr.v12i0.2217
http://www.thetimes.co.uk/article/postmasters-convictions-quashed-by-court-of-appeal-50pn7qm8v
http://www.thetimes.co.uk/article/postmasters-convictions-quashed-by-court-of-appeal-50pn7qm8v
http://www.greenbone.net
http://www.nngroup.com/articles/skill-mapping

NOTES | 509

9 The scale of the problem
106. Pages 109, 112, 243. Florence Nightingale’s comment quoted at the beginning of the

chapter — “The very first requirement in a hospital is that it should do the sick no
harm” — comes from the preface of her Notes on Hospitals (Longman, Green,
Longman, Roberts, and Green, 1863). This is clearly reminiscent of the famous
Hippocratic Oath, “First do no harm.” The problem is that this quote is usually sourced
back to a Latin phrase, primum non nocere, but the big problem with that is
Hippocrates was Greek, and he didn’t speak Latin. The closest you can get to it is in
his Epidemics, where he says (in Greek, obviously), “make a habit of two things — to
help, or at least to do no harm.” See more about Hippocrates in note 1.

The interesting story is reviewed nicely in: Cedric M. Smith, “Origin and Uses of
Primum Non Nocere — Above All, Do No Harm!” The Journal of Clinical
Pharmacology, 45(4):371–377, 2005. DOI: 10.1177/0091270004273680

107. Page 111. World Health Organization, Family of International Classifications, 2019.
www.who.int/classifications/en

108. Page 111. US Centers for Disease Control and Prevention (CDC), New ICD-10-CM
code for the 2019 Novel Coronavirus (COVID-19), 1 April 2020. www.cdc.gov/
nchs/data/icd/Announcement-New-ICD-code-for-coronavirus-3-18-2020.pdf

109. Page 112. Christina Jewett, “Hidden FDA Reports Detail Harm Caused By Scores Of
Medical Devices,” Kaiser Health News, 2019.
khn.org/news/hidden-fda-database-medical-device-injuries-malfunctions

110. Pages 113 twice, 476. I’ve combined 2013 US Centers for Disease Control and
Prevention (CDC) causes of death data with estimates of patient harm from a 2013
paper by John T. James, “A new, evidence-based estimate of patient harms associated
with hospital care,” Journal of Patient Safety, 9(3):122–128, 2013. DOI:
10.1097/PTS.0b013e3182948a69

James’s methodology looked at hospital patient records, and if the patient records
themselves were wrong thanks to (for instance) diagnostic errors, then this would not
have been detected from the records alone. Estimates of fatalities in healthcare more
generally — including primary care, pharmacies, dentists, nursing homes — would of
course make the figures even higher.

To draw the bar chart, I took the CDC fatality data, which ignores errors, and
reduced each category by James’s 16.9% (otherwise the preventable error bar would
have been double-counting deaths classified under disease causes). However, I did not
reduce suicides, as that category is not going to be much affected by preventable error.

There have been studies sampling particular areas, such as infusions. See, for
instance, the Eclipse project, www.eclipse.ac.uk

111. Page 113. Lucian Leape’s 1994 paper is a real classic on medical error. Lucian
L. Leape, “Error in Medicine,” Journal of the American Medical Association,
272(23):1851–1857, 1994.

112. Page 114. Facts taken from: World Health Organization, Patient Safety Fact File,
2019, 10 facts on patient safety, 2018, and Patient Safety: Making Health Care Safer,
2017. www.who.int

113. Page 114. The air travel comparison is complicated. Many patients are very ill when
they are admitted to hospital, and if you are very ill you are unlikely to go flying off on
a trip from London to Brazil. So hospitals are going to have more deaths than aviation.
However, the figures above were for preventable deaths, that is deaths that should not
have happened in hospitals. Even if hospitals improved their safety by a factor of a
thousand, they would still have a way to go to catch up with aviation safety.

Airlines just have to get passengers and their baggage safely from A to B. Airline
passengers are generally pretty well, whereas hospital patients start off being ill.
Patients generally have all sorts of problems, lots of data (blood groups, drugs they are
on, and more), and their blood pressure, heart rate, and other vital factors keep

http://www.doi.org/10.1177/0091270004273680
http://www.who.int/classifications/en
http://www.cdc.gov/nchs/data/icd/Announcement-New-ICD-code-for-coronavirus-3-18-2020.pdf
http://www.cdc.gov/nchs/data/icd/Announcement-New-ICD-code-for-coronavirus-3-18-2020.pdf
http://khn.org/news/hidden-fda-database-medical-device-injuries-malfunctions
http://www.doi.org/10.1097/PTS.0b013e3182948a69
http://www.doi.org/10.1097/PTS.0b013e3182948a69
http://www.eclipse.ac.uk
http://www.who.int

510 | CHAPTER 34

changing. But just because patients are more complicated than plane passengers
doesn’t mean we should dismiss the aviation comparison! Hospitals have far more
specialist staff and far more diagnostic equipment, and they need to have much better
computer systems to keep track of everything.

Arguably, the biggest single difference between a hospital incident and a plane
crash is the media coverage. When airplanes have problems, it’s all over the news.
When people die in hospital, for whatever reason, it’s a private grief that very rarely
gets reported. Only exceptional problems in hospitals reach the news, and the stories
are usually about blaming doctors and nurses.

114. Page 114. A lot of people argue that the high preventable error estimates are wrong.
Surely it’s implausible to have that huge a number of preventable errors? The

numbers cited in this book (figure 9.1) are US numbers, and the US is different from
other countries, so, arguably, the numbers are irrelevant for any other country, aren’t
they?

There is much discussion in the literature, including: Kaveh G. Shojania and Mary
Dixon-Woods, “Estimating deaths due to medical error: the ongoing controversy and
why it matters,” BMJ Quality & Safety, 26:423–428, 2017. DOI:
10.1136/bmjqs-2016-006144

A more recent systematic review and meta-analysis is Maria Panagioti, Kanza
Khan, Richard N. Keers, Aseel Abuzour, Denham Phipps, Evangelos Kontopantelis,
Peter Bower, Stephen Campbell, Razaan Haneef, Anthony J. Avery, and Darren M.
Ashcroft, “Prevalence, severity, and nature of preventable patient harm across medical
care settings: systematic review and meta-analysis,” BMJ, 366:l4185, 2019. DOI:
10.1136/bmj.l4185

Other surveys have specifically explored the role of computers in error: Farah
Magrabi, Mei-Sing Ong, William Runciman, and Enrico Coiera, “An analysis of
computer-related patient safety incidents to inform the development of a
classification,” Journal of the American Medical Informatics Association,
17(6):663–670, 2010. DOI: 10.1136/jamia.2009.002444

For instance, they found 25% of medication errors were voluntarily reported as
computer related — however, their survey of a voluntary incident reporting database
used in one Australian state only found 0.2% of all reported incidents being
computer-related. It’s likely that the true figures are higher, since nobody in hospitals
is trained to spot computer bugs, let alone go to the trouble of reporting them.
Reporting bugs is tedious, as they usually have complicated symptoms, and by the time
anyone has noticed a bug has caused problems, they have probably already focused on
the workaround to get their job done. The details of the bug will be lost in history.

Finally, the simplest argument: estimated error numbers are higher than you
expect because more often than not errors happen because we don’t notice them
happening. If we noticed errors, we’d stop them happening as they happen. The
estimates are counting the extra errors we don’t notice, so the rates seem high to us.

115. Page 114. Harms being 20 times worse than 16.9% sounds like an impossibly large
estimate. No; 100% would be all the patients who die each year, but more people get
harmed each year than die each year, so the harm rate can easily be 20 times higher
than the death rate.

116. Page 115. Jessica Kim Cohen, “Physicians subpoenaed in Rhode Island, allegedly after
reporting EHR risks,” Becker’s Hospital Review, 25 January 2019.
www.beckershospitalreview.com/legal-regulatory-issues/physicians-
subpoenaed-in-rhode-island-allegedly-after-reporting-ehr-risks.html

117. Page 115. Chitra Acharya, Human-Computer Interaction and Patient Safety, PhD
Thesis, Swansea University, Wales, 2017.

118. Page 116. Samantha Poling, “Critical error: The Lisa Norris story,” BBC Frontline,
Scotland, 2007. news.bbc.co.uk/1/hi/scotland/6731117.stm

119. Pages 116, 556. Mark Davies, Paul Lee, Alan Chamberlain, and Harold Thimbleby,
“Managing Gravity Infusion using a Mobile Application,” Proceedings BCS

http://www.doi.org/10.1136/bmjqs-2016-006144
http://www.doi.org/10.1136/bmjqs-2016-006144
http://www.doi.org/10.1136/bmj.l4185
http://www.doi.org/10.1136/bmj.l4185
http://www.doi.org/10.1136/jamia.2009.002444
http://www.beckershospitalreview.com/legal-regulatory-issues/physicians-subpoenaed-in-rhode-island-allegedly-after-reporting-ehr-risks.html
http://www.beckershospitalreview.com/legal-regulatory-issues/physicians-subpoenaed-in-rhode-island-allegedly-after-reporting-ehr-risks.html
http://news.bbc.co.uk/1/hi/scotland/6731117.stm

NOTES | 511

Conference on Human-Computer Interaction, 299–304, British Computer Society,
2014. DOI: 10.14236/ewic/HCI2014.48

120. Page 117. Jackie van Dael, TomW. Reader, Alex Gillespie, Ana Luisa Neves, Ara
Darzi, and Erik K. Mayer, “Learning from complaints in healthcare: a realist review of
academic literature, policy evidence and front-line insights,” BMJ Quality & Safety,
epub ahead of print, 2020. DOI: 10.1136/bmjqs-2019-009704

121. Page 118. Here’s a three-minute video of Peter Thimbleby’s (my father’s) death and
what happened: www.harold.thimbleby.net/dad

10 Medical apps and bug blocking
122. Page 121. You can download the Mersey Burns app frommerseyburns.com
123. Page 122. I checked and wrote up the Mersey Burns examples in September 2020; I

was running the then most up-to-date iPhone version of Mersey Burns, version 1.6.4.
124. Page 123. Jamie Barnes, Annie Duffy, Nathan Hamnett, Jane McPhail, Chris Seaton,

Kayvan Shokrollahi, M. Ian James, Paul McArthur and Rowan Pritchard Jones, “The
Mersey Burns App: evolving a model of validation,” Emergency Medicine Journal,
32:637–641, 2015. DOI: 10.1136/emermed-2013-203416

125. Page 126. Robert M. Wachter, The Digital Doctor: Hope, Hype, and Harm at
the Dawn of Medicine’s Computer Age, McGraw-Hill, 2015.

126. Page 126. A single bed can produce 700 alarms in a day; and there is a very large
literature on alarm fatigue and the hazards for patient safety. Quick places to get into
the problems are Maria Cvach, “Monitor alarm fatigue: An integrative review,”
Biomedical Instrumentation & Technology, 46(4):268–77, 2012. DOI:
10.2345/0899-8205-46.4.268 or Keith Ruskin and Dirk Hueske-Kraus, “Alarm
fatigue: impacts on patient safety,” Current Opinion in Anaesthesiology,
28(6):685–690, 2015. DOI: 10.1097/ACO.0000000000000260

127. Page 126. Sue Sendelbach and Marjorie Funk, “Alarm Fatigue: A Patient Safety
Concern,” American Association of Critical-Care Nurses (AACCN) Advanced Critical
Care, 24(4):378–386, 2013. DOI: 10.1097/NCI.0b013e3182a903f9

128. Page 128. Chris Seaton, Mersey Burns, chrisseaton.com/merseyburns, 2018.
129. Page 129. For Wikipedia article on the Parkland formula, see

en.wikipedia.org/wiki/Parkland_formula
NICE, the UK National Institute for Health and Care Excellence, has a review of

Mersey Burns at “Mersey Burns for calculating fluid resuscitation volume when
managing burns,” March 2016. www.nice.org.uk/advice/mib58

The classic paper on the Parkland formula is: Charles R. Baxter and Tom Shires,
“Physiological response to crystalloid resuscitation of severe burns,” Annals New York
Academy of Science, 150:874–94, 1968. DOI:
10.1111/j.1749-6632.1968.tb14738.x

130. Page 129. There are some very nice ways to help humans calculate burn fluids reliably,
but that’s a different problem to getting apps bug-free. See David Williams and Ronald
Doerfler, “Graphic Aids for Calculation of Fluid Resuscitation Requirements in
Pediatric Burns,” Annals of Plastic Surgery, 69(3):260–264, 2012, DOI:
10.1097/SAP.0b013e3182586d4e

— though of course if you’re a burns patient, you’d far rather it was calculated
correctly regardless of how it was done.

131. Page 129. The Mersey Burns app needs to know how long ago the burn happened, so
the user can enter the time the burn happened (if they don’t do this, a bug means that
the previous patient’s time of burn will be used instead). However, the clinician may
enter an incorrect time, perhaps because the patient reported an incorrect burn time or
or simply because of a use error.

If the burn time is entered as up to 4 minutes ahead of the device’s (say an iPhone)

http://www.doi.org/10.14236/ewic/HCI2014.48
http://www.doi.org/10.1136/bmjqs-2019-009704
http://www.harold.thimbleby.net/dad
http://merseyburns.com
http://www.doi.org/10.1136/emermed-2013-203416
http://www.doi.org/10.2345/0899-8205-46.4.268
http://www.doi.org/10.2345/0899-8205-46.4.268
http://www.doi.org/10.1097/ACO.0000000000000260
http://www.doi.org/10.1097/NCI.0b013e3182a903f9
http://chrisseaton.com/merseyburns
http://en.wikipedia.org/wiki/Parkland_formula
http://www.nice.org.uk/advice/mib58
http://www.doi.org/10.1111/j.1749-6632.1968.tb14738.x
http://www.doi.org/10.1111/j.1749-6632.1968.tb14738.x
http://www.doi.org/10.1097/SAP.0b013e3182586d4e
http://www.doi.org/10.1097/SAP.0b013e3182586d4e

512 | CHAPTER 34

clock, the app simply takes the burn time as entered. However, if the time of burn is
entered as 5 minutes ahead of the iPhone, without warning, the app will take the burn
time to be 23 hours 55 minutes in the past.

The bug is that the app ignores time differences less than five minutes, which
seems reasonable, as the user might take the time from their wrist watch or a wall
clock, which could easily give a different time than the app’s more accurate clock.
Unfortunately, the app then makes a calculation error taking 5 minutes in the future to
be in the past. Its time difference calculation has apparently ignored the hours in a day:
if it is 8pm now, the app takes 8:04 to be 4 minutes ahead today, but it takes 8:05 as
yesterday, so it takes it as 23 hours 55 minutes earlier.

There are lots of solutions …
Solutions include that the user interface should validate the time entered correctly,

and guard the internal assumption that time differences less than five minutes can be
ignored.

Other cases in Mersey Burns of failing to validate user input occur in entering the
patient weight (weights up to 4.5 tons are permitted on the iPhone); on the HTML
version very large numbers can be entered, with so many digits, that they overflow the
input field. Then, displaying fewer digits than are actually used, a very large number
will look innocuous.

I pointed these and other bugs out to the app’s authors in discussions in 2013, but
these still remain. I am not particularly worried about these “extreme” bugs so much
as the likelihood that such bugs getting through the development process implies other
bugs will also have got through — and the other bugs may have greater practical
significance. When a canary dies in a coal mine, you don’t fix the canary, you fix the
coal mine.

132. Page 130. Dimitris Bertsimas, Jack Dunn, George C. Velmahos, and Haytham M. A.
Kaafarani, “Surgical Risk Is Not Linear: Derivation and Validation of a Novel,
User-friendly, and Machine-learning-based Predictive OpTimal Trees in Emergency
Surgery Risk (POTTER) Calculator,” Annals of Surgery, 268(4):574–583, 2018. DOI:
10.1097/SLA.0000000000002956

133. Page 133. The Ancient Egyptian pharaoh Rameses II was diagnosed with diffuse
idiopathic skeletal hyperostosis using computed tomography in 2014. Rameses II is
about 3,233 years old, so patients can legitimately have enormous ages! See Sahar N.
Saleem and Zahi Hawass, “Brief Report: Ankylosing Spondylitis or Diffuse Idiopathic
Skeletal Hyperostosis in Royal Egyptian Mummies of the 18th–20th Dynasties?
Computed Tomography and Archæology Studies,” Arthritis & Rheumatology,
66(12):3311–3316, 2014. DOI: 10.1002/art.38864

134. Page 133. Tallal Hussain, Ian Braithwaite, and Stephen Hancock, “Errors and
inaccuracies in internet medical calculator applications: an example using oxygenation
index,” Archives of Disease in Childhood, 2018. DOI:
10.1136/archdischild-2018-315323

If you want to try out some oxygenation index calculations, you can google
oxygenation calculations, or try this website: www.medcalc.com/oxygen.html

135. Page 134. Ben Shneiderman, The new ABCs of research, Oxford University Press,
2016.

136. Page 135. John Carreyrou, Bad Blood — Secrets and Lies in a Silicon Valley Startup,
Picador, 2018.

137. Page 135. Hannah Wisniewski, Gang Liu, Philip Henson, Aditya Vaidyam, Narissa
Karima Hajratalli, Jukka-Pekka Onnela, and John Torous, “Understanding the quality,
effectiveness and attributes of top-rated smartphone health apps,” Evidence Based
Mental Health, 22:4–9, 2019. DOI: 10.1136/ebmental-2018-300069

http://www.doi.org/10.1097/SLA.0000000000002956
http://www.doi.org/10.1097/SLA.0000000000002956
http://www.doi.org/10.1002/art.38864
http://www.doi.org/10.1136/archdischild-2018-315323
http://www.doi.org/10.1136/archdischild-2018-315323
http://www.medcalc.com/oxygen.html
http://www.doi.org/10.1136/ebmental-2018-300069

NOTES | 513

11 Cars are safer
138. Pages 140, 490. Ralph Nader, Unsafe at Any Speed: The Designed-in Dangers

of the American Automobile, Pocket Books, 1966.
139. Page 141. George A. Akerlof, Nobel Prize speech, 2001.

www.nobelprize.org/prizes/economic-sciences/2001/akerlof/article
140. Page 142. Jeanne Lenzer and ICIJ reporters, “Medical device industry: International

investigation exposes lax regulation,” BMJ, 363:k4997, 2018. DOI:
10.1136/bmj.k4997

12 Safety Two
141. Page 146. Sidney Dekker, Foundations of Safety Science: A Century of Understanding

Accidents and Disasters, CRC Press, 2019. This is an excellent textbook covering the
history of safety.

142. Page 146. An excellent website with lots of resources on civility is
www.civilitysaveslives.com

There is plenty of research on civility in healthcare, including the following:
Arieh Riskin, Amir Erez, Trevor A. Foulk, Amir Kugelman, Ayala Gover, Irit Shoris,

Kinneret S. Riskin, and Peter A. Bamberger, “The Impact of Rudeness on Medical
Team Performance: A Randomized Trial,” Pediatrics, 136(3):487–495, 2015. DOI:
10.1542/peds.2015-1385

Joy Longo, “Combating Disruptive Behaviors: Strategies to Promote a Healthy
Work Environment,” The Online Journal of Issues in Nursing, 15(1), 2010. ojin.
nursingworld.org/MainMenuCategories/ANAMarketplace/ANAPeriodicals/OJIN/
TableofContents/Vol152010/No1Jan2010/Combating-Disruptive-Behaviors.html

143. Page 147. What I call Safety One and Safety Two are usually called Safety I and Safety
II, that is using Roman numerals, but I think this can cause unnecessary problems, as I
(meaning me) and I (meaning the Roman numeral one) are readily confusable.
Moreover, Safety II can look like Safety 11 (thus confusing Roman two and Arabic
eleven) when written in some fonts.

The English words “One” and “Two” don’t have these problem, and since we are
all for improving safety, let’s make a good example out of our terminology.

144. Pages 148, 462. Liam Donaldson, “When will health care pass the orange-wire test?”
The Lancet, 364(9445):1567–1568, 2004. DOI:
10.1016/S0140-6736(04)17330-3

145. Page 149. Retractable Technologies Inc.,
www.retractable.com/Products#Injectiondevices

146. Page 149. Steven Shorrock, “Learning Teams, Learning from Communities,”
Humanistic Systems, 13 January 2019.
humanisticsystems.com/2019/01/13/learning-teams-learning-from-communities

13 Computational Thinking
147. Page 151. I stressed digital computer, as so far as I am aware, the first serious analog

computer was the Antikythera mechanism, built around 100BC. Prior to Babbage
there were of course various simple digital devices, such as Blaise Pascal’s calculator,
which Pascal made in 1645 when he was still a teenager, but these devices (like the
Antikythera mechanism) were not programmable.

148. Page 151 twice. Luigi Federico Menabrea, “Sketch of the analytical engine invented by
Charles Babbage, Esq,” Article XXIX, Scientific memoirs, translated into English with

http://www.nobelprize.org/prizes/economic-sciences/2001/akerlof/article
http://www.doi.org/10.1136/bmj.k4997
http://www.doi.org/10.1136/bmj.k4997
http://www.civilitysaveslives.com
http://www.doi.org/10.1542/peds.2015-1385
http://www.doi.org/10.1542/peds.2015-1385
http://ojin.nursingworld.org/MainMenuCategories/ANAMarketplace/ANAPeriodicals/OJIN/TableofContents/Vol152010/No1Jan2010/Combating-Disruptive-Behaviors.html
http://ojin.nursingworld.org/MainMenuCategories/ANAMarketplace/ANAPeriodicals/OJIN/TableofContents/Vol152010/No1Jan2010/Combating-Disruptive-Behaviors.html
http://ojin.nursingworld.org/MainMenuCategories/ANAMarketplace/ANAPeriodicals/OJIN/TableofContents/Vol152010/No1Jan2010/Combating-Disruptive-Behaviors.html
http://www.doi.org/10.1016/S0140-6736(04)17330-3
http://www.doi.org/10.1016/S0140-6736(04)17330-3
http://www.retractable.com/Products\#Injectiondevices
http://humanisticsystems.com/2019/01/13/learning-teams-learning-from-communities

514 | CHAPTER 34

notes by Ada King, Countess of Lovelace, daughter of Byron, 3:694, 1843. A facsimile
of the original can be found at
repository.ou.edu/uuid/6235e086-c11a-56f6-b50d-1b1f5aaa3f5e

149. Page 152. The story about building the replica Difference Engine will have you on the
edge of your seat: Doron Swade, The Difference Engine: Charles Babbage and the
Quest to Build the First Computer, Penguin, 2002.

150. Page 152. There’s a fascinating video of a wooden Turing Machine working:
www.youtube.com/watch?v=vo8izCKHiF0made by Richard J. Ridel in 2015. One of
the comments on the video is somebody who wants to hook up their hamster wheel so
their hamster could run it, thus getting close to proving that hamsters are Turing
Complete too.

151. Page 155. A great place to start is with Alan Turing’s own writings, and so I very
strongly recommend Charles Petzold, The Annotated Turing, Wiley Publishing Inc,
2008, which is a very readable tour through Turing’s ground-breaking work, along
with lots of fascinating and helpful explanations. Alternatively, why not relax and read
a gripping, well-told story about the real drama of building computers, like Tracy
Kidder’s Pulitzer Prize winning The Soul of a New Machine, Back Bay Books, 2000.
But if you want to follow up on the deep ideas stemming from Turing, the general
topic is called computability, and there is lots on it to read, though a lot of it is very
mathematical and quite hard work. The best advice is recursive: use a computer — a
search engine like Google — to help you find the sort of book or websites you want.

152. Page 155. And who bothers to prove that their ideas are computable? It turns out to be
very hard, unless your problem is very simple. Instead, we just hope that we’re asking
computers to do things that are possible, rather than nearly possible. Where they
aren’t quite possible, they’ll have to go wrong in some way.

153. Page 156. The early history of computing is quite controversial, as so many things
happened so fast. The legacy of World War II computers was kept secret until the
1970s, so most of the histories of computing are unaware of much earlier work, such
as the Colossus, which was already running in 1943 during the war.

Turing had a leading role in the wartime computing, and he went on to develop the
Automatic Computing Engine, the ACE, in 1945. The British Manchester Baby was
the first “fully modern computer” — however you define that — and was running in
1948. See en.wikipedia.org/wiki/Colossus_computer for more on this fascinating
story.

154. Page 157. www.historicsimulations.com/edsac.html
155. Page 157. There’s a good description of the story of Apollo 13 in the Wikipedia

description of the film at en.wikipedia.org/wiki/Apollo_13_(film)
156. Page 158. David Harel and Yishai Feldman, Algorithmics: The Spirit of Computing,

third edition, Addison-Wesley, 2004.
157. Page 158. Jeannette Wing has written a lot on Computational Thinking; this article is

probably her most accessible: Jeannette Marie Wing, “Computational Thinking,”
Communications of the ACM, 49(3):33–35, 2006. DOI:
10.1145/1118178.1118215

Also, do read this: Enrico Nardelli, “Do We Really Need Computational
Thinking?” Communications of the ACM, 62(2):32–35, 2019. DOI:
10.1145/3231587 It’s an article written over a decade later that provides (arguably!)
more mature ideas.

This book’s further reading chaptere suggests more things to read on
Computational Thinking.f

158. Page 158. “Without error” needs caveats. Maybe our program is calculating numbers
and we’d be happy with answers that are close enough. The answers may not be

e See Chapter 33: Good reading, page 471←
f See Chapter 33: Magic and Computational Thinking reading, page 484←

http://repository.ou.edu/uuid/6235e086-c11a-56f6-b50d-1b1f5aaa3f5e
http://www.youtube.com/watch?v=vo8izCKHiF0
http://en.wikipedia.org/wiki/Colossus_computer
http://www.historicsimulations.com/edsac.html
http://en.wikipedia.org/wiki/Apollo_13_(film)
http://www.doi.org/10.1145/1118178.1118215
http://www.doi.org/10.1145/1118178.1118215
http://www.doi.org/10.1145/3231587
http://www.doi.org/10.1145/3231587

NOTES | 515

exactly correct, but they are good enough for the purpose. So “error” doesn’t just mean
being wrong; it means being too wrong, for some numerical, statistical, or other
meaning of that.

159. Page 161. A good — and brief — introduction to reproducibility is Shannon Palus,
“Make Research Reproducible,” Scientific American, 319(4):48–51, 2018.

My own early foray into reproducibility was: Harold Thimbleby, “Give your
computer’s IQ a boost,” Journal of Machine Learning Research, Times Higher
Education Supplement, 9 May 2004.
www.timeshighereducation.co.uk/story.asp?sectioncode=26&storycode=176549

160. Page 161. Here’s one way to increase reproducibility in Computer Science: Harold
Thimbleby and David Williams, “A tool for publishing reproducible algorithms & A
reproducible, elegant algorithm for sequential experiments,” Science of Computer
Programming, 156:45–67, 2018. DOI: 10.1016/j.scico.2017.12.010

A recent article about the reproducibility crisis in digital healthcare is Enrico
Coiera, Elske Ammenwerth, Andrew Georgiou, and Farah Magrabi, “Does health
informatics have a replication crisis?” Journal of the American Medical Informatics
Association, 25(8):963–968, 2018. DOI: 10.1093/jamia/ocy028

161. Page 162. Sendhil Mullainathan, Scarcity: The True Cost of Not Having Enough,
Penguin, 2014.

162. Page 163. Claude E. Shannon, “Programming a Computer for Playing Chess,”
Philosophical Magazine, series 7, 41(314), 1950. This paper created the field of
computer chess, which in turn was one of the main drivers that developed AI — chess
is too hard for a computer to play well without using AI.

163. Page 163. If you have come across the term API, you’ve already heard something
aboutmodules. A module interacts with the rest of the world only through its API.
This eliminates the combinatorial explosion.

Parnas’s original paper is still a wonderful read, and should be on all programmers’
reading lists: David Lorge Parnas, “On the Criteria to Be Used in Decomposing
Systems into Modules,” Communications of the ACM, 15(12):1053–1058, 1972.
DOI: 10.1145/361598.361623

164. Page 163. Mersey Burns does include some internal double-checking to confirm that
its key calculations are correct. This is very good so far as it goes. However, Mersey
Burns has no checking to confirm whether what the user does is correctly interpreted
by the program. Are the numbers used in the calculation correct? Are the results
displayed correctly? And so on.

165. Pages 164, 377. C. A. R. Hoare, “The Emperor’s Old Clothes,” Communications of
the ACM, 24(2):75–83, 1981. DOI: 10.1145/358549.358561

166. Page 166. Melissa Cunningham, “He died alone after his medical test results were
faxed to wrong number,” The Age, 10 May 2018.
www.theage.com.au/national/victoria/he-died-alone-after-his-medical-test-
results-were-faxed-to-wrong-number-20180510-p4zeia.html

167. Page 166. Carl Macrae, “When no news is bad news: communication failures and the
hidden assumptions that threaten safety,” Journal of the Royal Society of Medicine,
111(1):5–7, 2018. DOI: 10.1177/0141076817738503

168. Page 168. Colin Runciman and Harold Thimbleby, “Equal Opportunity Interactive
Systems,” International Journal of Man-Machine Studies, 25(4):439–451, 1986.
DOI: 10.1016/S0020-7373(86)80070-0

169. Page 168. Here’s an old book, but it’s all the more readable for that: R. D. Tennent,
Principles of Programming Languages, Prentice Hall International Series in
Computing Science, 1981.

170. Page 169. We should log everything to understand errors, and other problems to
analyze how things are used — and to learn how to improve things. This seems so
obvious! Indeed, logging was clearly described way back in 1975 by Brian R. Gaines
and Peter V. Facey, “Some Experience in Interactive Systems Development and

http://www.timeshighereducation.co.uk/story.asp?sectioncode=26&storycode=176549
http://www.doi.org/10.1016/j.scico.2017.12.010
http://www.doi.org/10.1093/jamia/ocy028
http://www.doi.org/10.1145/361598.361623
http://www.doi.org/10.1145/358549.358561
http://www.theage.com.au/national/victoria/he-died-alone-after-his-medical-test-results-were-faxed-to-wrong-number-20180510-p4zeia.html
http://www.theage.com.au/national/victoria/he-died-alone-after-his-medical-test-results-were-faxed-to-wrong-number-20180510-p4zeia.html
http://www.doi.org/10.1177/0141076817738503
http://www.doi.org/10.1016/S0020-7373(86)80070-0

516 | CHAPTER 34

Application,” Proceedings IEEE, 63(6):894–911, 1975. DOI:
10.1109/PROC.1975.9854

171. Page 171. See the insightful foreword Don Knuth wrote for Marko Petkovsek, Herbert
S. Wilf, and Doron Zeilberger, A=B, A K Peters, 1996.

172. Page 172. Brett Kelman, “Vanderbilt ex-nurse indicted on reckless homicide charge
after deadly medication swap,” Nashville Tennessean, 6 February 2019.
eu.tennessean.com/story/news/health/2019/02/04/vanderbilt-nurse-reckless-
homicide-charge-vecuronium-versed-drug-error/2772648002

173. Page 173. Adolphe Quetelet (1796–1874) was a fascinating chap. He found that as
people grow, for most of their lives their weight is closely proportional to their height
squared. Hence his index, which divides one by the other, is therefore is a good
indicator of excess weight for age. It was about a century later that people started to
notice that his index was related to life expectancy, and hence led to calls to reduce
obesity, which could be measured by his index. See Garabed Eknoyan, “Adolphe
Quetelet (1796–1874) — the average man and indices of obesity,” Nephrology
Dialysis Transplantation, 23(1):47–51, 2008. DOI: 10.1093/ndt/gfm517

174. Page 173. Liam Thorp, “I was invited for a covid vaccine because the NHS thought I
was 6cm tall — Hilarious mix-up may have highlighted a potential issue with the
vaccine roll-out,” Liverpool Echo, 17 February 2021. www.liverpoolecho.co.uk/
news/liverpool-news/invited-covid-vaccine-because-nhs-19857990

175. Page 174. Institute for Safe Medication Practices, “Another Round of the Blame
Game: A Paralyzing Criminal Indictment that Recklessly ‘Overrides’ Just Culture,” 14
February 2019. www.ismp.org/resources/another-round-blame-game-paralyzing-
criminal-indictment-recklessly-overrides-just-culture

Here’s one insightful quote from that article: “[The criminal charges] may also
prompt organizations to inappropriately forbid any ADC overrides, inevitably leading
to unauthorized stashes of medications. The detrimental effects of criminal
prosecution on reporting, learning, culture, and safety strategies far outweigh its
negligible impact on improving individual performance.”

14 Risky calculations
176. Page 177. Carol M. Ostrom, “Nurse’s suicide follows tragedy,” The Seattle Times, 20

April 2011. www.seattletimes.com/seattle-news/nurses-suicide-follows-tragedy
177. Page 177. According to David Bundy, Elizabeth Mack, Sheila Scarbrough, and Danielle

Scheurer, “Building a Culture of Safety,”
www.scha.org/files/cultureofsafety\bunderline panel.pot\bunderline .pdf

178. Page 178. G. M. Souza, M. F. A. Jesus, M. V. S. Ferreira, V. P. Cataneli, and L. K. W.
Eller, “Dissemination of Methicillin-Resistant Staphylococcus aureus (MRSA) by
University Student’s Cell Phones,” ASMMicrobe 2019 Conference, 2019.
www.abstractsonline.com/pp8/##!/7859/presentation/15327 See media report:
Molly Walker, “Resistant Bacteria Abundant on Nursing Students’ Cell Phones Small
study raises possibility of nosocomial infections, transfer to patients,” MedPage Today,
22 June 2019. www.medpagetoday.com/meetingcoverage/asmmicrobe/80657

179. Page 178. Clare Gerada, “Preventing suicide in medical staff,” BMJ, 366:l5231, 2019.
DOI: 10.1136/bmj.l5231

180. Page 179. If the iPhone is used in landscape, the displayed number can be much
longer, so the population of the world will be handled correctly. The iPhone’s answer
to the problem will end up being right.

If the calculator is immediately turned from landscape into portrait after entering
the world’s population, it’ll be displayed correctly as 7.1e9 (that is 7.1× 109) in
portrait. But it won’t do this if the number is entered directly in portrait mode.

Why can’t it automatically handle big numbers this way without having to turn it

http://www.doi.org/10.1109/PROC.1975.9854
http://www.doi.org/10.1109/PROC.1975.9854
http://eu.tennessean.com/story/news/health/2019/02/04/vanderbilt-nurse-reckless-homicide-charge-vecuronium-versed-drug-error/2772648002
http://eu.tennessean.com/story/news/health/2019/02/04/vanderbilt-nurse-reckless-homicide-charge-vecuronium-versed-drug-error/2772648002
http://www.doi.org/10.1093/ndt/gfm517
http://www.liverpoolecho.co.uk/news/liverpool-news/invited-covid-vaccine-because-nhs-19857990
http://www.liverpoolecho.co.uk/news/liverpool-news/invited-covid-vaccine-because-nhs-19857990
http://www.ismp.org/resources/another-round-blame-game-paralyzing-criminal-indictment-recklessly-overrides-just-culture
http://www.ismp.org/resources/another-round-blame-game-paralyzing-criminal-indictment-recklessly-overrides-just-culture
http://www.seattletimes.com/seattle-news/nurses-suicide-follows-tragedy
http://www.scha.org/files/cultureofsafety\bunderline panel.pot\bunderline .pdf
http://www.abstractsonline.com/pp8/\#\#!/7859/presentation/15327
http://www.medpagetoday.com/meetingcoverage/asmmicrobe/80657
http://www.doi.org/10.1136/bmj.l5231

NOTES | 517

in and out of landscape? Surely, even in portrait, the iPhone could have gone from
displaying 710,000,000 to displaying 7.1e9 when the next digit was pressed — it’s
clearly able to display numbers this way if it wants to. Doing so would have fixed the
bug.

Finally, I think it’s worth pointing out that the iPhone has a very high-resolution
display, and it has no reason to display large numbers obscurely, like 7.1e9, when it’s
perfectly able to display numbers conventionally like 7.1× 109 directly.

181. Page 180. On the iPhone, deletion is done by swiping your finger left or right across
the number displayed. Other calculators, when they provide a delete function, usually
have a special button for it.

182. Page 181. Harold Thimbleby and Andy Gimblett, “Applying Theorem Discovery to
Automatically Find and Check Usability Heuristics,” Proceedings ACM Conference on
Engineering Interactive Computer Systems, 101–106, ACM, 2013. DOI:
10.1145/2494603.2480320

183. Page 181. Almost all countries give you the same problems as with the UK, but if you
try doing the sums with the population of India (about 1.339 billion) or the
population of China (about 1.386 billion), curiously you will get the right answers.

The problem is that the calculators secretly don’t handle numbers in the billions or
larger correctly — they silently lose the extra digits after their screens have filled up
with however many digits they can cope with. They make a mistake with the world
population (about 7.6 billion people) and the same mistake with the populations of
India or China, so the errors coincidentally cancel out, and you’ll get the right answer
to the question. Here, two wrongs really do make a right!

184. Page 181. The 2000 paper explaining conventional calculator problems was cited
earlier, in note 47.

A vastly superior approach to calculator design that reduces errors is introduced in
a 2005 paper: Will Thimbleby and Harold Thimbleby, “A Novel Gesture-Based
Calculator and Its Design Principles,” Proceedings 19th British Computer Society HCI
Conference, 2:27–32, British Computer Society, 2005. I must add that Will did all the
creative hard work here. I strongly recommend you go to Will Thimbleby’s website for
more details: see will.thimbleby.net

185. Page 185. Toby Helm, “Austerity cuts are blamed for 130,000 preventable deaths,”
The Observer, 16, 2 June 2019. (Note the title of 130,000 deaths refers to 2012 to
date.)

An alarming report is Philip Alston, “Statement on Visit to the United Kingdom,”
United Nations, London, 16 November 2018.
www.ohchr.org/Documents/Issues/Poverty/EOM_GB_16Nov2018.pdf. The medical
profession’s view of this is summarized in the BMJ: Sophie Arie, “UK’s ‘austerity
experiment’ has forced millions into poverty and homelessness, say UN rapporteur,”
BMJ, 365:l2321, 2019. DOI: 10.1136/bmj.l2321

186. Page 185. Growth in a time of debt,
en.wikipedia.org/wiki/Growth_in_a_Time_of_Debt

187. Page 185. Thomas Herndon, Michael Ash, and Robert Pollin, “Does high public debt
consistently stifle economic growth? A critique of Reinhart and Rogoff,” Cambridge
Journal of Economics, 38(2):257–279, 2014. DOI: 10.1093/cje/bet075

188. Page 185. John Cassidy, “The Reinhart and Rogoff Controversy: A Summing Up,” The
New Yorker, 26 April 2013. www.newyorker.com/news/john-cassidy/the-reinhart-
and-rogoff-controversy-a-summing-up, or if you prefer a Nobel Prize winner, try
Paul Krugman, “The Excel Depression,” The New York Times, 18 April 2013.
www.nytimes.com/2013/04/19/opinion/krugman-the-excel-depression.html?_r=0

189. Page 185. Programmers will be able to think of many sensible approaches to help
Excel be more reliable, though all such approaches have trade-offs, because the safety
checks they introduce have possible bugs themselves due to the obvious problems of
implementing the techniques correctly (especially as Excel provides no help in

http://www.doi.org/10.1145/2494603.2480320
http://www.doi.org/10.1145/2494603.2480320
http://will.thimbleby.net
http://www.ohchr.org/Documents/Issues/Poverty/EOM_GB_16Nov2018.pdf
http://www.doi.org/10.1136/bmj.l2321
http://en.wikipedia.org/wiki/Growth_in_a_Time_of_Debt
http://www.doi.org/10.1093/cje/bet075
http://www.newyorker.com/news/john-cassidy/the-reinhart-and-rogoff-controversy-a-summing-up
http://www.newyorker.com/news/john-cassidy/the-reinhart-and-rogoff-controversy-a-summing-up
http://www.nytimes.com/2013/04/19/opinion/krugman-the-excel-depression.html?_r=0

518 | CHAPTER 34

following the new spreadsheet use conventions that most such techniques would rely
on).

Instead of blindly hoping that SUM gives the right answer, a safer approach is to
double-check every cell being added up. One way to do this is to use
=ISNUMBER(A1:A100), which seems to work (by which I mean that for every SUM that
goes wrong that I’ve tried, ISNUMBER is FALSE, but I don’t know whether this can be
relied on in every case). Unfortunately, lots of Excel users are not professional
programmers, so they probably won’t think defensively like this.

The problem is, once you start putting ISNUMBERs in a spreadsheet, your
spreadsheet starts getting more complicated: protecting yourself from errors itself
becomes a likely source of even more complicated errors. Worse, each additional
ISNUMBERmakes sense and doesn’t seem to make things too complicated — so each
one has a good reason to be added, and you add another, and another and another —
but a while later, the spreadsheet will be an unmanageable mess. Excel has no way to
help you now.

190. Page 187. Patrick Oladimeji, Harold Thimbleby, and Anna L. Cox, “A Performance
Review of Number Entry Interfaces,” Proceedings IFIP Conference on
Human-Computer Interaction — Interact 2013, Designing for Diversity, Lecture Notes
in Computer Science, 8117:365–382, Springer-Verlag, 2013. DOI:
10.1007/978-3-642-40483-2_26

191. Page 188. Harold Thimbleby, Jeremy Gow, and Paul Cairns, “Misleading Behaviour in
Interactive Systems,” in Proceedings British Computer Society HCI Conference,
2:33–36, Research Press International, 2004.

15 Who’s accountable?
192. Page 193. The Mersey Burns (version 1.6.2) warranty quoted was found at

merseyburns.com/manual/v1.6.2/disclaimer.html, 2019.
193. Page 193. “You must check the disclaimer page of the App prior to each use of the

App” — in fact, you can’t do this, as you can only see the disclaimer page when the app
is downloaded and used for the first time. Either the disclaimer is incorrect or the code
has a bug.

194. Page 194. Medical Calculators Algorithms, version 2.9, 2019. Available from Apple
app store.

195. Page 194. 2019 iOS Software License Agreement,
www.apple.com/legal/sla/docs/iOS12.pdf

196. Page 195. David J. DeWitt and his fight to publish research about commercial
computer systems is described in en.wikipedia.org/wiki/David_DeWitt

A new update on the issues for researchers was written in the Scientific American,
“Universities Should Encourage Scientists to Speak Out about Public Issues,” 1
February 2018. www.scientificamerican.com/article/universities-should-
encourage-scientists-to-speak-out-about-public-issues

197. Page 196. My book Press On: Principles of Interaction Programming (MIT Press)g
has some ideas for programmers to generate user manuals automatically, which
ensures they are correct, and — because it is automatic and easy — encourages the
designers to modify the designs to make the manuals easier to understand. A complex
user manual is a symptom of a poor design.

198. Page 197. Kieran Beattie, “NHS Grampian patients locked into controversial bedside
TV service until 2027, while contract with NHS Highland runs out next week,” Press
and Journal, 9 January 2020. www.pressandjournal.co.uk/fp/news/aberdeenshire/
1941149/nhs-grampian-patients-locked-into-controversial-bedside-tv-service-

g See Chapter 33: Press On: Principles of Interaction Programming, the book, page 483←

http://www.doi.org/10.1007/978-3-642-40483-2_26
http://www.doi.org/10.1007/978-3-642-40483-2_26
http://merseyburns.com/manual/v1.6.2/disclaimer.html
http://www.apple.com/legal/sla/docs/iOS12.pdf
http://en.wikipedia.org/wiki/David_DeWitt
http://www.scientificamerican.com/article/universities-should-encourage-scientists-to-speak-out-about-public-issues
http://www.scientificamerican.com/article/universities-should-encourage-scientists-to-speak-out-about-public-issues
https://mitpress.mit.edu/books/press
http://www.pressandjournal.co.uk/fp/news/aberdeenshire/1941149/nhs-grampian-patients-locked-into-controversial-bedside-tv-service-until-2027-while-contract-with-nhs-highland-runs-out-next-week
http://www.pressandjournal.co.uk/fp/news/aberdeenshire/1941149/nhs-grampian-patients-locked-into-controversial-bedside-tv-service-until-2027-while-contract-with-nhs-highland-runs-out-next-week
http://www.pressandjournal.co.uk/fp/news/aberdeenshire/1941149/nhs-grampian-patients-locked-into-controversial-bedside-tv-service-until-2027-while-contract-with-nhs-highland-runs-out-next-week

NOTES | 519

until-2027-while-contract-with-nhs-highland-runs-out-next-week
199. Page 197. Anna W. Mathews, “Behind Your Rising Health-Care Bills: Secret Hospital

Deals That Squelch Competition,” Wall Street Journal, 18 September 2018.
www.wsj.com/articles/behind-your-rising-health-care-bills-secret-hospital-
deals-that-squelch-competition-1537281963

200. Page 198. The Architects Registration Board’s website is www.arb.org.uk

16 Regulation needs fixing
201. Page 201. At the time of writing, Brexit may or may not happen to the UK. Whatever

happens, something equivalent to CE marking will have to be implemented, otherwise
there will be no trade on medical devices with the EU.

202. Page 201. Christopher Hodges, “The regulation of medical products and medical
devices,” Chapter 17 in Judith M. Laing and Jean V. McHale, editors, Principles of
Medical Law, 4th edition, Oxford University Press, 2017, especially section 17.122
onward.

203. Page 202. The terms Class I, Class II, etc, mean different things around the world
which adds to the complexity. Goodness knows what will happen during or after
Brexit, which is certainly a growing problem for UK manufacturers.

204. Page 202. Simon Bowers and Deborah Cohen, “How lobbying blocked European
safety checks for dangerous medical implants,” BMJ, 363:k4999, 2018. DOI:
10.1136/bmj.k4999

205. Page 203. Checking program equivalence is non-computable. For example, two
programs might seem to be the same, but one has bugs that you haven’t yet noticed, so
in fact they are not the same. Unfortunately bugs can hide themselves indefinitely, so
you will never know whether two programs are equivalent. (I used “bugs” as an
example difference; of course, bugs may not be the only difference.)

206. Page 204. Over a million emails were sent to NHS staff, and email was delayed for
hours. News reports say Accenture, the developers, still hadn’t provided safeguards to
stop this basic sort of error, despite it being an NHS requirement. Gareth Corfield,
“NHS reply-all meltdown swamped system with half a billion emails: Accenture
blamed for system swamp,” The Register, 31 January 2017. https://www.theregister.
com/2017/01/31/nhs_reply_all_email_fail_half_billion_messages

More details can be found in James Temperton, “NHS email blunder catches 1.2
million staff in ‘reply all’ chaos,” Wired, 14 November 2016.
www.wired.co.uk/article/nhs-email-reply-all-down

Wikipedia has various entries on email problems, like these email storms—
en.wikipedia.org/wiki/Email_storm

207. Page 204. Denis Campbell, “NHS gender identity clinic discloses email contacts of
2,000 patients,” The Guardian, 6 September 2019. www.theguardian.com/society/
2019/sep/06/nhs-gender-identity-clinic-discloses-email-contacts-data-breach

208. Page 205. Cardinal Health, “Alaris GP Volumetric Pump,” Instructions for Use,
1000DF00009 Issue 3, 2005–2006.

209. Page 206. National Institute for Health and Care Excellence, SINGLE TECHNOLOGY
APPRAISAL Lumacaftor and ivacaftor combination therapy for treating cystic fibrosis
homozygous for the F508del mutation [ID786], February 2016.
www.nice.org.uk/guidance/ta398/documents/committee-papers

210. Page 206. National databases to register clinical studies (or any other kind of research)
help reduce cherry picking. If you do an experiment, after you’ve got all the data,
you might hunt for more interesting results to get something worth publishing — with
enough data there is always something or other interesting to find, but it may just be a
coincidence.

By registering, you state your objectives, and then report on what you found out

http://www.wsj.com/articles/behind-your-rising-health-care-bills-secret-hospital-deals-that-squelch-competition-1537281963
http://www.wsj.com/articles/behind-your-rising-health-care-bills-secret-hospital-deals-that-squelch-competition-1537281963
http://www.arb.org.uk
http://www.doi.org/10.1136/bmj.k4999
http://www.doi.org/10.1136/bmj.k4999
http://https://www.theregister.com/2017/01/31/nhs_reply_all_email_fail_half_billion_messages
http://https://www.theregister.com/2017/01/31/nhs_reply_all_email_fail_half_billion_messages
http://www.wired.co.uk/article/nhs-email-reply-all-down
http://en.wikipedia.org/wiki/Email_storm
http://www.theguardian.com/society/2019/sep/06/nhs-gender-identity-clinic-discloses-email-contacts-data-breach
http://www.theguardian.com/society/2019/sep/06/nhs-gender-identity-clinic-discloses-email-contacts-data-breach
http://www.nice.org.uk/guidance/ta398/documents/committee-papers

520 | CHAPTER 34

about them. Of course you can report serendipitous discoveries, but you can’t
manipulate your results.

The database used for registering the cystic fibrosis experiment is
clinicalTrials.gov— where the trial can be found under number NCT01931839.
DOI: 10.1016/S2213-2600(16)30427-1

211. Page 206. IOM (Institute of Medicine), Medical devices and the public’s health: The
FDA’s 510(k) clearance process at 35 years, US National Academies of Science, The
National Academies Press, 2011. www.nap.edu/read/13150

212. Page 207. REGULATION (EU) 2017/745 OF THE EUROPEAN PARLIAMENT AND
OF THE COUNCIL of 5 April 2017 on medical devices, amending Directive
2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 and
repealing Council Directives 90/385/EEC and 93/42/EEC,
eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32017R0745

213. Pages 207, 327. Here’s the story of Aaron Davidson’s jail sentence, which is reported
in several places: “Jail for illegal gas fitter who put his customers’ lives at risk,” The Gas
Engineer, 4 August 2020. registeredgasengineer.co.uk/jail-for-illegal-gas-fitter-
who-put-his-customers-lives-at-risk and “Plumber jailed for illegal gas work,”
Health and Safety Executive, 9 July 2020.
press.hse.gov.uk/2020/07/09/plumber-jailed-for-illegal-gas-work

214. Pages 207, 491. Kirby Dick and Amy Ziering, The Bleeding Edge, Netflix, 27 July
2018.

215. Page 207. www.hse.gov.uk/work-equipment-machinery/uk-law-design-supply-
products.htm

17 Safe and secure
216. Page 212. Jessica Davis, “Australian hospitals fighting system failure after botched

WannaCry patch,” Healthcare IT News, 26 May 2017.
www.healthcareitnews.com/news/australian-hospitals-fighting-system-failure-
after-botched-wannacry-patch

217. Page 213. Patricia Mazzei, “Hit by Ransomware Attack, Florida City Agrees to Pay
Hackers $600,000,” New York Times, 19 June 2019.

218. Page 213. Your national cybersecurity center is the best place to start learning about
cyberattacks and defenses, and their websites will stay up-to-date. The Wikipedia
article on multi-factor authentication is another good place to go to:
en.wikipedia.org/wiki/Multi-factor_authentication

219. Page 213. National Cybersecurity and Communications Integration Center report
ICSMA-18-037-02, 2018: see ics-cert.us-cert.gov/advisories/ICSMA-18-037-02

220. Page 214 twice. Chris Baraniuk, “Anaesthetic devices ‘vulnerable to hackers’,” BBC
News, 10 July 2019. www.bbc.co.uk/news/technology-48935111

221. Page 214. Zoe Kleinman, “Therapy patients blackmailed for cash after clinic data
breach,” BBC News, 26 October 2020. www.bbc.co.uk/news/technology-54692120

And see the English reports from the Finnish agency UUTISET which has several
articles on the topic, including this one: “Psychotherapy centre’s database hacked,
patient info held ransom,” 21 October 2020. yle.fi/uutiset/osasto/news/
psychotherapy_centres_database_hacked_patient_info_held_ransom/11605460

222. Page 215. “Irish health service hit by cyber attack,” BBC News, 14 May 2021.
www.bbc.co.uk/news/world-europe-57111615

223. Page 216. Office of the Information and Privacy Commissioner, Ontario, “Statement
from the Office of the Information and Privacy Commissioner of Ontario and the
Office of the Information and Privacy Commissioner for British Columbia on LifeLabs
Privacy Breach,” 17 December 2019. It has a very long URL, so you may be better off
searching for it instead! www.newswire.ca/news-releases/statement-from-the-

http://clinicalTrials.gov
http://www.doi.org/10.1016/S2213-2600(16)30427-1
http://www.nap.edu/read/13150
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32017R0745
http://registeredgasengineer.co.uk/jail-for-illegal-gas-fitter-who-put-his-customers-lives-at-risk
http://registeredgasengineer.co.uk/jail-for-illegal-gas-fitter-who-put-his-customers-lives-at-risk
http://press.hse.gov.uk/2020/07/09/plumber-jailed-for-illegal-gas-work
http://www.hse.gov.uk/work-equipment-machinery/uk-law-design-supply-products.htm
http://www.hse.gov.uk/work-equipment-machinery/uk-law-design-supply-products.htm
http://www.healthcareitnews.com/news/australian-hospitals-fighting-system-failure-after-botched-wannacry-patch
http://www.healthcareitnews.com/news/australian-hospitals-fighting-system-failure-after-botched-wannacry-patch
http://en.wikipedia.org/wiki/Multi-factor_authentication
http://ics-cert.us-cert.gov/advisories/ICSMA-18-037-02
http://www.bbc.co.uk/news/technology-48935111
http://www.bbc.co.uk/news/technology-54692120
http://yle.fi/uutiset/osasto/news/psychotherapy_centres_database_hacked_patient_info_held_ransom/11605460
http://yle.fi/uutiset/osasto/news/psychotherapy_centres_database_hacked_patient_info_held_ransom/11605460
http://www.bbc.co.uk/news/world-europe-57111615
http://www.newswire.ca/news-releases/statement-from-the-office-of-the-information-and-privacy-commissioner-of-ontario-and-the-office-of-the-information-and-privacy-commissioner-for-british-columbia-on-lifelabs-privacy-breach-821489025.html

NOTES | 521

office-of-the-information-and-privacy-commissioner-of-ontario-and-the-office-
of-the-information-and-privacy-commissioner-for-british-columbia-on-lifelabs-
privacy-breach-821489025.html

In addition, there are many popular news reports, such as this: Charlie Smith,
“LifeLabs CEO Charles Brown says he doesn’t know if hacked test-result data was
encrypted,” The Georgia Straight, 18 December 2019.
www.straight.com/life/1338251/lifelabs-ceo-charles-brown-says-he-doesnt-know-
if-hacked-test-result-data-was-encrypted

224. Page 217. Backing up data is an essential precaution against digital problems,
including cyberattacks. However, remember that you may have backed up something
already attacked, and your backup systems may also be attacked directly. It’s not
sufficient just to back up; can you tell when your data is corrupted or deleted?

Cybersecurity is a huge problem! You must get up-to-date external expert advice
— nobody on their own can keep up with the developments. Start with your national
cybersecurity center’s advice; the UK Centre, for instance, provides lots of helpful and
up-to-date guidance.

For more information, see www.ncsc.gov.uk/guidance
225. Page 220. To explain short selling (of which there are many types), let’s use car hire as

a simple, concrete analogy.
I hire a new car for a week, paying the rental company, let’s say, $100 to cover

comprehensive insurance and the week’s rent. However, I sell the car to a friend of
mine for $10,000.

At this stage, I’ve made a profit of $9,900 — though I still have the contract that I
must return the car by the end of the week.

Let’s say that my friend has a crash and wrecks the hired car. The car is now only
worth $100 as scrap, so I buy it back. I’ve still made a profit of $9,800.

I now return the damaged car back to the rental company.
Thanks to the insurance I bought, I’ve nothing further to pay.
Effectively, I’ve got an insurance scam that makes $9,800 easy money out of an

accident covered by the garage’s car insurance (which I paid the premium for). My
profit of $9,800 is based on me betting the value of the car will go down — it needed
my friend to have a crash after buying the car off me — so that I can buy it back for a
pittance at the end of the week.

You could do the same, borrowing St Jude shares instead of a car, betting that they
would decrease in value. As with the car, just sell the shares on — but unlike selling a
hire car, this is perfectly legal to do. Instead of needing a car accident, we disclose the
St Jude cybersecurity vulnerabilities, and the shares crash in value. We then buy them
back very cheaply at their crashed market value, then return them to the trader we
originally borrowed them from. The shares are back where they started. We’ve made a
nice profit.

226. Page 221. www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/search.cfm
227. Pages 221, 463. For an example of a quite typical free, open, publicly available

aviation report after a serious incident, see: ATSB (Australian Transport Safety Bureau)
Transport Safety Report, Aviation Occurrence Investigation AO-2010-089, Final – 27
June 2013: “In-flight uncontained engine failure Airbus A380-842, VH-OQA,
overhead Batam Island, Indonesia, 4 November 2010,”
www.atsb.gov.au/media/4173625/ao-2010-089_final.pdf

http://www.newswire.ca/news-releases/statement-from-the-office-of-the-information-and-privacy-commissioner-of-ontario-and-the-office-of-the-information-and-privacy-commissioner-for-british-columbia-on-lifelabs-privacy-breach-821489025.html
http://www.newswire.ca/news-releases/statement-from-the-office-of-the-information-and-privacy-commissioner-of-ontario-and-the-office-of-the-information-and-privacy-commissioner-for-british-columbia-on-lifelabs-privacy-breach-821489025.html
http://www.newswire.ca/news-releases/statement-from-the-office-of-the-information-and-privacy-commissioner-of-ontario-and-the-office-of-the-information-and-privacy-commissioner-for-british-columbia-on-lifelabs-privacy-breach-821489025.html
http://www.newswire.ca/news-releases/statement-from-the-office-of-the-information-and-privacy-commissioner-of-ontario-and-the-office-of-the-information-and-privacy-commissioner-for-british-columbia-on-lifelabs-privacy-breach-821489025.html
http://www.straight.com/life/1338251/lifelabs-ceo-charles-brown-says-he-doesnt-know-if-hacked-test-result-data-was-encrypted
http://www.straight.com/life/1338251/lifelabs-ceo-charles-brown-says-he-doesnt-know-if-hacked-test-result-data-was-encrypted
http://www.ncsc.gov.uk/guidance
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/search.cfm
http://www.atsb.gov.au/media/4173625/ao-2010-089_final.pdf

522 | CHAPTER 34

18 Who profits?
228. Page 225. Seth Shulman, “Patent absurdities,” The Sciences, 39(1):30–33,

January–February 1999. DOI: 10.1002/j.2326-1951.1999.tb03410.x
229. Page 225. Madhumita Murgia and Max Harlow, “How top health websites are sharing

sensitive data with advertisers,” Financial Times, 13 November 2019.
www.ft.com/content/0fbf4d8e-022b-11ea-be59-e49b2a136b8d

230. Page 226. Tom Knowles, “Facebook uses iPhones to track users’ movements,” The
Times, 18 September 2019.

231. Pages 226, 328. Sidney Fussell, “The Sneaky Genius of Facebook’s New Preventive
Health Tool – The feature looks likely to fill gaps in care — and to further draw users
into Facebook’s ecosystem,” The Atlantic, 8 January 2020.
www.theatlantic.com/technology/archive/2020/01/facebook-launches-new-
preventative-health-tool/604567

232. Page 226. A very nice article reviewing GP changes in prescribing practices using
prescription data from 8,078 GP practices, covering a population of 55 million is Alex
J. Walker, Felix Pretis, Anna Powell-Smith, and Ben Goldacre, “Variation in
responsiveness to warranted behavior change among NHS clinicians: novel
implementation of change detection methods in longitudinal prescribing data,” BMJ,
367:l5205, 2019. DOI: 10.1136/bmj.l5205

The paper has lots of ideas on open science and using computers for analyzing
health data. Also, do have a look at the great Twitter thread by one of the authors, Ben
Goldacre, @bengoldacre, at
threadreaderapp.com/thread/1181231445265850369.html

233. Page 226. Toby Helm, “Revealed: how drugs giants can access your health records —
Experts say information sold on by Department of Health and Social Care can be
traced back to individual medical records,” The Observer, 8 February 2020.
www.theguardian.com/technology/2020/feb/08/fears-over-sale-anonymous-nhs-
patient-data

An authoritative blog on health privacy, and many related issues, is run by Prof
Ross Anderson’s Security Group at the University of Cambridge. Start here:
www.lightbluetouchpaper.org— he’s also got a good book on security, I recommend
in Good reading.h

234. Page 227. Sam Shead, “Google DeepMind is funding NHS research at Moorfields Eye
Hospital,” Business Insider, 3 August 2017.
uk.businessinsider.com/deepmind-is-funding-nhs-research-2017-7

235. Page 228. Gary Finnegan, “Google’s DeepMind Health told to explain how it will
make money,” Science|Business, 19 June 2018. sciencebusiness.net/healthy-
measures/news/googles-deepmind-health-told-explain-how-it-will-make-money

236. Page 228. Although the report seems to have disappeared, a brief summary is available
here: understandingpatientdata.org.uk/news/deepmind-health-independent-
review-panel-second-annual-report

237. Page 228. Andrew Orlowski, “Google swallows up DeepMind Health and abolishes
‘independent board’,” The Register, 14 November 2018.
www.theregister.co.uk/2018/11/14/google_swallows_up_deepmind_health_and_
abolishes_independent_board

238. Page 230. Santiago Romero-Brufau, Kim Gaines, Clara T. Nicolas, Matthew G.
Johnson, Joel Hickman, and Jeanne M. Huddleston, “The fifth vital sign? Nurse worry
predicts inpatient deterioration within 24 hours,” JAMIA Open, 2(4):465–470, 2019.
DOI: 10.1093/jamiaopen/ooz033

239. Page 230. “Covid Symptom Study regrets Samantha Cameron mask ad,” BBC News,
20 October 2020. www.bbc.co.uk/news/technology-54621308 Interestingly, the BBC

h See Chapter 33: Good reading, page 471←

http://www.doi.org/10.1002/j.2326-1951.1999.tb03410.x
http://www.ft.com/content/0fbf4d8e-022b-11ea-be59-e49b2a136b8d
http://www.theatlantic.com/technology/archive/2020/01/facebook-launches-new-preventative-health-tool/604567
http://www.theatlantic.com/technology/archive/2020/01/facebook-launches-new-preventative-health-tool/604567
http://www.doi.org/10.1136/bmj.l5205
http://twitter.com/bengoldacre
http://threadreaderapp.com/thread/1181231445265850369.html
http://www.theguardian.com/technology/2020/feb/08/fears-over-sale-anonymous-nhs-patient-data
http://www.theguardian.com/technology/2020/feb/08/fears-over-sale-anonymous-nhs-patient-data
http://www.lightbluetouchpaper.org
http://uk.businessinsider.com/deepmind-is-funding-nhs-research-2017-7
http://sciencebusiness.net/healthy-measures/news/googles-deepmind-health-told-explain-how-it-will-make-money
http://sciencebusiness.net/healthy-measures/news/googles-deepmind-health-told-explain-how-it-will-make-money
http://understandingpatientdata.org.uk/news/deepmind-health-independent-review-panel-second-annual-report
http://understandingpatientdata.org.uk/news/deepmind-health-independent-review-panel-second-annual-report
http://www.theregister.co.uk/2018/11/14/google_swallows_up_deepmind_health_and_abolishes_independent_board
http://www.theregister.co.uk/2018/11/14/google_swallows_up_deepmind_health_and_abolishes_independent_board
http://www.doi.org/10.1093/jamiaopen/ooz033
http://www.bbc.co.uk/news/technology-54621308

NOTES | 523

News report also advertises the same range of COVID masks as the app did. ZOE’s
website for the COVID Symptom Study is covid.joinzoe.com

240. Page 231. Steven A. Julious and Mark A. Mullee, “Confounding and Simpson’s
paradox,” BMJ, 309:1480, 1994. DOI: 10.1136/bmj.309.6967.1480

241. Page 231. Tom Chivers, “We should be very wary of the R value: A rise in the
Covid-19 infection rate actually means that lockdown is working,” UnHerd blog, 12
May 2020. unherd.com/2020/05/what-the-headline-covid-figures-dont-tell-you

242. Page 231. Skin color is an obvious potential bias. A more subtle one is length time
bias. If the AI is trained on patients, then patients who have diseases (such as skin
cancers) that last a long time are going to be over-represented in the data.

As a rule, slow cancers are less likely to be fatal, so it’ll appear that the diagnostic
system is reducing the severity of cancer. That is, on average the patients whose
cancers are detected by the AI do better than the patients whose cancers are missed,
because it is preferentially detecting cancers that are typically less malignant.

243. Pages 232, 233. A popular article on racial bias is Shraddha Chakradhar, “Widely used
algorithm for follow-up care in hospitals is racially biased, study finds,” STAT, 24
October 2019.
www.statnews.com/2019/10/24/widely-used-algorithm-hospitals-racial-bias. The
article interviewed the authors of this more academic article: Ziad Obermeyer, Brian
Powers, Christine Vogeli, and Sendhil Mullainathan, “Dissecting racial bias in an
algorithm used to manage the health of populations,” Science, 366(6464):447–453,
2019. DOI: 10.1126/science.aax2342

244. Page 233. Blood hemoglobin concentration is estimated and measured in grams per
liter. Worryingly, many publications measure concentration using g/l, which can easily
be misread as g divided by one (since l looks like 1) — which encourages unnecessary
human error. For details, see L. F. Miles, T. Larsen, M. J. Bailey, K. L. Burbury, D. A.
Story, and R. Bellomo, “Borderline anaemia and postoperative outcome in women
undergoing major abdominal surgery: a retrospective cohort study,” Anaesthesia,
75(2):210–217, 2019. DOI: 10.1111/anae.14870

245. Page 233. This amazing book won the 2019 Royal Society Science Book Prize:
Caroline Criado Perez, Invisible Women: Exposing Data Bias in a World
Designed for Men, Chatto & Windus, 2019.

246. Page 233. An interesting insight is the two way synergy between digital and ethics: as
ethics helps digital (AI or whatever), digital also helps ethics because digital brings
with it a precision that a lot of ethics lacks.

Two of my PhD students have done good research on digital trust and ethics:
Stephen Marsh, Formalising Trust as a Computational Concept, PhD Thesis,

Stirling University, Scotland, 1994.
Penny Duquenoy, The internet: A framework for understanding ethical issues,

PhD Thesis, Middlesex University, London, 2001.
A more recent, and more accessible, book on ethics is Michael Kearns and Aaron

Roth, The Ethical Algorithm: The Science of Socially Aware Algorithm Design, Oxford
University Press, 2020.

247. Page 234. Biplav Srivastava and Francesca Rossi, “Towards Composable Bias Rating of
AI Services,” Proceedings AAAI/ACM Conference on AI, Ethics, and Society,
284–289, ACM, 2018. DOI: 10.1145/3278721.3278744

A thought-provoking book on sexism is Criado Perez, Invisible Women: Exposing
Data Bias in a World Designed for Men, Chatto & Windus, 2019. A good popular
article is Katyanna Quach, “Q. If machine learning is so smart, how come AI models
are such racist, sexist homophobes? A. Humans really suck. Our prejudices rub off on
our computer pals, sadly,” The Register, 5 September 2019.
www.theregister.co.uk/2019/09/05/ai_racist_sexist Like many things in digital
healthcare, the field is moving very rapidly, and the best thing to do is to run an
internet search to find out what’s up-to-date.

http://covid.joinzoe.com
http://www.doi.org/10.1136/bmj.309.6967.1480
http://unherd.com/2020/05/what-the-headline-covid-figures-dont-tell-you
http://www.statnews.com/2019/10/24/widely-used-algorithm-hospitals-racial-bias
http://www.doi.org/10.1126/science.aax2342
http://www.doi.org/10.1111/anae.14870
http://www.doi.org/10.1145/3278721.3278744
http://www.theregister.co.uk/2019/09/05/ai_racist_sexist

524 | CHAPTER 34

248. Page 234. Shneiderman gives an excellent overview of the algorithmic bias problem:
Ben Shneiderman, “Opinion: The dangers of faulty, biased, or malicious algorithms
requires independent oversight,” Proceedings National Academy of Sciences,
113(48):13538–13540, 2016. DOI: 10.1073/pnas.1618211113

249. Page 235. Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter,
Helen M. Blau, and Sebastian Thrun, “Dermatologist-level classification of skin cancer
with deep neural networks,” Nature, 542:115–118, 2 February 2017. DOI:
10.1038/nature21056

250. Page 235. Lisette Hilton, “The Artificial Brain as Doctor,” Dermatology Times, 15
January 2018. www.medpagetoday.com/dermatology/generaldermatology/70513

251. Page 235. Will Douglas Heaven, “Hundreds of AI tools have been built to catch covid.
None of them helped.” MIT Technology Review, 30 July 2021.
technologyreview.com/2021/07/30/1030329/machine-learning-ai-failed-covid-
hospital-diagnosis-pandemic

A very readable article on AI biases is Ramya Srinivasan and Ajay Chander, “Biases
in AI Systems: A survey for practitioners,” ACM Queue, 19(2):45–64, March-April
2021. DOI: 10.1145/3466132.3466134

252. Page 236. Dave Lee, “Why Big Tech pays poor Kenyans to teach self-driving cars,”
BBC News, 3 November 2018. www.bbc.co.uk/news/technology-46055595

A good analysis of how algorithmic bias affects all of us who use the internet is
Safiya Umoja Noble, Algorithms of Oppression: How Search Engines Reinforce
Racism, NYU Press, 2018.

253. Page 237. Rana Awdish, twitter.com/RanaAwdish/status/1072333983898316800, 11
December 2018.

254. Page 237. Kenneth H. Lai, Maxim Topaz, Foster R. Goss, and Li Zhou, “Automated
misspelling detection and correction in clinical free-text records,” Journal of
Biomedical Informatics, 55:188–195, 2015. DOI: 10.1016/j.jbi.2015.04.008

255. Page 237. Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Bo Li,
Atul Prakash, Amir Rahmati, and Dawn Song, “Robust Physical-World Attacks on
Machine Learning Models,” Computing Research Repository (CoRR),
abs/1707.08945, 2017. arxiv.org/abs/1707.08945

256. Page 238. Tom Knowles, “Tape trick fools Tesla into speeding 50mph over limit,” The
Times, 20 February 2020.

257. Page 238. Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom,
Brandon Tran, and Aleksander Madry, “Adversarial Examples Are Not Bugs, They Are
Features,” arxiv.org/abs/1905.02175, 2019.

258. Page 239. Marshall Allen, “You Snooze, You Lose: Insurers Make The Old Adage
Literally True,” ProPublica, 21 November 2018. www.propublica.org/article/you-
snooze-you-lose-insurers-make-the-old-adage-literally-true

259. Page 239. Privacy International, “Alexa, what is hidden behind your contract with the
NHS?,” 6 December 2019. privacyinternational.org/long-read/3298/alexa-what-
hidden-behind-your-contract-nhs

260. Page 240. Shanti Das and Andrew Gregory, “Amazon ready to cash in on free access to
NHS data,” Sunday Times, page 4, 8 December 2019.

261. Page 240. A good review of blockchain, available as a lecture and as transcript, is
Martyn Thomas, “Will Bitcoin and the Blockchain Change the Way we Live and
Work?” Gresham College Lecture, 9 January 2018. www.gresham.ac.uk/lectures-
and-events/will-bitcoin-and-the-block-chain-change-the-way-we-live-and-work

262. Page 241. John Burg, Christine Murphy, and Jean Paul Petraud, “Blockchain for
International Development: Using a Learning Agenda to Address Knowledge Gaps,”
2018. merltech.org/blockchain-for-international-development-using-a-learning-
agenda-to-address-knowledge-gaps

http://www.doi.org/10.1073/pnas.1618211113
http://www.doi.org/10.1038/nature21056
http://www.doi.org/10.1038/nature21056
http://www.medpagetoday.com/dermatology/generaldermatology/70513
http://technologyreview.com/2021/07/30/1030329/machine-learning-ai-failed-covid-hospital-diagnosis-pandemic
http://technologyreview.com/2021/07/30/1030329/machine-learning-ai-failed-covid-hospital-diagnosis-pandemic
http://www.doi.org/10.1145/3466132.3466134
http://www.bbc.co.uk/news/technology-46055595
http://twitter.com/RanaAwdish/status/1072333983898316800
http://www.doi.org/10.1016/j.jbi.2015.04.008
http://arxiv.org/abs/1707.08945
http://arxiv.org/abs/1905.02175
http://www.propublica.org/article/you-snooze-you-lose-insurers-make-the-old-adage-literally-true
http://www.propublica.org/article/you-snooze-you-lose-insurers-make-the-old-adage-literally-true
http://privacyinternational.org/long-read/3298/alexa-what-hidden-behind-your-contract-nhs
http://privacyinternational.org/long-read/3298/alexa-what-hidden-behind-your-contract-nhs
http://www.gresham.ac.uk/lectures-and-events/will-bitcoin-and-the-block-chain-change-the-way-we-live-and-work
http://www.gresham.ac.uk/lectures-and-events/will-bitcoin-and-the-block-chain-change-the-way-we-live-and-work
http://merltech.org/blockchain-for-international-development-using-a-learning-agenda-to-address-knowledge-gaps
http://merltech.org/blockchain-for-international-development-using-a-learning-agenda-to-address-knowledge-gaps

NOTES | 525

263. Page 242. Jane Feinmann, “How volunteer doctors help the world’s most vulnerable
patients, from Yemen to Ukraine, Bangladesh to Bethnal Green,” BMJ, 363:k4993,
2018. DOI: 10.1136/bmj.k4993

264. Page 242. The UK Government funds doctors primarily on the basis of the size of
local population they serve. Matt Burgess and Nicole Kobie, “The messy, cautionary
tale of how Babylon disrupted the NHS,” Wired, Monday 18 March 2019.
www.wired.co.uk/article/babylon-health-nhs and Matt Burgess and Nicole Kobie,
“Major concerns are being raised about Babylon’s impact on the NHS,” Wired, 26
April 2019.
www.wired.co.uk/article/babylon-health-gp-at-hand-nhs-inquiry-andy-slaughter

265. Page 243. Ellen L. Idler, editor, Religion as a Social Determinant of Health, Oxford
University Press, 2014.

A typical rigorous case study of religion as a social determinant of health is
reviewed here: Tyler J. VanderWeele, Shanshan Li, Alexander C. Tsai, and Ichiro
Kawachi, “Association Between Religious Service Attendance and Lower Suicide Rates
Among US Women,” Journal of the American Medical Association Psychiatry,
73(8):845–851, 2016. DOI: 10.1001/jamapsychiatry.2016.1243

19 Interoperability
266. Page 245. David W. Bates and Lipika Samal, “Interoperability: What Is It, How Can

We Make It Work for Clinicians, and How Should We Measure It in the Future?”
Health Services Research, 53(5):3270–3277, 2018. DOI:
10.1111/1475-6773.12852

267. Page 247. Some RFID technologies (especially NFCs) don’t work very well near to
liquids, so a good solution to ensuring the prescription/bag/infusion pump/patient all
pair up safely is not just a matter of throwing technology at the problem.

268. Page 247. Peter J. Pronovost, “Here’s a Crucial Technological Fix to Rising
Health-Care Costs,” The Wall Street Journal, 30 October 2016. blogs.wsj.com/
experts/2016/10/30/heres-a-crucial-technological-fix-to-rising-health-care-costs/

269. Page 247. Leigh R. Warren, Jonathan Clarke, Sonal Arora, and Ara Darzi, “Improving
data sharing between acute hospitals in England: an overview of health record system
distribution and retrospective observational analysis of inter-hospital transitions of
care,” BMJ Open, 9:e031637, 2019. DOI: 10.1136/bmjopen-2019-031637

270. Page 248. When a cosmic ray interferes with a computer’s memory, bits can get
flipped.

In Marie Moe’s pacemaker, flipping a bit was detected and caused it to enter a “safe
mode.” However, it’s possible to make pacemakers — and any other devices — resistant
to bit flips. You could, for example, use three bits instead of one. The pacemaker
hardware then takes a majority of two bits, so — even with this simple method — it
would be resistant to any single bit being flipped. Failing from a bit flip is a bug, or at
least a financial decision that safety is not worth the added cost of redundancy.

There are, of course, far more sophisticated ways to add redundancy than a simple
“majority of two” algorithm. This Wikipedia article is a good place to find out more:
“Error detection and correction,”
en.wikipedia.org/wiki/Error_detection_and_correction Note that error correction is
also very powerful in user interfaces, not just inside computers and networks.

271. Page 251. John Seddon, Systems Thinking in the Public Sector: The Failure of the
Reform Regime and a Manifesto for a Better Way, Triarchy Press Ltd, 2008.

272. Page 254. Kim Thomas, “Wanted: a WhatsApp alternative for clinicians,” BMJ, 360,
2018. DOI: 10.1136/bmj.k622

273. Page 255. WhatsApp bugs are regularly in the news. A recent case is Dave Lee,

http://www.doi.org/10.1136/bmj.k4993
http://www.wired.co.uk/article/babylon-health-nhs
http://www.wired.co.uk/article/babylon-health-gp-at-hand-nhs-inquiry-andy-slaughter
http://www.doi.org/10.1001/jamapsychiatry.2016.1243
http://www.doi.org/10.1111/1475-6773.12852
http://www.doi.org/10.1111/1475-6773.12852
http://blogs.wsj.com/experts/2016/10/30/heres-a-crucial-technological-fix-to-rising-health-care-costs/
http://blogs.wsj.com/experts/2016/10/30/heres-a-crucial-technological-fix-to-rising-health-care-costs/
http://www.doi.org/10.1136/bmjopen-2019-031637
http://en.wikipedia.org/wiki/Error_detection_and_correction
http://www.doi.org/10.1136/bmj.k622

526 | CHAPTER 34

“WhatsApp flaw ‘puts words in your mouth’,” BBC News, 8 August 2019.
www.bbc.co.uk/news/technology-49273606

Full details of the bug, as found by Checkpoint Research, and how it can be
exploited, are described here: Dikla Barda, Roman Zaikin, and Oded Vanunu, “Black
Hat 2019 —WhatsApp Protocol Decryption for Chat Manipulation and More,” 7
August 2019. research.checkpoint.com/fakesapp-a-vulnerability-in-whatsapp

274. Page 256. “Royal Cornwall Hospitals NHS Trust reduces medication errors in
pharmacy dispensing,”
healthcare.gs1uk.org/cases/royal-cornwall-hospitals-nhs-trust-medication-errors

20 Human Factors
275. Page 259. Caroline E. Preston and Stanley Harris, “Psychology of drivers in traffic

accidents,” Journal of Applied Psychology, 49(4):284–288, 1965. DOI:
10.1037/h0022453

In this paper, Preston and Harris show that most car drivers think they are better
than average, even when they have a record of bad driving and, when they were
interviewed for the study, are recovering in hospital from a car crash they’d caused!

276. Page 262. There are some terrific books on how stage magic works, and how we are
systematically seduced by psychologically based subterfuge. The point is, if
entertainers can do it deliberately, in a hospital it can certainly happen unintentionally
— and everybody should know what the “tricks” (or poor design features in digital
systems) are that force us to make mistakes again and again.

I strongly recommend these two books: Gustav Kuhn, Experiencing the
impossible: The science of magic, MIT Press, 2019; and Stephen Macknik, Susana
Martinez-Conde, and Sandra Blakeslee, Sleights of Mind, Profile Books, 2011.

277. Page 263. This is the moving account of a hero who turned a catastrophe into
a movement to improve patient safety for everyone. Martin Bromiley, “The
husband’s story: from tragedy to learning and action,” BMJ Quality & Safety,
24:425–427, 2015. DOI: 10.1136/bmjqs-2015-004129

A summary of Elaine Bromiley’s surgery is “The Case of Elaine
Bromiley,” which can be found under chfg.org/chfg-history

278. Page 263. Cricothyrotomy means cutting a hole in the neck through which the patient
can breathe.

279. Page 264. What I call near mistakes are usually, inaccurately, called near misses,
which is a strange phrase. A “near miss” is a miss; I think a near miss itself would be
better called a near hit.

280. Page 264. The contrast between healthcare and aviation safety cultures is brilliantly
discussed in Matt Syed’s book Black Box Thinking. Matt puts Elaine and Martin’s
stories side-by-side with aviation accidents, and contrasts the responses. I’ll discuss
Matt’s book more in Good reading.i

281. Page 264. It sounds unhelpfully negative to say healthcare doesn’t want to know about
failure, but healthcare is full of gag clauses that restrict people, both staff and patients,
from talking openly about incidents. You can easily Google lots, but here’s just one
high-profile example: Andrew Hosken, “NHS chief ‘stopped from speaking on patient
safety’,” BBC News, 14 February 2013. www.bbc.co.uk/news/health-21444058

Or read Dr David Hilfiker’s honest, searing article about his own mistakes and the
pervasive healthcare culture within which he worked: “Facing Our Mistakes,” New
England Journal of Medicine, 310:118–122, 1984. DOI:
10.1056/NEJM198401123100211

Dr Hilfiker says,

i See Chapter 33: Good reading, page 471←

http://www.bbc.co.uk/news/technology-49273606
http://research.checkpoint.com/fakesapp-a-vulnerability-in-whatsapp
http://healthcare.gs1uk.org/cases/royal-cornwall-hospitals-nhs-trust-medication-errors
http://www.doi.org/10.1037/h0022453
http://www.doi.org/10.1037/h0022453
http://www.doi.org/10.1136/bmjqs-2015-004129
http://chfg.org/chfg-history
http://www.bbc.co.uk/news/health-21444058
http://www.doi.org/10.1056/NEJM198401123100211
http://www.doi.org/10.1056/NEJM198401123100211

NOTES | 527

We are not prepared for our mistakes, and we don’t know how to cope
with them when they occur. […] Doctors hide their mistakes from
patients, from other doctors, even from themselves. Open discussion of
mistakes is banished from the consultation room, from the operating
room, from physicians’ meetings. […] We either deny the misfortune
altogether or blame the patient, the nurse, the laboratory, other
physicians, the system, fate — anything to avoid our own guilt. The
medical profession seems to have no place for its mistakes.

282. Page 265. Helen Jones, “Why I … garden,” BMJ, 367:l6647, 2019. DOI:
10.1136/bmj.l6647

283. Page 266. Details of the WHO Surgical Checklist are available on the WHO website.
See www.who.int/patientsafety/safesurgery/checklist/en

284. Page 266. Cleve Bryan, “EXCLUSIVE: Lourdes Hospital Transplant Center Admits
Giving Wrong Person Kidney Transplant,” CBS Philly, 26 November 2019.
philadelphia.cbslocal.com/2019/11/26/exclusive-lourdes-hospital-transplant-
center-admits-giving-wrong-person-kidney-transplant

285. Page 266. Liam Donaldson, “An organisation with a memory,” Clinical Medicine,
2:452–457, 2002.

286. Page 266. Danielle Ofri, “The Business of Health Care Depends on Exploiting Doctors
and Nurses — One resource seems infinite and free: the professionalism of caregivers,”
New York Times, 8 June 2019. www.nytimes.com/2019/06/08/opinion/sunday/
hospitals-doctors-nurses-burnout.html

287. Page 268. An edited collection of personal resilience ideas is Peter Lees and Myra
Malik, editors, Building resilience: A practical resource for healthcare professionals,
CRC Press, 2018. A recommended, powerful personal story is re-humanising.co.uk/
2019/03/29/resilience-lets-treat-the-cause-not-the-symptoms, 29 March 2019.
Finally, a rather academic review of resilience is Siri Wiig, Karina Aase, Stephen Billett,
Carolyn Canfield, Olav Røise, Ove Njå, Veslemøy Guise, Cecilie Haraldseid-Driftland,
Eline Ree, Janet E. Anderson, and Carl Macrae, “Defining the boundaries and
operational concepts of resilience in the resilience in healthcare research program,”
BMC Health Services Research, 20:330, 2020. DOI: 10.1186/s12913-020-05224-3

288. Page 270. Walter Quattrociocchi, Antonio Scala, and Cass R. Sunstein, “Echo
Chambers on Facebook,” draft, 2019.
www.researchgate.net/publication/331936299_Echo_Chambers_on_Facebook

289. Page 270. The NHS has a brief Just Culture Guide. See
improvement.nhs.uk/resources/just-culture-guide

290. Page 271. Saif Khairat, Cameron Coleman, Paige Ottmar, Thomas Bice, Ross Koppel,
and Shannon S. Carson, “Physicians’ gender and their use of electronic health records:
findings from a mixed-methods usability study,” Journal of the American Medical
Informatics Association, DOI: 10.1093/jamia/ocz126

291. Page 272. The 2019 Stack Overflow survey covers many details as well as gender. See
Developer Survey Results, 2019. insights.stackoverflow.com/survey/2019

292. Page 273. “TUI plane in ‘serious incident’ after every ‘Miss’ on board was assigned
child’s weight,” The Guardian, 9 April 2021.
www.theguardian.com/world/2021/apr/09/tui-plane-serious-incident-every-miss-
on-board-child-weight-birmingham-majorca?CMP=Share_AndroidApp_Other
More technical details at: assets.publishing.service.gov.uk/media/
604f423be90e077fdf88493f/Boeing_737-8K5_G-TAWG_04-21.pdf

293. Page 274. Hugh Dubberly, How do You Design: A Compendium of Design Models,
Dubberly Design Office, 2004.
www.dubberly.com/wp-content/uploads/2008/06/ddo_designprocess.pdf

294. Page 274. John Ziman, Reliable knowledge: An exploration of the grounds for belief in
science, Cambridge University Press, revised edition 2008.

http://www.doi.org/10.1136/bmj.l6647
http://www.doi.org/10.1136/bmj.l6647
http://www.who.int/patientsafety/safesurgery/checklist/en
http://philadelphia.cbslocal.com/2019/11/26/exclusive-lourdes-hospital-transplant-center-admits-giving-wrong-person-kidney-transplant
http://philadelphia.cbslocal.com/2019/11/26/exclusive-lourdes-hospital-transplant-center-admits-giving-wrong-person-kidney-transplant
http://www.nytimes.com/2019/06/08/opinion/sunday/hospitals-doctors-nurses-burnout.html
http://www.nytimes.com/2019/06/08/opinion/sunday/hospitals-doctors-nurses-burnout.html
http://re-humanising.co.uk/2019/03/29/resilience-lets-treat-the-cause-not-the-symptoms
http://re-humanising.co.uk/2019/03/29/resilience-lets-treat-the-cause-not-the-symptoms
http://www.doi.org/10.1186/s12913-020-05224-3
http://www.researchgate.net/publication/331936299_Echo_Chambers_on_Facebook
http://improvement.nhs.uk/resources/just-culture-guide
http://www.doi.org/10.1093/jamia/ocz126
http://insights.stackoverflow.com/survey/2019
http://www.theguardian.com/world/2021/apr/09/tui-plane-serious-incident-every-miss-on-board-child-weight-birmingham-majorca?CMP=Share_AndroidApp_Other
http://www.theguardian.com/world/2021/apr/09/tui-plane-serious-incident-every-miss-on-board-child-weight-birmingham-majorca?CMP=Share_AndroidApp_Other
http://assets.publishing.service.gov.uk/media/604f423be90e077fdf88493f/Boeing_737-8K5_G-TAWG_04-21.pdf
http://assets.publishing.service.gov.uk/media/604f423be90e077fdf88493f/Boeing_737-8K5_G-TAWG_04-21.pdf
http://www.dubberly.com/wp-content/uploads/2008/06/ddo_designprocess.pdf

528 | CHAPTER 34

295. Page 274. Daniel M. Wegner, “How to Think, Say, or Do Precisely the Worst Thing for
Any Occasion,” Science, 325(5936):48–50, 2009. DOI: 10.1126/science.1167346

296. Page 275. This quote on personal change has been attributed to many people, and my
attempts to find the source weren’t helped by Jacob Braude himself being an avid
collector of quotes. If in doubt, attributing a wise saying to Benjamin Franklin always
sounds respectable.

297. Page 275. Chip Heath and Dan Heath Switch: How to change things when change is
hard, Random House Business 2011.

21 Computer Factors
298. Page 277. Dean Buonomano, Brain Bugs: How the Brain’s Flaws Shape Our Lives, W.

W. Norton & Company, 2012.
299. Page 278. See the facsimile of Edison’s letter at the Thomas Edison Papers repository:

11/13/1878 Edison, Thomas Alva to Puskas, Theodore (Morgan (J.S.) & Co; Drexel
Morgan & Co; Fabbri and Chauncey; Fabbri, Egisto Paolo; Serrell, Lemuel Wright;
Griffin, Stockton L) Sales and service; Inventions and creativity; Electric light and
power [LB003] Letterbook Series — General Letterbooks: LB-003 (1876–1878)
[LB003487; TAEM 28:913]
edison.rutgers.edu/NamesSearch/SingleDoc.php?DocId=LB003487, cited in
Alexander B. Magoun and Paul Israel, “Did You Know? Edison Coined the Term
‘Bug’,” IEEE Spectrum, August 2013. spectrum.ieee.org/the-institute/ieee-history/
did-you-know-edison-coined-the-term-bug

300. Page 278. Patterns have a long history in Computer Science, having being inspired by
Chris Alexander’s work in architecture, most notably his inspiring book Notes on the
Synthesis of Form, Harvard University Press, 1974. A maintained and up-to-date list
of computing patterns can be found at
en.wikipedia.org/wiki/Software_design_pattern

301. Page 282. Like many popular programming languages used in healthcare, JavaScript
has unsafe types. For example, the expression 1 +1 is equal to 11 and not equal to 2,
as you’d probably expect. The second 1, which is a number, is silently converted — that
is, its type is silently changed — to a string, then appended to the string 1 which
results in the string 11 . Having what you think is 1+1 being equal to 11 is rarely what
anyone expects or wants.

Confusingly, if you did 1 -1 instead, you’d get zero. In other words, + converts 1
to a string then joins the strings, but - converts 1 to a number, then subtracts the
numbers!

These examples may make some sort of sense, but imagine what happens in a
program when you write a+b, as the result will depend in very strange ways on the
types of the values that the variables a and b have. Weirdly, in general, it means that
a+b isn’t equal to b+a.

Bugs happen when this sort of quirky behavior occurs by accident. Every
JavaScript program is just a typo away from chaos. Somebody else may have written
the code that gives your variables values, but your code has to work correctly whatever
the types that come in to it. That’s not at all easy to do. Using better programming
languages than JavaScript — strongly typed languages — avoids such problems.

302. Page 283. Wikipedia doesn’t discuss Computer Factors, but it does give an up-to-date
list of bugs. “Wikipedia: Software bug,” en.wikipedia.org/wiki/Software_bug

303. Page 283. The Curiosity Mars Rover is a car-sized roving vehicle designed to explore
Mars. It was launched in 2011 and is still operational years later. The main reason for
its success is that its software and hardware are redundant. A good article on it is
Gerard J. Holzmann, “Mars Code,” Communications of the ACM, 57(2):64–73, 2014.
DOI: 10.1145/2560217.2560218

http://www.doi.org/10.1126/science.1167346
http://edison.rutgers.edu/NamesSearch/SingleDoc.php?DocId=LB003487
http://spectrum.ieee.org/the-institute/ieee-history/did-you-know-edison-coined-the-term-bug
http://spectrum.ieee.org/the-institute/ieee-history/did-you-know-edison-coined-the-term-bug
http://en.wikipedia.org/wiki/Software_design_pattern
http://en.wikipedia.org/wiki/Software_bug
http://www.doi.org/10.1145/2560217.2560218

NOTES | 529

304. Page 284. Another reason not to program in Javascript: the test if(a < 10) succeeds
without error when the variable a is either true or false! In decent programming
languages, it’d be a compile time error to compare a Boolean variable with an integer.

305. Page 284. C. Jeya K. Henry, “The biology of human starvation: some new insights,”
Nutrition Bulletin, 26:205–211, 2008. DOI: 10.1046/j.1467-3010.2001.00164.x

306. Page 286. See Daniel Keane, “Health boss unsure how many patients impacted by
dosage bungle blamed on Windows upgrade,” ABC News, 7 May 2021.
http://www.abc.net.au/news/2021-05-07/sa-health-unsure-of-patient-impact-of-
medication-dosage-bungle/100122958

Emily Cosenza, “SA nurses on high alert after computer glitch adds extra digit to
medicine dosages: A computer glitch has caused an extra digit to be incorrectly added
to some medicine dosages at several hospitals in one Australian state,” NCA
NewsWire, 6 May 2021. www.news.com.au/national/south-australia/sa-nurses-
on-high-alert-after-computer-glitch-adds-extra-digit-to-medicine-dosages/
news-story/9ff9959cd12f634e30195db405df0dab

According to Emily Cosenza’s report, “Technology experts are working to
determine the cause of the glitch.” Well, the cause of the “glitch” (really, you can call a
ten-times drug overdose just a glitch?) is easy: bad programming, then buying and
using poor quality programs — and, ultimately, the poor regulation and lack of
professional oversight that lets any of that happen.

307. Page 288. A good programming language will check that guards cover all possible
cases, and, if there’s any logical overlap between guards, that the code still does the
same thing under all cases.

Although 1976 now seems a long time ago, Edsger Dijkstra has an excellent
discussion of this philosophy and how it improves program quality: Edsger Wybe
Dijkstra, A Discipline of Programming, Prentice Hall, 1976.

308. Pages 291, 441. Alan Mathison Turing, Lecture to the London Mathematical Society
on the Design of the Automatic Computing Engine, 20 February 1949. Turing Digital
Archive AMT/B/1. www.turingarchive.org/browse.php/B/1

309. Page 290. Nunjucks is an open source template language primarily intended for rapid
development of websites: it generates HTML and JavaScript. Nunjucks is available on
Github atmozilla.github.io/nunjucks

310. Page 290. The ACM Digital Library is at dl.acm.org and the IEEE Xplore Library is at
ieeexplore.ieee.org

311. Page 298. Jon Loeliger and Matthew McCullough, Version Control with Git: Powerful
tools and techniques for collaborative software development, O’Reilly Media, 2012.
(Make sure you get the latest edition!)

312. Page 299. I’m always baffled that we need any special term like Formal Methods.
When you design an airplane or a sports car, you don’t just throw it together and see if
it works; you don’t leave it to special occasions to use “Formal Methods.” No;
engineers use hard mathematics all the time. For some reason, programmers typically
throw software together, and only very rarely use any explicit mathematics at all.

Unlike conventional engineering, as used in aviation and cars, few programs have
any rigorous reasoning in them at all. It’s a shame Formal Methods has become an
arcane specialty. Needing such a term at all is really an acknowledgment that almost all
software development is seat-of-the-pants and pretty sloppy.

313. Page 299. Daniel Jackson, The Essence of Software: Why Concepts Matter for Great
Design, Princeton University Press, 2021.

314. Page 299. Edsger Wybe Dijkstra, Selected Writings on Computing: A Personal
Perspective, Springer-Verlag, 1982.

315. Page 299. The quote is from Dijkstra’s Turing Award Lecture: Edsger Wybe Dijkstra
“The Humble Programmer,” in ACM Turing Award Lectures: The First Twenty Years,
pages 17–32, Addison-Wesley Publishing Company, 1987.

The ACM Turing Awards are the Computer Science equivalent of the Nobel Prize;

http://www.doi.org/10.1046/j.1467-3010.2001.00164.x
http://http://www.abc.net.au/news/2021-05-07/sa-health-unsure-of-patient-impact-of-medication-dosage-bungle/100122958
http://http://www.abc.net.au/news/2021-05-07/sa-health-unsure-of-patient-impact-of-medication-dosage-bungle/100122958
http://www.news.com.au/national/south-australia/sa-nurses-on-high-alert-after-computer-glitch-adds-extra-digit-to-medicine-dosages/news-story/9ff9959cd12f634e30195db405df0dab
http://www.news.com.au/national/south-australia/sa-nurses-on-high-alert-after-computer-glitch-adds-extra-digit-to-medicine-dosages/news-story/9ff9959cd12f634e30195db405df0dab
http://www.news.com.au/national/south-australia/sa-nurses-on-high-alert-after-computer-glitch-adds-extra-digit-to-medicine-dosages/news-story/9ff9959cd12f634e30195db405df0dab
http://www.turingarchive.org/browse.php/B/1
http://mozilla.github.io/nunjucks
http://dl.acm.org
http://ieeexplore.ieee.org

530 | CHAPTER 34

the Turing Award Lectures, written by the Award winners, are without exception
brilliant and well worth reading.

316. Pages 299, 362. E. W. Dijkstra in O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Notes
on Structured Programming, Academic Press, 1972.

22 User Centered Design
317. Page 302. “Test your idea with real users in real situations” — you need to test your

ideas with a representative sample of real users. Testing with a few users is not
sufficient; your tests have to be statistically valid. Testing using people from a group of
“test users” you always use because they’re convenient is also not good enough —
they’ve already got used to your designs. If you are making a product for national use,
say, then testing with users from nearby is not sufficient either. There are likely to be
variations across the country that a local sample of users will not represent.

318. Page 302. Jeffrey Braithwaite, Robert L. Wears, and Erik Hollnagel, Resilient Health
Care, Volume 3: Reconciling Work-as-Imagined and Work-as-Done, CRC Press,
2016.

319. Page 302. Ross Koppel, Sean Smith, Jim Blythe, and Vijay Kothari, “Workarounds to
Computer Access in Healthcare Organizations: You Want My Password or a Dead
Patient?” Studies in Health Technology and Informatics, 208:215–220, 2015. DOI:
10.3233/978-1-61499-488-6-215

320. Page 303. There are many books and papers on task analysis. My advice is to read up
from a chapter in a book on user interface design — task analysis, like UCD itself, is
only one of many great ideas for improving systems. The chapter Good readingj has
many ideas.

321. Page 303. An entire issue of HindSight, 25 (European Organisation for Safety of Air
Navigation), Summer 2017, is devoted to Work as Imagined and Work as Done.
www.eurocontrol.int/sites/default/files/publication/files/hindsight25.pdf

The editor-in-chief is Steven Shorrock, who is well worth Googling for all things
Human Factors, including his extensive work on WAD-WAI. The special issue also has
articles by names you’ll recognize from elsewhere in this book: Sidney Dekker, Erik
Hollnagel, Martin Bromiley, and others.

322. Page 304. Jakob Nielsen and Thomas K. Landauer, “A mathematical model of the
finding of usability problems,” Proceedings ACM INTERCHI’93 Conference,
206–213, ACM, 1993. DOI: 10.1145/169059.169166

More recent discussions can be found at Jakob Nielsen, “Why You Only Need to
Test with 5 Users,”
www.nngroup.com/articles/why-you-only-need-to-test-with-5-users

Note that most of the discussion is about usability problems for generic systems
(websites and so on). Problems certainly need fixing, but in healthcare we have
patients and trained professionals. Digital healthcare usability is a different issue than
for general users; we are more concerned about safety, which these conventional
usability studies say nothing about.

323. Pages 304, 319. Sketching is a technical term in design; it doesn’t mean using a rough
drawing, but a sketch could be a mock-up made out of wood even. Probably the best
book on sketching is Saul Greenberg, Sheelagh Carpendale, Nicolai Marquardt, and
Bill Buxton, Sketching User Experiences, Morgan Kaufmann, 2012.

There is a whole world on good practice in UCD (such as sketching and expert
heuristic evaluation), and while it’s fascinating and essential to use, it’d take us too far
beyond the core of this book. The point of my discussion on how many users is
enough for UCD is to make clear that, at least in healthcare contexts, five users is

j See Chapter 33: Good reading, page 471←

http://www.doi.org/10.3233/978-1-61499-488-6-215
http://www.doi.org/10.3233/978-1-61499-488-6-215
http://www.eurocontrol.int/sites/default/files/publication/files/hindsight25.pdf
http://www.doi.org/10.1145/169059.169166
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users

NOTES | 531

nothing like enough to ensure safety or effectiveness — in fact, safety is a formal
property that requires solid software engineering (certainly supported by UCD), but
UCD alone is not sufficient, however many users are tested.

324. Page 305. The first person who seemed to have noticed this critical question — who
are the users? — was Wilfred J. Hansen, “User Engineering Principles for Interactive
Systems,” Proceedings Fall Joint Computer Conference, AFIPS’71, 523–532, AFIPS,
1971. DOI: 10.1145/1479064.1479159

This classic 1971 article has the great advantage that Hansen’s insights into how to
design better interactive systems are not obscured by lots of modern technology
distractions.

325. Page 306. Denis Campbell, “NHS faces £24m bill after glue injected into girl’s brain at
Great Ormond Street,” The Guardian, 27 January 2014. www.theguardian.com/
society/2014/jan/27/nhs-24m-bill-glue-injected-girls-brain-great-ormond-street

326. Page 306. R. Evley, J. Russell, D. Mathew, R. Hall, L. Gemmell, and R. P. Mahajan,
“Confirming the drugs administered during anæsthesia: a feasibility study in the pilot
National Health Service sites, UK,” British Journal of Anæsthesia, 105(3):289–296,
2010. DOI: 10.1093/bja/aeq194

327. Page 307. Daphna Stroumsa, Elizabeth F. S. Roberts, Hadrian Kinnear, and Lisa H.
Harris, “The Power and Limits of Classification – A 32-Year-Old Man with Abdominal
Pain,” New England Journal of Medicine, 380(20):1885–1888, 16 May 2019. DOI:
10.1056/NEJMp1811491

A more popular newspaper article is here: Marilynn Marchione, “Nurse mistakes
pregnant transgender man as obese. Then, the man births a stillborn baby,” USA
Today, 16 May 2019. www.usatoday.com/story/news/health/2019/05/16/pregnant-
transgender-man-births-stillborn-baby-hospital-missed-labor-signs/3692201002

328. Page 307. Rhiannon Williams, “Facebook’s 71 gender options come to UK users,”
The Telegraph, 27 June 2014. www.telegraph.co.uk/technology/facebook/
10930654/Facebooks-71-gender-options-come-to-UK-users.html

329. Page 308. Prue Thimbleby, Sarah Wright, and Rhian Solomon, “‘Reconstructing
Ourselves” — An arts and research project improving patient experience,” Journal of
Applied Arts & Health, 9(1):113–124, 2018. DOI: 10.1386/jaah.9.1.113_1

330. Page 310. E. Michael Canham and Michael J. Weaver, “Copy, Paste, and Cloned
Electronic Records,” Chest, 146(3):e101, 2014. DOI: 10.1378/chest.14-0759

331. Page 310. Ross Koppel, “Illusions and delusions of cut, pasted, and cloned notes,”
Chest, 145(3):444–445, 2014. DOI: 10.1378/chest.13-1846 — see also the
comments on Ross Koppel’s paper: Justin M. Weis and Paul G. Levy, “Copy, paste,
and cloned notes in health records,” Chest, 145(3):632–638, 2014. DOI:
10.1378/chest.13-0886

332. Page 311. Patrick Vlaskovits, “Henry Ford, Innovation, and That ‘Faster Horse’
Quote,” Harvard Business Review, 29 August 2011.
hbr.org/2011/08/henry-ford-never-said-the-fast

23 Iterative Design
333. Page 314. A company was using a simple web form, which, unknown to them, was

putting customers off — it was only two buttons and two fields; how could that
possibly go wrong? But they didn’t know what they didn’t know. The customers who
were giving up never crossed their radar.

UCD experts ran focus groups, and identified some serious design problems with
the form. Fixing the design problems increased the income of the company by $300
million a year!

This famous UCD story is described here: Luke Wroblewski, Web Form Design:
Filling in the Blanks, Rosenfeld Media, 2008.

http://www.doi.org/10.1145/1479064.1479159
http://www.theguardian.com/society/2014/jan/27/nhs-24m-bill-glue-injected-girls-brain-great-ormond-street
http://www.theguardian.com/society/2014/jan/27/nhs-24m-bill-glue-injected-girls-brain-great-ormond-street
http://www.doi.org/10.1056/NEJMp1811491
http://www.doi.org/10.1056/NEJMp1811491
http://www.usatoday.com/story/news/health/2019/05/16/pregnant-transgender-man-births-stillborn-baby-hospital-missed-labor-signs/3692201002
http://www.usatoday.com/story/news/health/2019/05/16/pregnant-transgender-man-births-stillborn-baby-hospital-missed-labor-signs/3692201002
http://www.telegraph.co.uk/technology/facebook/10930654/Facebooks-71-gender-options-come-to-UK-users.html
http://www.telegraph.co.uk/technology/facebook/10930654/Facebooks-71-gender-options-come-to-UK-users.html
http://www.doi.org/10.1386/jaah.9.1.113_1
http://www.doi.org/10.1378/chest.14-0759
http://www.doi.org/10.1378/chest.13-1846
http://www.doi.org/10.1378/chest.13-0886
http://www.doi.org/10.1378/chest.13-0886
http://hbr.org/2011/08/henry-ford-never-said-the-fast

532 | CHAPTER 34

334. Page 319. Design Council, What is the framework for innovation? Design Council’s
evolved Double Diamond, 2019. www.designcouncil.org.uk/news-opinion/what-
framework-innovation-design-councils-evolved-double-diamond

335. Page 319. More precisely, we — me and Mandy — might both be idiosyncratic, but
that is much less likely than one user is idiosyncratic. More to the point, I’ll admit to
being idiosyncratic in some ways — I’m very interested in UCD, for a start — but
Mandy is different to me, so it’s reassuring and a good check to see the UCD problems
I discussed at the beginning of the chapter being experienced by somebody who isn’t
into UCD at all.

336. Page 320. Clinipad’s website is softwareofexcellence.co.uk/solutions/clinipad
337. Page 320. One problem is that Clinipad has made the iPads visually very faithfully

represent the old paper forms, but apparently overlooked providing any digital
advantages. There’s no apparent Computational Thinking — the forms are harder for
the user to fill in than paper was (but they keep a record, even if errors happen, for the
manager). Many of the useful features of paper forms are gone too: you can’t cross out
a section, for instance. Clinipad have created new problems too; for instance, in the
“old days,” lots of patients waiting could fill in their paper forms; now, the queue
behind the receptionist gets longer and longer, as the two expensive iPads are devoted
to just one patient. See note 95 for more discussion on the paperless revolution.

24 Wedge Thinking
338. Page 328. I could wire up a socket with low current wire. The socket will seem to

work fine when I check it, but if, say, a high power heater is plugged in, my thin wiring
will get hot. This could cause a fire.

Outdoor wiring and wiring near water pose additional risks that amateur
electricians may ignore and not provide the appropriate protections for. When the
wiring is dry, it’ll seem to work just fine, but when it’s wet, it can kill.

339. Page 329. For more on the Enigma and its Human Factors chaos, see Harold
Thimbleby, “Human Factors and missed solutions to Enigma design weaknesses,”
Cryptologia, 40(2):177–202, 2016. DOI: 10.1080/01611194.2015.1028680

340. Page 329. A lot of very interesting research has been done on how we are
unconsciously over-confident when we communicate — what we say seems obvious to
us, but it’s less obvious to others.

(I think my jokes are very good — I already know why they are funny — but
unfortunately other people don’t always get them. That’s the same problem!)

When it comes to programming, that means what we program seems more
obvious to us than it does to users later, and the research shows that we do not realize
how critical this difference really is.

This article has some nice stories and pointers to the wider literature: Boaz Keysar
and Anne S. Henly, “Speakers’ Overestimation of Their Effectiveness,” Psychological
Science, 13(3):207–212, 2002.

341. Page 330. Peter J. Pronovost and Eric Vohr, Safe Patients, Smart Hospitals, Penguin,
2011. This book is so powerful, it’s also discussed in Good reading.

342. Page 331. One of the problems in industry is that it sort of makes sense to have
separate technical authors to write instructions, and they can’t write instructions until
the design is finished. But this is so wrong! Once the instructions are written, they
should be checked and tested and the design improved iteratively to help make the
instructions clearer and clearer.

343. Page 331. A good place to start on technical debt is the Wikipedia article on it:
en.wikipedia.org/wiki/Technical_debt

http://www.designcouncil.org.uk/news-opinion/what-framework-innovation-design-councils-evolved-double-diamond
http://www.designcouncil.org.uk/news-opinion/what-framework-innovation-design-councils-evolved-double-diamond
http://softwareofexcellence.co.uk/solutions/clinipad
http://www.doi.org/10.1080/01611194.2015.1028680
http://en.wikipedia.org/wiki/Technical_debt

NOTES | 533

344. Page 331. For more on User Centered Design and Human Computer Interaction,
please see the Good reading chapter for more information.k

345. Page 333. Here is the classic — eye-opening — paper on N version programming. The
authors compared 15 independently-developed programs for seismic data analysis.
The programs (which had been used professionally) had numerous previously
unknown bugs revealed by the N version programming. Les Hatton and Andy Roberts,
“How accurate is scientific software?” IEEE Transactions on Software Engineering,
20(10):785–797, 1994, DOI: 10.1109/32.328993

346. Page 334. Atul Gawande, The Checklist Manifesto: How to Get Things Right,
Profile Books, 2011. Programming and healthcare are both complex
activities, and it’s easy to forget or overlook important ideas — checklists are
your way out. Gawande has written a very readable and fascinating account
of these under-rated checklists and how they are used in all successful,
complex activities. The World Health Organization’s surgical checklist is one
example, but checklists are used in aviation, fire fighting, large building
construction, and more.

347. Page 334. The National Cancer Research Institute (NCRI), Cancer research in the UK
2002–2011: An overview of the research funded by NCRI Partners, 2013.

25 Attention to detail
348. Page 338. Paul B. Batalden and Frank Davidoff, “What is ‘quality improvement’ and

how can it transform healthcare?” BMJ Quality & Safety, 16:2–3, 2007. DOI:
10.1136/qshc.2006.022046

349. Page 340. There is a discrepancy between the printed units (mL/h) and the displayed
units (mg/h). Is this a programming bug or a hardware bug? Which was designed
first? Did the programmer not use the hardware specification, or did the hardware
designer not use the program specification? Why didn’t the programmer update the
software after the discrepancy occurred? I think it’s pointless worrying whether bugs
are hardware or software, or even where they come from. Computers are both
hardware and software.

350. Pages 340, 345. Watch the video at youtu.be/eK3oIYU060g or read Harold
Thimbleby, “Reasons to Question Seven Segment Displays,” Proceedings ACM
Conference on Computer-Human Interaction, ACM CHI, 1431–1440, ACM, 2013.
DOI: 10.1145/2470654.2466190

Although the Alaris PC suffers from the problems I pointed out that are common
with seven-segment displays, the Alaris PC actually uses a 12-segment display, but it
shares the same problems. It’s pointless to question whether the problems with the
Alaris PC arise from a segment display or from recessing the display too much; the
point is, it can be misread.

351. Page 341. Matt Burgess and Nicole Kobie, “The messy, cautionary tale of how
Babylon disrupted the NHS,” Wired, 18 March 2019.
www.wired.co.uk/article/babylon-health-nhs

352. Page 341. Aliya Ram and Sarah Neville, “High-profile health app under scrutiny after
doctors’ complaints,” Financial Times, 13 July 2018.
www.ft.com/content/19dc6b7e-8529-11e8-96dd-fa565ec55929

353. Page 341. Leo Kelion, “Babylon Health admits GP app suffered a data breach,” BBC
News, 10 June 2020. www.bbc.co.uk/news/technology-52986629

354. Page 341. Rory Glover’s Twitter handle is @Rory_Glover
355. Page 342. Laura Lovett, “Chatbot Babylon fires back at Twitter critic by publicly

analyzing his search data. The company’s move has come under fire for privacy

k See Chapter 33: User Centered Design reading recommendations, page 482←

http://www.doi.org/10.1109/32.328993
http://www.doi.org/10.1136/qshc.2006.022046
http://www.doi.org/10.1136/qshc.2006.022046
http://youtu.be/eK3oIYU060g
http://www.doi.org/10.1145/2470654.2466190
http://www.wired.co.uk/article/babylon-health-nhs
http://www.ft.com/content/19dc6b7e-8529-11e8-96dd-fa565ec55929
http://www.bbc.co.uk/news/technology-52986629
http://twitter.com/Rory_Glover

534 | CHAPTER 34

concerns,” mobihealthnews, 25 February 2020. mobihealthnews.com/news/
chatbot-babylon-fires-back-twitter-critic-publicly-analyzing-his-search-data

Natasha Lomas, “AI chatbot maker Babylon Health attacks clinician in PR stunt
after he goes public with safety concerns,” TechCrunch, 26 February 2020.
techcrunch.com/2020/02/25/first-do-no-harm

356. Pages 342 twice, 343. press@babylonhealth.com, “Babylon results published after
2400 Twitter troll tests,” assets.babylonhealth.com/pdfs/Babylon-results-
published-after-2400-Twitter-troll-tests.pdf, 24 February 2020.

357. Page 342. My harsh assessment of Babylon and the regulators is an increasingly
common perspective. For an independent summary of the issues, see Gareth
Iacobucci, “Row over Babylon’s chatbot shows lack of regulation,” BMJ, 368:m815,
2020. DOI: 10.1136/bmj.m815

358. Page 342. Katherine Middleton, Mobasher Butt, Nils Hammerla, Steven Hamblin,
Karan Mehta, and Ali Parsa, “Sorting out symptoms: design and evaluation of the
‘babylon check’ automated triage system,” ArXiv, abs/1606.02041, 2016.

359. Page 342. This article is well-researched and includes further references: “Babylon
Health,” Best Practice Artificial Intelligence,
bestpractice.ai/studies/babylon_health_claims_82_accuracy_for_video_medical_
diagnosis_based_on_machine_learning_and_natural_language_processing,
undated, but viewed 26 February 2020.

360. Pages 344, 534. Interestingly, this book is a program. I wrote it in LATEX, which not
only did the typesetting but is also a complete, if rather quirky, programming system.

For example, this note 360 you’re reading right now, refers back to the page
numbers of the pages where it was referred to — and you can see it’s been referenced
on two pages, one of which is this one. The book as a program works out (hopefully)
the correct numbers to use for notes and their pages.

The word “Pages,” above, however, is not “in” the book but is in the program that
runs the book. The same program also generates details like the index and the table of
contents, and many other features, like the note numbers themselves.

From an internationalization perspective, this means that if the book is translated
to another language, then all English words like “Page” in the program will also have to
be translated — otherwise the notes will go wrong. Even worse, the word “English” in
the previous sentence, but probably nowhere else, will need, not translating, but
changing to the name of the new language the book is translated into.
Internationalization isn’t easy!

361. Page 345. David Shepardson, “GM recalls 4.3 million vehicles over air bag-related
defect,” Reuters, 9 September 2016.
www.reuters.com/article/us-gm-recall-idUSKCN11F2AH

26 Planes are safer
362. Page 347. Kathy McGrath, “The LASCAD Project: A Failed Implementation or a Way

of Understanding the Present?” Journal of Intelligent Systems, 10(5–6):509–538,
2011. DOI: 10.1515/JISYS.2000.10.5-6.509

363. Page 347. BBC News, “London ambulance service hit by New Year fault,” 1 January
2017. www.bbc.co.uk/news/uk-38482746

364. Page 350. My figures combine data from the World Bank at
data.worldbank.org/indicator/IS.AIR.PSGR?end=2017&start=1970&view=chart and
from Boeing, via Wikipedia at
en.wikipedia.org/wiki/Aviation_accidents_and_incidents##Statistics

The industry standard data is from Boeing, and is fascinating and well presented;
see Statistical Summary of Commercial Jet Airplane Accidents Worldwide Operations,
1959–2016,

http://mobihealthnews.com/news/chatbot-babylon-fires-back-twitter-critic-publicly-analyzing-his-search-data
http://mobihealthnews.com/news/chatbot-babylon-fires-back-twitter-critic-publicly-analyzing-his-search-data
http://techcrunch.com/2020/02/25/first-do-no-harm
mailto:press@babylonhealth.com
http://assets.babylonhealth.com/pdfs/Babylon-results-published-after-2400-Twitter-troll-tests.pdf
http://assets.babylonhealth.com/pdfs/Babylon-results-published-after-2400-Twitter-troll-tests.pdf
http://www.doi.org/10.1136/bmj.m815
https://arxiv.org/abs/1606.02041
http://bestpractice.ai/studies/babylon_health_claims_82_accuracy_for_video_medical_diagnosis_based_on_machine_learning_and_natural_language_processing
http://bestpractice.ai/studies/babylon_health_claims_82_accuracy_for_video_medical_diagnosis_based_on_machine_learning_and_natural_language_processing
http://www.reuters.com/article/us-gm-recall-idUSKCN11F2AH
http://www.doi.org/10.1515/JISYS.2000.10.5-6.509
http://www.bbc.co.uk/news/uk-38482746
http://data.worldbank.org/indicator/IS.AIR.PSGR?end=2017&start=1970&view=chart
http://en.wikipedia.org/wiki/Aviation_accidents_and_incidents\#\#Statistics

NOTES | 535

www.boeing.com/resources/boeingdotcom/company/about_bca/pdf/statsum.pdf
365. Page 351. I compared the risk of dying on a plane with the risk of sitting in an

armchair — arguing that flying is safer — because it helps you to think about statistics
and sampling (what population of people are we measuring?). Most people flying
walk onto the plane, so almost all passengers are healthy, and certainly they are
mobile. In contrast, a lot of people sitting in armchairs are, as a whole, more likely to
be less mobile than passengers. Many people sitting in armchairs are old or ill people;
certainly there are more old and ill people sitting in armchairs right now than there are
sitting in planes. In short, on average people sitting in armchairs are more likely to die.
This doesn’t mean that you can lengthen your life by going off flying instead of
collapsing in an armchair!

366. Page 351. Sully Sullenberger, “We must not forget,” Blog,
www.sullysullenberger.com/we-must-not-forget

367. Page 352. “US Airways Flight 1549”, Wikipedia,
en.wikipedia.org/wiki/US_Airways_Flight_1549

368. Pages 352, 354. The software Boeing put in the 737 MAX was called the
Maneuvering Characteristics Augmentation System, or MCAS. Gregory Travis, “How
the Boeing 737 Max Disaster Looks to a Software Developer,” IEEE Spectrum, 18
April 2019. spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-
disaster-looks-to-a-software-developer

The 737 MAX story is complex, investigations are ongoing, and the report by
Travis is not without controversy. A more recent, and very readable, summary of the
story is available on the BBC: Theo Leggett, “What went wrong inside Boeing’s
cockpit,” 17 December 2019. bbc.in/2HoGKrx

369. Page 353. FDA, “MDR Data Files,” 21 June 2019.
www.fda.gov/medical-devices/medical-device-reporting-mdr-how-report-
medical-device-problems/mdr-data-files

370. Page 353. Ben Hallman, “FDA Releases Vast Trove Of Hidden Medical Device Injury
And Malfunction Reports,” The International Consortium of Investigative Journalists,
24 June 2019. www.icij.org/investigations/implant-files/fda-releases-vast-trove-
of-hidden-medical-device-injury-and-malfunction-reports and Christina Jewett,
“FDA To End Program That Hid Millions Of Reports On Faulty Medical Devices,”
Kaiser Health News, KHN, 3 May 2019. khn.org/news/fda-to-end-program-that-
hid-millions-of-reports-on-faulty-medical-devices

371. Page 353. “Kaiser Health News Wins Feddie Award,” 1 November 2019.
nationalpress.org/newsfeed/kaiser-health-news-wins-feddie-award

372. Page 353. The Indonesian investigation into the accident, KNKT.18.10.35.04, Aircraft
Accident Investigation Report, PT. Lion Mentari Airlines, Boeing 737-8 (MAX);
PK-LQP, can be found here: knkt.dephub.go.id/knkt/ntsc_aviation/baru/2018%20-
%20035%20-%20PK-LQP%20Final%20Report.pdf

A more accessible BBC News report on it is here: Theo Leggett, “Boeing 737 Max
Lion Air crash caused by series of failures,” BBC, 25 October 2019.
www.bbc.co.uk/news/business-50177788

373. Page 354. See James Dean, “US aircraft watchdog staff ‘afraid to challenge Boeing’,”
The Times, 30 July 2019. www.thetimes.co.uk/article/us-aircraft-watchdog-staff-
afraid-to-challenge-boeing-vrrrkps0r

374. Page 355. This comparison of pilot and surgeon skill was made by Jeremy Hunt, the
then UK Secretary of State for Health, in the 2017 World Health Organization’s Global
Ministerial Summit in Bonn, Germany.

375. Page 355 twice. Stephanie Nebehay, “Going into hospital far riskier than flying:
WHO,” Health News, 21 July 2011.
www.reuters.com/article/us-safety-idUSTRE76K45R20110721

376. Page 356. “Software and IT systems.” Some people want to make distinctions
between algorithms, software, programs, electronics, and so on. There are useful

http://www.boeing.com/resources/boeingdotcom/company/about_bca/pdf/statsum.pdf
http://www.sullysullenberger.com/we-must-not-forget
http://en.wikipedia.org/wiki/US_Airways_Flight_1549
http://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-developer
http://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-developer
http://bbc.in/2HoGKrx
http://www.fda.gov/medical-devices/medical-device-reporting-mdr-how-report-medical-device-problems/mdr-data-files
http://www.fda.gov/medical-devices/medical-device-reporting-mdr-how-report-medical-device-problems/mdr-data-files
http://www.icij.org/investigations/implant-files/fda-releases-vast-trove-of-hidden-medical-device-injury-and-malfunction-reports
http://www.icij.org/investigations/implant-files/fda-releases-vast-trove-of-hidden-medical-device-injury-and-malfunction-reports
http://khn.org/news/fda-to-end-program-that-hid-millions-of-reports-on-faulty-medical-devices
http://khn.org/news/fda-to-end-program-that-hid-millions-of-reports-on-faulty-medical-devices
http://nationalpress.org/newsfeed/kaiser-health-news-wins-feddie-award
http://knkt.dephub.go.id/knkt/ntsc_aviation/baru/2018 - 035 - PK-LQP Final Report.pdf
http://knkt.dephub.go.id/knkt/ntsc_aviation/baru/2018 - 035 - PK-LQP Final Report.pdf
http://www.bbc.co.uk/news/business-50177788
http://www.thetimes.co.uk/article/us-aircraft-watchdog-staff-afraid-to-challenge-boeing-vrrrkps0r
http://www.thetimes.co.uk/article/us-aircraft-watchdog-staff-afraid-to-challenge-boeing-vrrrkps0r
http://www.reuters.com/article/us-safety-idUSTRE76K45R20110721

536 | CHAPTER 34

professional distinctions between the terms, but in Computer Science, all are formally
equivalent: anything you can do in software you can do in hardware, and there are no
hard-and-fast distinctions.

377. Page 356. James Rodger, “Stephen Pettitt’s heartbroken family speak out after he died
following robotic heart surgery,” Birmingham Live, 8 November 2018.
www.birminghammail.co.uk/news/uk-news/stephen-pettitts-heartbroken-
family-speak-15390579

378. Page 358. Justin Kruger and David Dunning, “Unskilled and Unaware of It: How
Difficulties in Recognizing One’s Own Incompetence Lead to Inflated Self
Assessments,” Journal of Personality and Social Psychology, 77(6):1121–1134,
1999. DOI: 10.1037/0022-3514.77.6.1121

It’s a great paper which is well worth reading. It even won the authors the Ig Nobel
Prize.

379. Page 358. Meta-skills are skills about skills. When you are programming, you
obviously think about the programming you are doing, but if you have meta-skills you
also think about how you are programming, how you are solving problems, how you
can get better, and so on.

Everyone makes mistakes, but people with meta-skills think about the mistakes
they may have made but haven’t noticed yet — people trained with meta-skills are not
only much better programmers, but they continue to get better and better. People
rarely learn to practice meta-skills effectively without coaching.

380. Page 358. Nicola Woolcock, “Firms hold hacking contests to recruit teenage IT
experts,” The Times, 29 May 2017. www.thetimes.co.uk/article/firms-hold-
hacking-contests-to-recruit-teenage-it-experts-bb0s5g0vm

381. Page 359. Walter Loeb, “Amazon Is The Biggest Investor In The Future, Spends $22.6
Billion On R&D,” Forbes, 1 November 2018.
www.forbes.com/sites/walterloeb/2018/11/01/amazon-is-biggest-investor-for-the-
future/#7f7a4c961f1d

382. Page 360. A very few things, like transplants and blood transfusions, are amazingly
fungible, provided you do enough homework first to avoid rejection.

383. Page 363. Sophie Borland, “Up to 300,000 heart patients may have been given wrong
drugs or advice due to major NHS IT blunder,” Daily Mail, 12 May 2016.
www.dailymail.co.uk/health/article-3585149/Up-300-000-heart-patients-given-
wrong-drugs-advice-major-NHS-blunder.html or Alex Matthews-King, “GPs to
review 260,000 patients as full scale of CV risk calculator error revealed,” PULSE, 9
June 2016. www.pulsetoday.co.uk/clinical/clinical-specialties/cardiovascular/
gps-to-review-260000-patients-as-full-scale-of-cv-risk-calculator-error-
revealed/20032035.article

384. Page 363. Many clinical programs use codes (such as SNOMED-CT) for
systematically classifying medical terms. The bugs with SystmOne/QRISK arose
because some clinical codes were accidentally omitted and some codes were
incorrectly mapped between two different coding schemes. So, while the basic
calculator QRISK was “correct,” the data (based on the code mapping it was using) was
incorrect. See Ben Heather, “QRisk2 in TPP “fixed” but up to 270,000 patients
affected,” Digitalhealth, 10 June 2016. www.digitalhealth.net/2016/06/qrisk2-in-
tpp-fixed-but-up-to-270000-patients-affected

385. Page 363. Chris Smyth, “Medical records of 150,000 patients shared by mistake,”
The Times, 3 July 2018. See also: BBC News, “NHS data breach affects 150,000
patients in England,” 2 July 2018. www.bbc.co.uk/news/technology-44682369

386. Page 363. Kath Moser, Sarah Sellars, Margot Wheaton, Julie Cooke, Alison Duncan,
Anthony Maxwell, Michael Michell, Mary Wilson, Valerie Beral, Richard Peto, Mike
Richards, and Julietta Patnick, “Extending the Age Range for Breast Screening in
England: Pilot Study to Assess the Feasibility, Acceptability of Randomization,” Journal
of Medical Screening, 18(2):96–102, 2011. DOI: 10.1258/jms.2011.011065

http://www.birminghammail.co.uk/news/uk-news/stephen-pettitts-heartbroken-family-speak-15390579
http://www.birminghammail.co.uk/news/uk-news/stephen-pettitts-heartbroken-family-speak-15390579
http://www.doi.org/10.1037/0022-3514.77.6.1121
http://www.thetimes.co.uk/article/firms-hold-hacking-contests-to-recruit-teenage-it-experts-bb0s5g0vm
http://www.thetimes.co.uk/article/firms-hold-hacking-contests-to-recruit-teenage-it-experts-bb0s5g0vm
http://www.forbes.com/sites/walterloeb/2018/11/01/amazon-is-biggest-investor-for-the-future/#7f7a4c961f1d
http://www.forbes.com/sites/walterloeb/2018/11/01/amazon-is-biggest-investor-for-the-future/#7f7a4c961f1d
http://www.dailymail.co.uk/health/article-3585149/Up-300-000-heart-patients-given-wrong-drugs-advice-major-NHS-blunder.html
http://www.dailymail.co.uk/health/article-3585149/Up-300-000-heart-patients-given-wrong-drugs-advice-major-NHS-blunder.html
http://www.pulsetoday.co.uk/clinical/clinical-specialties/cardiovascular/gps-to-review-260000-patients-as-full-scale-of-cv-risk-calculator-error-revealed/20032035.article
http://www.pulsetoday.co.uk/clinical/clinical-specialties/cardiovascular/gps-to-review-260000-patients-as-full-scale-of-cv-risk-calculator-error-revealed/20032035.article
http://www.pulsetoday.co.uk/clinical/clinical-specialties/cardiovascular/gps-to-review-260000-patients-as-full-scale-of-cv-risk-calculator-error-revealed/20032035.article
http://www.digitalhealth.net/2016/06/qrisk2-in-tpp-fixed-but-up-to-270000-patients-affected
http://www.digitalhealth.net/2016/06/qrisk2-in-tpp-fixed-but-up-to-270000-patients-affected
http://www.bbc.co.uk/news/technology-44682369
http://www.doi.org/10.1258/jms.2011.011065

NOTES | 537

387. Page 363. Laura Donnelly, “Breast screening scandal deepens as IT firm says senior
health officials ignored its warnings,” Daily Telegraph, 4 May 2018.
www.telegraph.co.uk/news/2018/05/04/breast-screening-scandal-deepens-firm-
says-senior-health-officials

388. Page 363. Independent Breast Screening Review, Her Majesty’s Stationery Office,
2018.

27 Stories for developers
389. Page 367. For simplicity, I wrote “say(*)” in the code, as I think it’s a clear way to

show what I mean. If you want to run this code in a browser, you’ll need to write
something like “document.write(*);” (or define the function say(s) yourself), but
these easy details aren’t what the question is about.

390. Page 368. It’s fairly obvious that f(n) prints lots of stars — but exactly how many stars
does it print?

It’s easy enough to work out in your head that for n < 0, n = 0, n = 1 or n = 2 then
f(n) prints 1 star; if n is 3, it prints 2 stars. Then it starts to get a bit harder! If n is 4, it
prints 3 stars. Then it probably gets too hard to do reliably in your head. Instead, you
could try running the code f(n) to check things, but that doesn’t really help you
understand exactly what f(n) does in general.

In general, f(n) prints as many stars as f(n–1) and f(n–2) combined. This is
reminiscent of the Fibonacci series; indeed, for n > 0, f(n) prints Fn stars, where Fn is
the nth Fibonacci number. You could work this out by trying out the program to see
what it does — you could just recognize the pattern, as it prints 1, 1, 2, 3, 5, 8, 13,
21… stars — which are the first few Fibonacci numbers.

However, to prove it is the Fibonacci series is a bit harder, but it’s essential to do
so, because you don’t really know what any piece of program does until it’s proven.

Usually we are not so lucky to get a problem with a form, here Fibonacci numbers,
that we recognize. In most cases, then, we need to use sophisticated tools, such as
symbolic mathematics systems, such as Mathematica. To use them effectively, we
need to first learn the sort of material found in Concrete Mathematics: A Foundation
for Computer Science by Ronald L. Graham, Donald E. Knuth, and Oren Patashnik,
second edition, Addison-Wesley, 1994, which tells you pretty much everything.

391. Page 369. Heartbleed, en.wikipedia.org/wiki/Heartbleed
392. Page 369. Farhad Manjoo, “Users’ Stark Reminder: As Web Grows, It Grows Less

Secure,” New York Times, 9 April 2104.
www.nytimes.com/2014/04/10/technology/users-stark-reminder-as-web-grows-
it-grows-less-secure.html?ref=farhadmanjoo&_r=0

393. Page 369. A revelation of the Boeing 737 MAX story was that a lot of the
safety-critical programming was out-sourced to other countries, and almost certainly
had less oversight.

394. Page 370. BBC News, “Health records ‘put at risk by security bugs’,” 7 August 2018.
www.bbc.co.uk/news/technology-45083778

395. Page 370. In PHP, if you misspell a name, the name is taken to be a constant. So
typing tem incorrectly instead of temp is not a recognized error, but gives you the
value tem (a string) rather than the value of the variable, temp, you wanted. Your
program won’t work, and PHP won’t help you find the problem. In JavaScript,
misspelling a name is an error, and the system will help you track it down.

396. Page 371. Kevin C. O’Kane, The Mumps Programming Language, CreateSpace
Independent Publishing Platform, 2008.

397. Page 371. Ross Koppel and Christoph U. Lehmann, “Implications of an emerging EHR
monoculture for hospitals and healthcare systems,” Journal of the American Medical
Informatics Association, 22:465–471, 2015. DOI: 10.1136/amiajnl-2014-003023

http://www.telegraph.co.uk/news/2018/05/04/breast-screening-scandal-deepens-firm-says-senior-health-officials
http://www.telegraph.co.uk/news/2018/05/04/breast-screening-scandal-deepens-firm-says-senior-health-officials
http://en.wikipedia.org/wiki/Heartbleed
http://www.nytimes.com/2014/04/10/technology/users-stark-reminder-as-web-grows-it-grows-less-secure.html?ref=farhadmanjoo&_r=0
http://www.nytimes.com/2014/04/10/technology/users-stark-reminder-as-web-grows-it-grows-less-secure.html?ref=farhadmanjoo&_r=0
http://www.bbc.co.uk/news/technology-45083778
http://www.doi.org/10.1136/amiajnl-2014-003023

538 | CHAPTER 34

398. Page 373 twice. Sydney Lupkin, “Like clockwork: How daylight saving time stumps
hospital record keeping,” USA Today, 3 November 2018.
eu.usatoday.com/story/news/health/2018/11/03/daylight-saving-time-hospital-
electronic-medical-records-emergency-fall-back/1864579002

399. Page 373. Harold Thimbleby, “Can Anyone Work the Video?,” New Scientist,
129(1757):48–51, 1991.

400. Page 373. The Y2K problem arose because programmers were tempted to store the
year using only two digits, a seemingly nice plan to cover the years from 1900 to
1999. Unfortunately, this idea meant that the next year after 99 would be 0, so instead
of 1999 becoming 2000 with the turn of the new millennium, it would turn into 1900
instead.

401. Page 373. Harold Thimbleby, “Heedless Programming: Ignoring Detectable Error is a
Widespread Hazard,” Software — Practice & Experience, 42(11):1393–1407, 2012.
DOI: 10.1002/spe.1141

402. Page 374. I’ve made the analogy that English is a type, and I want my book to make
sense in the specific type of English. So if I write words that are from another
language, that would be reported as an error.

Serious programming languages go a step further with polymorphic types,
which, as it were, means I’d be able to say I want the book to make sense in any
language, which I don’t have to specify explicitly, say French or German, so long as the
book makes consistent sense throughout in that language. (Does anyone want to
translate my book, please?)

403. Page 375. There has been a lot of research on what we think are dependable
programming languages, but surprisingly little research on how safe programming
languages are when they are actually used, and — surprise, surprise! — even less
research on what is safe and effective for digital healthcare.

Here is a very interesting bit of research that has a very useful discussion on its
limitations: Emery D. Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek,
“On the Impact of Programming Languages on Code Quality,” arXiv:1901.10220
[cs.SE], 2019.

404. Page 375. Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer,
“Safe Systems Programming in Rust,” Communications of the ACM, 64(4):144–152,
2021. DOI: 10.1145/3418295

405. Pages 375, 485. Good readingl has more ideas, but a short paper that is easy to access
on Alloy is Daniel Jackson, “Alloy: A lightweight Object Modelling Notation,” ACM
Transactions on Software Engineering and Methodology, 11(2):256–290, 2002.
DOI: 10.1145/505145.505149

406. Page 375. One of the problems writing a book like this is everything is changing. On
MISRA C, for instance, there’s a 2018 paper describing the next version, which is
called MISRA C:2012 — even it’s struggling to catch up! See Frank van den Beuken,
“The Future MISRA C under the Spotlight,” Proceedings Twenty-sixth Safety Critical
Systems Symposium, 155–164, SCSC Publications, 2018.

There is of course much more about safe programming that Fix IT cannot cover;
the point is to be aware that there are many resources, and then find out what’s best
practice at the time it’s needed.

407. Page 376. For discussion of Formal Methods and benefits, such as reducing bugs per
thousand lines of code, see these classics:

John A. McDermid and Tim P. Kelly, “Software in Safety Critical Systems:
Achievement and Prediction,” Nuclear Future, 2(3):34–40, 2006. DOI:
10.1680/nuen.2006.2.3.140

and
Jean-Louis Boulanger, editor, Industrial Use of Formal Methods: Formal

Verification, John Wiley & Sons, 2012.

l See Chapter 33: Good reading, page 471←

http://eu.usatoday.com/story/news/health/2018/11/03/daylight-saving-time-hospital-electronic-medical-records-emergency-fall-back/1864579002
http://eu.usatoday.com/story/news/health/2018/11/03/daylight-saving-time-hospital-electronic-medical-records-emergency-fall-back/1864579002
http://www.doi.org/10.1002/spe.1141
http://arXiv:1901.10220
http://www.doi.org/10.1145/3418295
http://www.doi.org/10.1145/505145.505149
http://www.doi.org/10.1680/nuen.2006.2.3.140
http://www.doi.org/10.1680/nuen.2006.2.3.140

NOTES | 539

Counting bugs can be used to improve the quality of code, regardless of Formal
Methods. For example, count bugs found per kLoC every week, and fit the data to a
distribution (a Poisson distribution will do). Now you can calculate how much effort to
put into getting whatever target level of defects per kLoC you want before the software
is released for use.

408. Page 377. MISRA C forbids recursion, since you do not want to run out of stack space
in a safety-critical system. The example code at the beginning of this chapter is
recursive, so would be banned by MISRA C on those grounds alone. (So if you use
MISRA C, you don’t need to answer the question!)

409. Pages 378, 390. There is a lot of popular excitement on Agile methods. Far and away
the best — though more academic than practical — resource on Agile is Bertrand
Meyer, Agile! The Good, the Hype and the Ugly, Springer, 2014.

410. Page 378. Facebook’s now historic slogan has been discussed widely, and it isn’t just a
problem for healthcare. See Jonathan Taplin, Move Fast and Break Things: How
Facebook, Google and Amazon Have Cornered Culture and Undermined Democracy,
Pan, 2018.

28 Finding bugs
411. Page 383. Bank account numbers have check digits. I didn’t use Grete Fossbakk’s

actual account number, and I used a very simple check digit scheme to make it easy to
understand what happened. In my example, the eleventh digit is the sum of all other
digits, and then take the remainder when divided by 10. This very simple scheme does
not detect transposing digits, something real check digit schemes can easily cope with.
See Kai A. Olsen, “The $100,000 Keying Error,” IEEE Computer, 41(4):106–108,
2008. DOI: 10.1109/MC.2008.135

The IEEE Computer journal’s citation (available at the DOI) for this article was
given as pages 108–107 [sic], which piqued my copy editor’s interest! In fact, the
article’s first page is 108, then it jumps backward to page 106, then it finishes part way
down page 107. So the computer-generated citation looks backwards, and it certainly
misses out page 106. It’s a bug.

The programmer didn’t expect articles to jump around a journal non-sequentially
— despite it being quite common for the final paragraphs of an article to continue
elsewhere, so that the page layout can be made neat. Given that IEEE Computer is a
flagship journal, it’s surprising that such an elementary bug wasn’t noticed during
testing — but, as we know, detailed tests are often skimped.

412. Page 384. Patrick Collinson, “I lost my £193,000 inheritance – with one wrong digit
on my sort code. When Peter Teich’s money went to another Barclays customer, the
bank offered £25 as a token gesture,” The Guardian, 7 December 2019.
www.theguardian.com/money/2019/dec/07/i-lost-my-193000-inheritance-with-
one-wrong-digit-on-my-sort-code

413. Page 385. The code in the body of the book is the most deeply indented line in the
HTML shown below; the rest of the HTML is needed to tell your browser that you
want the JavaScript code to be run and not just treated as more HTML.

Type this into a word processor (the indentation isn’t important):

<!DOCTYPE html>
<html>

<body>
<script>

alert(parseFloat(40.5));
</script>

</body>
</html>

http://www.doi.org/10.1109/MC.2008.135
http://www.theguardian.com/money/2019/dec/07/i-lost-my-193000-inheritance-with-one-wrong-digit-on-my-sort-code
http://www.theguardian.com/money/2019/dec/07/i-lost-my-193000-inheritance-with-one-wrong-digit-on-my-sort-code

540 | CHAPTER 34

and save it as a file called t.html (it need not be t.html; it can be any name ending in
.html to ensure it is an HTML file), then open the HTML file in any web browser to
see what it does.

It should just pop up a dialog box, the alert, and say 40.5.
Now change the 40.5 in the code to, say, 40.5 mcg , save the file again and

refresh your browser. You’ll see that the code completely ignores the critical mcg bit
(which means a millionth of a gram) — the number now means 0.0000405 grams.
The standard JavaScript code neither recognizes mcg as a unit, nor does it warn the
user that it is completely ignoring it.

414. Page 387. Here’s a paper that explains the method in more detail with infusion pumps
as the example. Paolo Masci, Rimvydas Rukšėnas, Patrick Oladimeji, Abigail Cauchi,
Andy Gimblett, Yunqiu (Karen) Li, Paul Curzon, and Harold Thimbleby, “The Benefits
of Formalising Design Guidelines: A Case Study on the Predictability of Drug Infusion
Pumps,” Innovations in Systems and Software Engineering, 11(2):73–93, 2015. DOI:
10.1007/s11334-013-0200-4

415. Page 388. Paolo Masci, Anaheed Ayoub, Paul Curzon, Michael Harrison, Insup Lee,
and Harold Thimbleby, “Verification of interactive software for medical devices: PCA
infusion pumps and FDA regulation as an example,” Proceedings SIGCHI Symposium
on Engineering Interactive Computing Systems, 81–90, ACM, 2013. DOI:
10.1145/2494603.2480302

See www.pvsioweb.org for up-to-date information.
416. Page 390. There is lots of advice on fuzzing. My book, Harold Thimbleby, Press On:

Principles of Interaction Programming (MIT Press) has lots of ideas — and unlike most
of the guidance on fuzzing, Press On: Principles of Interaction Programming is full of
practical ideas to help evaluate and improve user interface design. Press On: Principles
of Interaction Programming is also a recommended book in the Good reading.m

The Wikipedia page on fuzzing is en.wikipedia.org/wiki/Fuzzing and is also
recommended. (Wikipedia is always recommended, as it’ll be kept up-to-date.)

417. Pages 390, 391, 392. This paper explains the details of the user interfaces that were
fuzzed, along with full details of the techniques for evaluating the safety of the
interface designs: Harold Thimbleby, Paul Cairns, and Patrick Oladimeji, “Unreliable
numbers: Error and harm induced by bad design can be reduced by better design,”
Journal Royal Society Interface, 12(110):20150685, 2015. DOI:
10.1098/rsif.2015.0685 — the Royal Society paper includes working code that can be
copied.

The original ISMP rules (described in the paper above) were designed for making
handwritten numbers more reliable; for instance, writing .5 might be misread as 5, so
ISMP requires numbers less than 1 to always start with a zero, in this case by writing
0.5 instead of .5

That’s fine, and easy to require in a digital system, except that as you enter a
number interactively into a device, you may go through intermediate stages that ISMP
does not recommend. For instance, to enter 0.5, you’d first have to enter 0. (which
isn’t permitted by ISMP rules) at some point. So what do you do?

We discussed a safe solution to this problem in Harold Thimbleby and Andy
Gimblett, “Dependable Keyed Data Entry for Interactive Systems,” FMIS 2011, 4th
International Workshop on Formal Methods for Interactive Systems, in Electronic
Communications of the EASST, 45:1/16–16/16, 2011. DOI:
10.1145/1996461.1996497

A working implementation, including several demos, is at
harold.thimbleby.net/regex

418. Page 392. Jane Wakefield, “Artificial intelligence-created medicine to be used on
humans for first time,” BBC, 30 January 2020.
www.bbc.co.uk/news/technology-51315462

m See Chapter 33: Press On: Principles of Interaction Programming, the book, page 483←

http://www.doi.org/10.1007/s11334-013-0200-4
http://www.doi.org/10.1007/s11334-013-0200-4
http://www.doi.org/10.1145/2494603.2480302
http://www.doi.org/10.1145/2494603.2480302
http://www.pvsioweb.org
https://mitpress.mit.edu/books/press
https://mitpress.mit.edu/books/press
https://mitpress.mit.edu/books/press
https://mitpress.mit.edu/books/press
https://mitpress.mit.edu/books/press
http://en.wikipedia.org/wiki/Fuzzing
http://www.doi.org/10.1098/rsif.2015.0685
http://www.doi.org/10.1098/rsif.2015.0685
http://www.doi.org/10.1145/1996461.1996497
http://www.doi.org/10.1145/1996461.1996497
http://harold.thimbleby.net/regex
http://www.bbc.co.uk/news/technology-51315462

NOTES | 541

419. Page 393. One of the best no-nonsense explanations of RCTs can be found in David
Spiegelhalter, The Art of Statistics: Learning from Data, Pelican Books, 2020. It’s also
a fantastic book if you want to get a very readable introduction to statistics or if you
want to get new insights from a world leader.

420. Page 394. Robert W. Yeh, Linda R. Valsdottir, Michael W. Yeh, Changyu Shen, Daniel
B. Kramer, Jordan B. Strom, Eric A. Secemsky, Joanne L. Healy, Robert M. Domeier,
Dhruv S. Kazi, and Brahmajee K. Nallamothu, “Parachute use to prevent death and
major trauma when jumping from aircraft: randomized controlled trial,” BMJ,
363:k5094, 2018. DOI: 10.1136/bmj.k5094

Note that there is a correction in BMJ 363:k5343, 2018.
421. Page 395. Tarveen Jandoo, “WHO Guidance for Digital Health: What It Means for

Researchers,” Digital Health, 6:1–4, 2020. DOI: 10.1177/2055207619898984
422. Page 395. The best critique of RCTs and discussion of powerful alternatives — in fact,

a whole new approach to clearer thinking — is Judea Pearl and Dana Mackenzie, The
Book of Why: The New Science of Cause and Effect, Penguin, 2018. Everyone
working in computing, especially AI, will have heard of Judea Pearl, and I think this is
his best and most accessible book by a long way.

Here’s an excellent article on the way RCTs and the quest for strong evidence
undermines responding effectively with the time pressures driven by a pandemic:
Trisha Greenhalgh, “Thinking in a pandemic,” Boston Review, 29 May 2020.
bostonreview.net/science-nature/trisha-greenhalgh-will-evidence-based-
medicine-survive-covid-19

Greenhalgh also wrote a more academic paper: “Evidence based medicine: a
movement in crisis?,” BMJ, 348:g3725, 2014. DOI: 10.1136/bmj.g3725

423. Page 396. Andrew J. Copas, James J. Lewis, Jennifer A. Thompson, Calum Davey,
Gianluca Baio, and James R. Hargreaves, “Designing a stepped wedge trial: three main
designs, carry-over effects and randomisation approaches,” Trials, 16:352, 2015.
DOI: 10.1186/s13063-015-0842-7

A broader review of other choices can be found at Alain Bernard, Michel Vaneau,
Isabelle Fournel, Hubert Galmiche, Patrice Nony, and Jean Michel Dubernard,
“Methodological choices for the clinical development of medical devices,” Medical
Devices: Evidence and Research, 7:325–334, 2014. DOI: 10.2147/MDER.S63869

424. Page 396. Billy Kenber and Chris Smyth, “Test and Trace: Where did it all go wrong?”
The Times, 11 November 2020. www.thetimes.co.uk/article/test-and-trace-where-
did-it-all-go-wrong-66kfkg3wm

425. Page 399. Editorial, “Is digital medicine different?” The Lancet, 392:95, 14 July
2018. DOI: 10.1016/S0140-6736(18)31562-9

426. Page 399. See: Joseph M. Smith, “Digital health startups may not want to do
randomized trials, but they need to,” STAT, 15 October 2018.
www.statnews.com/2018/10/15/digital-health-startups-randomized-trials, and
Reflexion Health, “Reflexion Health and Duke Clinical Research Institute Announce
Results of the First Randomized Controlled Trial Demonstrating Virtual Physical
Therapy Outperforms Traditional Approach,” reflexionhealth.com/virtual-physical-
therapy-news/veritas-study-results-announcement, 15 October 2018.

29 Choose safety
427. Page 403. Leapfrog uses letter grades A, B, C, D, E, and F — A being best. Each year

the group re-evaluates hospitals, and the thresholds for each grade are adjusted. (In
contrast the EU energy rating retains the same gradings, but adds more A+, A++
grades at the top.) The end result is the same: a clear way to be able to compare safety
and effectiveness. Leapfrog’s safety rating website is at www.hospitalsafetygrade.org.
There is also an interesting paper on it: J. Matthew Austin, Guy D’Andrea, John D.

http://www.doi.org/10.1136/bmj.k5094
http://www.doi.org/10.1177/2055207619898984
http://bostonreview.net/science-nature/trisha-greenhalgh-will-evidence-based-medicine-survive-covid-19
http://bostonreview.net/science-nature/trisha-greenhalgh-will-evidence-based-medicine-survive-covid-19
http://www.doi.org/10.1136/bmj.g3725
http://www.doi.org/10.1186/s13063-015-0842-7
http://www.doi.org/10.2147/MDER.S63869
http://www.thetimes.co.uk/article/test-and-trace-where-did-it-all-go-wrong-66kfkg3wm
http://www.thetimes.co.uk/article/test-and-trace-where-did-it-all-go-wrong-66kfkg3wm
http://www.doi.org/10.1016/S0140-6736(18)31562-9
http://www.statnews.com/2018/10/15/digital-health-startups-randomized-trials
http://reflexionhealth.com/virtual-physical-therapy-news/veritas-study-results-announcement
http://reflexionhealth.com/virtual-physical-therapy-news/veritas-study-results-announcement
http://www.hospitalsafetygrade.org

542 | CHAPTER 34

Birkmeyer, Lucian L. Leape, Arnold Milstein, Peter J. Pronovost, Patrick S. Romano,
Sara J. Singer, Timothy J. Vogus, and Robert M. Wachter, “Safety in Numbers: The
Development of Leapfrog’s Composite Patient Safety Score for U.S. Hospitals,” Journal
of Patient Safety, 10(1):64–71. 2013. DOI: 10.1097/PTS.0b013e3182952644

428. Page 404. An RFID tag would mean just getting your mobile phone (running the right
app, or, better, configured by your hospital to do this automatically) close to the label
would transfer the information across.

429. Page 405. The full summary of our work was published here: Patrick Oladimeji and
Harold Thimbleby, “Open Metrics for Evaluating and Designing Safer Interactive
Health Systems: A Case Study in Procuring Infusion Pumps,” 2015 USENIX Summit
on Information Technologies for Health, HealthTech, Washington DC, USA, 2015.

430. Page 407. Thomas Sullivan, “A Tough Road: Cost To Develop One New Drug Is $2.6
Billion; Approval Rate for Drugs Entering Clinical Development is Less Than 12%,”
Policy & Medicine, 21 March 2019.
www.policymed.com/2014/12/a-tough-road-cost-to-develop-one-new-drug-is-26-
billion-approval-rate-for-drugs-entering-clinical-de.html

431. Page 408. Levels and tiers are often used in designing complex computer systems,
such as the OSI Levels (e.g., data layer, network layer, application layer) — or the
Three-Tier Architecture (i.e., user interface, business logic, and data storage layers).
Unfortunately, issues such as safety interact across the layers; if one layer is unsafe,
they all potentially become unsafe. The user interface layer (the main concern of this
book) can say things that mislead the user about the capability of the other layers, and
then things start to go wrong.

432. Page 409. See Institute for Safe Medication Practices, www.ismp.org
433. Page 409. Patrick Oladimeji, Harold Thimbleby, and Anna L. Cox, “Number entry

interfaces and their effects on error detection,” Proceedings 13th IFIP TC13
Conference on Human-Computer Interaction, IV:178–185, Springer-Verlag, 2011.
DOI: 10.1007/978-3-642-23768-3_15

434. Page 409. Abigail Cauchi, Patrick Oladimeji, Gerrit Niezen, and Harold Thimbleby,
“Triangulating Empirical and Analytic Techniques for Improving Number Entry User
Interfaces,” Proceedings ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, EICS’14:243–252, ACM, 2014. DOI:
10.1145/2607023.2607025

435. Pages 410, 411. Patrick Oladimeji, Anna L. Cox, and Harold Thimbleby, “A
Performance Review of Number Entry Interfaces,” Proceedings IFIP Conference on
Human-Computer Interaction, Designing for Diversity, Lecture Notes in Computer
Science, 8117:365–382, Springer-Verlag, 2013. DOI:
10.1007/978-3-642-40483-2_26

436. Pages 411, 557. In my autoimmune disease, B cells are destroying the myelin sheaths
on my nerves, which gives me chronic inflammatory demyelinating polyneuropathy.

Rituximab is a monoclonal antibody that kills B cells (white blood cells), and thus
gives my nerve sheaths a chance to grow back. It’s working so far, although it has side
effects that need managing. I have the dilemma that rituximab makes me more
susceptible to COVID-19, but that’s not the concern here …

It’s a worrying contrast that full details of rituximab (like its chemical formula,
C6416H9874N1688O1987S44) and lots of detailed research on it are quite routinely
available — including its effectiveness on my own disease. Yet the design of the Alaris
GP infusion pump that is infusing me with it, and how safe it is, is “commercially
confidential.”

437. Page 411. Participants in this number experiment were not nurses. We used
university students, 22 females, 11 males, average age 23.5, σ = 4.86.

438. Page 413. People often want to reduce the number of mouse clicks as well as the
number of keystrokes; indeed, what is widely regarded as the first book on the science
of human computer interaction focused almost exclusively on ways to estimate and

http://www.doi.org/10.1097/PTS.0b013e3182952644
http://www.policymed.com/2014/12/a-tough-road-cost-to-develop-one-new-drug-is-26-billion-approval-rate-for-drugs-entering-clinical-de.html
http://www.policymed.com/2014/12/a-tough-road-cost-to-develop-one-new-drug-is-26-billion-approval-rate-for-drugs-entering-clinical-de.html
http://www.ismp.org
http://www.doi.org/10.1007/978-3-642-23768-3_15
http://www.doi.org/10.1145/2607023.2607025
http://www.doi.org/10.1145/2607023.2607025
http://www.doi.org/10.1007/978-3-642-40483-2_26
http://www.doi.org/10.1007/978-3-642-40483-2_26

NOTES | 543

reduce times. See: Stuart K. Card, Thomas P. Moran, and Allen Newell, The
Psychology of Human-Computer Interaction, CRC Press, 1986.

439. Page 413. Melinda Ashton, “Getting Rid of Stupid Stuff,” New England Journal of
Medicine, 379:1789–1791, 2018. DOI: 10.1056/NEJMp1809698

30 Signs of life
440. Page 417. Medal describe their app and development approach at

blog.medicalalgorithms.com/clinical-algorithm-development, and their website is
www.medicalalgorithms.com

441. Page 418. Patient Safety Alert, “Risk of death and severe harm from failure to obtain
and continue flow from oxygen cylinders,” NHS/PSA/W/2018/001, 2018.
improvement.nhs.uk/documents/2206/Patient_Safety_Alert_-_Failure_to_open_
oxygen_cylinders.pdf

442. Page 419. Zoë Norris, @dr_zo, 10 September 2018.
twitter.com/dr_zo/status/1039116040981110785?s=20 and replied to by Matt Hancock,
@MattHancock, 10 September 2018.
twitter.com/MattHancock/status/1039126578163339264?s=20

443. Page 420. Andy Hertzfeld, “Steve wants to make the Macintosh boot faster,” Folklore,
August 1983. www.folklore.org/StoryView.py?story=Saving_Lives.txt

444. Page 420. Here’s a small systematic review of eICUs: Sajeesh Kumar, Shezana
Merchant, and Rebecca Reynolds, “Tele-ICU: Efficacy and Cost-Effectiveness of
Remotely Managing Critical Care,” Perspectives in Health Information Management,
Spring:1–13, 2013.

445. Page 421. Ben Goldacre, Bad Pharma is excellent on these sorts of issue. His book is
discussed in Good reading.n

446. Page 421. Tom J. Pollard, Alistair E. W. Johnson, Jesse D. Raffa, Leo A. Celi, Roger G.
Mark, and Omar Badawi, “The eICU Collaborative Research Database, a freely
available multi-center database for critical care research,” Scientific Data, 5:180178
EP, 2018. DOI: 10.1038/sdata.2018.178

447. Pages 423, 555. My wife, Prue Thimbleby, runs an accredited training course on
Digital Storytelling at the University of South Wales. Contact her by email at
prue@thimbleby.net

The first job preparing a Digital Story is to get the story shape right.
The story itself may be prepared as a written script of about 250 words, but it will

sound much better, more spontaneous, and authentic, if it is done conversationally
without reading it. Quite a bit of editing may need to be done to the voice recording to
help the storyteller communicate well — knowing the recording will be edited allows
the teller to have a few goes at getting their words sorted out. Then the images can be
added.

There are many Digital Storytelling tools available which run on PCs and mobiles
— hackastory.com is one place to start looking for them. There are also lots of
expensive professional editing tools. But in healthcare, it’s very important that the
digital hurdles to start storytelling are minimized. In fact, the more “professional” the
storytelling process is made, the more everyone’s expectations of production quality
increase, which soon intrude on the process, which takes attention away from the
listening and communicating power of simple, direct storytelling.

The story images can be animated by slowly zooming in on areas of interest, or
panning from one face or point of interest to another. These techniques date from
rostrum cameras, but are often called Ken Burns effects. These techniques work very
well with Digital Stories, grabbing attention, perhaps focusing on a photograph of the

n See Chapter 33: Good reading, page 471←

http://www.doi.org/10.1056/NEJMp1809698
http://blog.medicalalgorithms.com/clinical-algorithm-development
http://www.medicalalgorithms.com
http://improvement.nhs.uk/documents/2206/Patient_Safety_Alert_-_Failure_to_open_oxygen_cylinders.pdf
http://improvement.nhs.uk/documents/2206/Patient_Safety_Alert_-_Failure_to_open_oxygen_cylinders.pdf
http://twitter.com/dr_zo
http://twitter.com/dr_zo/status/1039116040981110785?s=20
http://twitter.com/MattHancock
http://twitter.com/MattHancock/status/1039126578163339264?s=20
http://www.folklore.org/StoryView.py?story=Saving_Lives.txt
http://www.doi.org/10.1038/sdata.2018.178
mailto:prue@thimbleby.net
http://hackastory.com

544 | CHAPTER 34

patient or a family member or what they are doing. Very often people have plenty of
photographs to work from, and the effects enliven the images without introducing the
production problems of video. Simple photographs, particularly ones taken in the past
giving context to the story (like ordinary family photographs of the patient before an
incident), are very effective, and have a powerful authenticity. Sometimes drawings
work better, they are easy to anonymize if that’s required.

In contrast to still photos with simple zooming and panning, video raises
expectations and makes it much harder to do a good job. So much video we watch, like
in movies, is produced professionally and sets very high standards. Videos are very
much harder to record and edit, too, especially editing the video to synchronize with
the voice-over. So, for Digital Stories, use still photographs or simple drawings.

Finally, thought must be given to consent and permissions, especially if the stories
are going to be put on the internet. Digital Stories are very personal, and they must be
used with respect.

448. Page 423. Wikipedia gives a summary of Digital Stories:
en.wikipedia.org/wiki/Digital_storytelling and the Berkeley storytelling center,
StoryCenter, is at www.storycenter.org

449. Page 423. Arts in Health Wales does a huge amount of digital patient storytelling.
www.artsinhealth.wales/patient-experience.html

450. Page 424. Christopher Richard Evans and J. Wilson, “A program to allow computer
based history-taking in cases of suspected gastric ulcer,” National Physical Laboratory
Report, Com 49, 1971. For more context, see S. S. Somerville, J. S. Stewart, and G. E.
T. Raine, “Mickie: Experiences of Interviewing Patients by Micro,” in J. P. Paul, M. M.
Jordan, M. W. Ferguson-Pell, and B. J. Andrews (eds) Computing in Medicine,
Strathclyde Bioengineering Seminars, Palgrave, London, 1982. DOI:
10.1007/978-1-349-06077-1_5

An interesting and technically more detailed article is: Nigel Bevan, Peter Pobgee
and Shirley Somerville, “MICKIE — A microcomputer for medical interviewing,”
International Journal of Man-Machine Studies, 14:39–47, 1981.

451. Page 424. Chris Evans was way ahead of his time. His The Mighty Micro is amazingly
prescient — and still very interesting to read — considering it was written in 1980: see
Christopher Richard Evans, The Mighty Micro, Coronet Books, 1980.

452. Page 425. If you don’t know about pulmonary hypertension, Bella’s lovely story might
be balanced in the non-digital scales of the heart-breaking loss of Elaine Pagels’s
young child Mark to pulmonary hypertension. See Elaine Pagels, “Finding the heart,”
The New Yorker, 4 November 2018. www.newyorker.com/culture/personal-
history/finding-the-heart?mbid=social_twitter&utm_source=twitter&utm_brand=
tny&utm_social-type=owned&utm_medium=social

453. Page 427. Marie Elisabeth Gaup Moe, “Go Ahead Hackers. Break My Heart,” Wired,
www.wired.com/2016/03/go-ahead-hackers-break-heart

454. Page 430. Signs of Safety’s website is www.signsofsafety.net
455. Page 430. See www.signsofsafety.net/signs-of-safety-practice-it-alignment-

learning-lab-exceeds-expectations-of-north-tyneside-council
456. Page 431. Isabel Healthcare Ltd. See www.isabelhealthcare.com

Although the Isabel website has lots of information, an interesting open-access
review of 23 digital symptom checkers, including Isabel, which discusses benefits and
challenges of the technology, is: Hannah L. Semigran, Jeffrey A. Linder, Courtney
Gidengil, and Ateev Mehrotra, “Evaluation of symptom checkers for self diagnosis and
triage: Audit study,” BMJ, 351(h3480), 2015. DOI: 10.1136/bmj.h3480

457. Page 432. J. Luis Zabala-Genovez, Edwarda Golden, and Farah Ciftci, “Isabel to the
Rescue!” Abstract 1085 at Conference on Hospital Medicine, Journal of Hospital
Medicine, 2019. www.isabelhealthcare.com/pdf/SHM_poster_PDF_version.pdf

http://en.wikipedia.org/wiki/Digital_storytelling
http://www.storycenter.org
http://www.artsinhealth.wales/patient-experience.html
http://www.doi.org/10.1007/978-1-349-06077-1_5
http://www.doi.org/10.1007/978-1-349-06077-1_5
http://www.newyorker.com/culture/personal-history/finding-the-heart?mbid=social_twitter&utm_source=twitter&utm_brand=tny&utm_social-type=owned&utm_medium=social
http://www.newyorker.com/culture/personal-history/finding-the-heart?mbid=social_twitter&utm_source=twitter&utm_brand=tny&utm_social-type=owned&utm_medium=social
http://www.newyorker.com/culture/personal-history/finding-the-heart?mbid=social_twitter&utm_source=twitter&utm_brand=tny&utm_social-type=owned&utm_medium=social
http://www.wired.com/2016/03/go-ahead-hackers-break-heart
http://www.signsofsafety.net
http://www.signsofsafety.net/signs-of-safety-practice-it-alignment-learning-lab-exceeds-expectations-of-north-tyneside-council
http://www.signsofsafety.net/signs-of-safety-practice-it-alignment-learning-lab-exceeds-expectations-of-north-tyneside-council
http://www.isabelhealthcare.com
http://www.doi.org/10.1136/bmj.h3480
http://www.isabelhealthcare.com/pdf/SHM_poster_PDF_version.pdf

NOTES | 545

458. Page 433. Julia Cumberlege, First Do No Harm. The report of the Independent
Medicines and Medical Devices Safety Review, July 2020. Available at
www.gov.uk/official-documents

459. Page 434. I recommend starting with the Patient Experience Library’s Inadmissible
Evidence: The double standard in evidence-based practice, and how it harms patients,
2020. Find it at www.patientlibrary.net

31 The pivotal pandemic?
460. Page 437. Chris Pleasance, Daily Mail, 19 March 2020.

www.dailymail.co.uk/news/article-8130379/First-person-die-coronavirus-
Indiana-say-goodbye-partner-iPad.html

461. Page 437. Jimmy McCloskey, “Man with Down syndrome died lonely coronavirus
death on his 30th – 7 days after it killed his mom,” MetroUK, 10 April 2020.
metro.co.uk/2020/04/10/man-syndrome-died-lonely-coronavirus-death-30th-
birthday-12541023

Some reports of Thomas Martins call him Thomas Martins-Reitz. I sincerely
apologize if I’ve made a mistake.

462. Page 437. Paul Lynch and Daniel Wainwright, “Coronavirus: How GPs have stopped
seeing most patients in person,” BBC, 11 April 2020.
www.bbc.co.uk/news/uk-england-52216222

463. Page 438. There are some interesting trade-offs: the patients sent home with
oxygenation meters need to know how to use them and what to do. That requires some
sort of assessment and training (however simple), which is more work for already
overloaded hospitals.

On the other hand, that extra work needs to be traded off against the hopefully
huge saving of workload because the patients have gone home. See Ingrid Torjesen,
“Covid-19: Patients to use pulse oximetry at home to spot deterioration,” BMJ,
371:m4151, 2020. DOI: 10.1136/bmj.m4151

464. Page 438. Perhaps the quickest way to get into wearable computing is to buy an
Arduino and an oxygenation sensor. There are numerous suppliers of such kit, and it’s
worth spending a while searching for the stuff that best suits your needs. Even better,
go to a hacker club and chat to people who are already doing this.

465. Page 439. Luca Ferretti, Chris Wymant, Michelle Kendall, Lele Zhao, Anel Nurtay,
Lucie Abeler-Dörner, Michael Parker, David Bonsall, and Christophe Fraser,
“Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact
tracing,” Science, published online, 2020. DOI: 10.1126/science.abb6936

466. Page 439. Tim Biggs, “COVIDSafe may interfere with diabetes-monitoring apps,”
Sydney Morning Herald, 1 May 2020. www.smh.com.au/technology/covidsafe-
may-interfere-with-diabetes-monitoring-apps-20200501-p54oyd.html

467. Page 439. Paresh Dave and Stephen Nellis, “Colombia had to abandon contact tracing
from its coronavirus app because it didn’t work properly,” Business Insider, 7 May
2020. www.businessinsider.com/colombia-contact-tracing-apple-google-
coronavirus-app-2020-5?r=US&IR=T

468. Page 440. Rebecca Smithers, “Fraudsters use bogus NHS contact-tracing app in
phishing scam,” The Guardian, 13 May 2020.
www.theguardian.com/world/2020/may/13/fraudsters-use-bogus-nhs-contact-
tracing-app-in-phishing-scam?CMP=share_btn_tw

http://www.gov.uk/official-documents
http://www.patientlibrary.net
http://www.dailymail.co.uk/news/article-8130379/First-person-die-coronavirus-Indiana-say-goodbye-partner-iPad.html
http://www.dailymail.co.uk/news/article-8130379/First-person-die-coronavirus-Indiana-say-goodbye-partner-iPad.html
http://metro.co.uk/2020/04/10/man-syndrome-died-lonely-coronavirus-death-30th-birthday-12541023
http://metro.co.uk/2020/04/10/man-syndrome-died-lonely-coronavirus-death-30th-birthday-12541023
http://www.bbc.co.uk/news/uk-england-52216222
http://www.doi.org/10.1136/bmj.m4151
http://www.doi.org/10.1126/science.abb6936
http://www.smh.com.au/technology/covidsafe-may-interfere-with-diabetes-monitoring-apps-20200501-p54oyd.html
http://www.smh.com.au/technology/covidsafe-may-interfere-with-diabetes-monitoring-apps-20200501-p54oyd.html
http://www.businessinsider.com/colombia-contact-tracing-apple-google-coronavirus-app-2020-5?r=US&IR=T
http://www.businessinsider.com/colombia-contact-tracing-apple-google-coronavirus-app-2020-5?r=US&IR=T
http://www.theguardian.com/world/2020/may/13/fraudsters-use-bogus-nhs-contact-tracing-app-in-phishing-scam?CMP=share_btn_tw
http://www.theguardian.com/world/2020/may/13/fraudsters-use-bogus-nhs-contact-tracing-app-in-phishing-scam?CMP=share_btn_tw

546 | CHAPTER 34

469. Page 440. The cost of testing and tracing in the UK to July 2020 has been widely
criticized. See Andrew Woodcock, “Coronavirus: Government has set aside £10bn for
Test and Trace system for England,” The Independent, 8 July 2020.
www.independent.co.uk/news/uk/politics/coronavirus-test-and-trace-system-
england-government-budget-a9608656.html

470. Pages 440, 442. Harriet Brewis, “Failed test-and-trace app cost more than £11
million, Government figures show,” Evening Standard, 19 June 2020. www.standard.
co.uk/news/uk/test-and-trace-app-cost-uk-government-11million-a4474386.html

471. Page 440. The Guardian of 6 October 2020 has several good articles about the Test
and Trace problem. The leading front cover article was: Josh Halliday, Peter Walker,
and Denis Campbell, “Race to warn 50,000 people of virus risks after ‘catastrophic’ IT
blunder,” The Guardian, 6 October 2020. Or see Elisabeth Mahase, “Covid-19: Only
half of 16,000 patients missed from England’s official figures have been contacted,”
BMJ, 371, 6 October 2020. DOI: 10.1136/bmj.m3891

472. Page 441. At the time of writing, nobody seems very clear what happened. The
journalists reporting the problems are not technical or don’t have access to accurate
technical information, and the politicians discussing it seem to want to down-play any
problems. My understanding, from reading inconsistent reports and listening to
parliamentary discussions, is that large quantities of data were probably emailed in CSV
formats to central handling centers. For some reason, possibly because their software
couldn’t import CSV directly or the CSV files weren’t all in the same format, the CSV
files were converted to XLS, probably by using Excel, as that would be the easiest way
to do it, and certainly the easiest way to make simple corrections to varying data.

Here’s one of many reports: Leo Kelion, “Excel: Why using Microsoft’s tool
caused Covid-19 results to be lost,” BBC News, 5 October 2020.
www.bbc.co.uk/news/technology-54423988

A bit later I published a short letter about the atrocious design of the system in the
British Medical Journal: Harold Thimbleby, “The problem isn’t Excel, it’s
unprofessional software engineering,” BMJ, 371:m4181, 2020. DOI:
10.1136/bmj.m4181

473. Page 443. David Adam, “A guide to R — the pandemic’s misunderstood metric: What
the reproduction number can and can’t tell us about managing COVID-19,” Nature,
583:346–348, 3 July 2020. www.nature.com/articles/d41586-020-02009-w, DOI:
10.1038/d41586-020-02009-w

474. Page 444. Laura Spinney, Pale Rider: The Spanish Flu of 1918 and how it changed
the world, Vintage, 2017.

Despite its being pre-digital (and even pre-knowing about viruses) the book Pale
Rider has many lessons for today, but the modern story of the COVID-19 pandemic is
brilliantly covered in Michael Lewis, The Premonition: A Pandemic Story (Allen Lane,
2021) — I review this engrossing book in the Good reading chapter.o

475. Page 444. Nick Carding, “Hancock grants GCHQ powers over NHS IT systems,” HSJ,
29 April 2020. www.hsj.co.uk/free-for-non-subscribers/nhs-developing-
coronavirus-contact-tracking-app/7027163.article

476. Pages 445, 446, 447. The SIR model’s documentation is at
www.harold.thimbleby.net/sir, which contains a link to the model itself at
www.harold.thimbleby.net/sir/sir.html

When you run the model, you should get the graph shown in the book (figure
31.1). You may need to adjust its size to make it easier to read, and you may want to
change the fonts because I wanted the diagram to use the fonts used in the rest of this
book.

o See Chapter 33: The Premonition, page 477←

http://www.independent.co.uk/news/uk/politics/coronavirus-test-and-trace-system-england-government-budget-a9608656.html
http://www.independent.co.uk/news/uk/politics/coronavirus-test-and-trace-system-england-government-budget-a9608656.html
http://www.standard.co.uk/news/uk/test-and-trace-app-cost-uk-government-11million-a4474386.html
http://www.standard.co.uk/news/uk/test-and-trace-app-cost-uk-government-11million-a4474386.html
http://www.doi.org/10.1136/bmj.m3891
http://www.bbc.co.uk/news/technology-54423988
http://www.doi.org/10.1136/bmj.m4181
http://www.doi.org/10.1136/bmj.m4181
http://www.nature.com/articles/d41586-020-02009-w
http://www.doi.org/10.1038/d41586-020-02009-w
http://www.doi.org/10.1038/d41586-020-02009-w
http://www.hsj.co.uk/free-for-non-subscribers/nhs-developing-coronavirus-contact-tracking-app/7027163.article
http://www.hsj.co.uk/free-for-non-subscribers/nhs-developing-coronavirus-contact-tracking-app/7027163.article
http://www.harold.thimbleby.net/sir
http://www.harold.thimbleby.net/sir/sir.html

NOTES | 547

477. Page 446. The SIR model is based on the number of susceptible people, S, the number
of people infected, I, and the number of people who have recovered, R (this is a
different R from the reproduction number).

Mathematically, SIR involves some simple differential equations, and a program to
understand SIR solves these equations with the given parameters. However, it’s much
easier to write a program to run a SIR model by taking small time steps, like one day,
and simply iterating the basic equations for updating the S, I, and R parameters.

478. Page 447. David Adam, “Modelling the pandemic: The simulations driving the world’s
response to COVID-19,” Nature, 580:316–318, 2020. DOI:
10.1038/d41586-020-01003-6

479. Pages 447, 449. There have been many very strong criticisms of Ferguson’s code. For
example, David Richards and Konstantin Boudnik, “Neil Ferguson’s Imperial model
could be the most devastating software mistake of all time,” The Telegraph, 16 May
2020, www.telegraph.co.uk/technology/2020/05/16/neil-fergusons-imperial-
model-could-devastating-software-mistake

See also: Jonathan Leake, “Neil Ferguson interview: No 10’s infection guru recruits
game developers to build coronavirus pandemic model,” The Sunday Times, 29 March
2020. www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-
guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5

480. Page 447. Harold Thimbleby, “A proposal to achieve professional software
engineering in scientific research.” Preprint available at
www.harold.thimbleby.net/reliable-models.pdf

481. Pages 448, 556. Neil M. Ferguson, @neil_ferguson, 22 March 2020.
twitter.com/neil_ferguson/status/1241835454707699713

Ferguson’s tweet is also accessible and discussed in Hector Drummond, “Anon IT
Professional: Can we trust Neil Ferguson’s flu pandemic model?” Hector Drummond
Magazine, 24 April 2020. hectordrummond.com/2020/04/24/guest-post-can-we-
trust-neil-fergusons-flu-pandemic-model and in Mike Jackson, “Better software,
better COVID-19 research,” Software Sustainability Institute, 7 May 2020.
www.software.ac.uk/blog/2020-05-07-better-software-better-covid-19-research

482. Page 449. Sarah Boseley, “Neil Ferguson: coronavirus expert who is working on
despite symptoms — Epidemiologist is taking on a marathon of mathematical
modelling at sprint speed,” The Guardian, 18 March 2020.
www.theguardian.com/world/2020/mar/18/neil-ferguson-coronavirus-expert-
who-is-working-on-despite-symptoms

483. Page 449. A nice brief article describing the benefits and uses of lab notebooks is
Santiago Schnell, “Ten Simple Rules for a Computational Biologist’s Laboratory
Notebook,” PLoS Computational Biology, 11(9):e1004385, 2015. DOI:
10.1371/journal.pcbi.1004385

484. Page 449. There are lots of automatic and semi-automatic documentation generators.
The Wikipedia article is an up-to-date source of information:
en.wikipedia.org/wiki/Comparison_of_documentation_generators

I’ve developed a tool to help document program code: Harold Thimbleby and
Dave Williams, “A tool for publishing reproducible algorithms & A reproducible,
elegant algorithm for sequential experiments,” Science of Computer Programming,
156:45–67, 2018. DOI: 10.1016/j.scico.2017.12.010 All the code is available online
too at github.com/haroldthimbleby/relit

485. Page 450. Imperial College, COVID-19 Emergency Ventilator, 2020.
www.imperial-consultants.co.uk/areasofexpertise/emergency-ventilator

486. Page 450. Tom Dare, “‘Creepy’ plan to spy on mobile phones of Birmingham patients
including your calls and daily movements,” BirminghamLive, 18 February 2020.
www.birminghammail.co.uk/news/midlands-news/creepy-plan-spy-mobile-
phones-17767137

http://www.doi.org/10.1038/d41586-020-01003-6
http://www.doi.org/10.1038/d41586-020-01003-6
http://www.telegraph.co.uk/technology/2020/05/16/neil-fergusons-imperial-model-could-devastating-software-mistake
http://www.telegraph.co.uk/technology/2020/05/16/neil-fergusons-imperial-model-could-devastating-software-mistake
http://www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
http://www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
http://www.harold.thimbleby.net/reliable-models.pdf
http://twitter.com/neil_ferguson
http://twitter.com/neil_ferguson/status/1241835454707699713
http://hectordrummond.com/2020/04/24/guest-post-can-we-trust-neil-fergusons-flu-pandemic-model
http://hectordrummond.com/2020/04/24/guest-post-can-we-trust-neil-fergusons-flu-pandemic-model
http://www.software.ac.uk/blog/2020-05-07-better-software-better-covid-19-research
http://www.theguardian.com/world/2020/mar/18/neil-ferguson-coronavirus-expert-who-is-working-on-despite-symptoms
http://www.theguardian.com/world/2020/mar/18/neil-ferguson-coronavirus-expert-who-is-working-on-despite-symptoms
http://www.doi.org/10.1371/journal.pcbi.1004385
http://www.doi.org/10.1371/journal.pcbi.1004385
http://en.wikipedia.org/wiki/Comparison_of_documentation_generators
http://www.doi.org/10.1016/j.scico.2017.12.010
http://github.com/haroldthimbleby/relit
http://www.imperial-consultants.co.uk/areasofexpertise/emergency-ventilator
http://www.birminghammail.co.uk/news/midlands-news/creepy-plan-spy-mobile-phones-17767137
http://www.birminghammail.co.uk/news/midlands-news/creepy-plan-spy-mobile-phones-17767137

548 | CHAPTER 34

487. Page 450. House of Commons, House of Lords, Joint Committee on Human Rights,
Human Rights and the Government’s Response to Covid-19: Digital Contact Tracing,
6 May 2020. publications.parliament.uk/pa/jt5801/jtselect/jtrights/343/343.pdf

488. Page 451. The Declaration of Helsinki makes a salutary case study. It started in 1964
as a tight document on medical ethics principles (responding to numerous outrages),
but it has since grown and become more prescriptive. For instance, it now mentions
animal experiments and impact on the environment.

As the Declaration added more and more issues, it inevitably became more
controversial — it is no longer followed by, for instance, the US FDA, which inevitably
creates a “pick and choose” approach to ethical principles and makes any principled
approach harder to follow. The Declaration is likely to continue growing in complexity
when it faces up to digital health interventions, especially as the huge commercial
opportunities in digital rarely align with individual interests.

We don’t want Software Engineering Boards to fall into the same trap as the
Declaration of Helsinki.

World Medical Association, “World Medical Association Declaration of Helsinki
Ethical Principles for Medical Research Involving Human Subjects,” Journal of the
American Medical Association, 310(20):2191–2194, 2013. DOI:
10.1001/jama.2013.281053

489. Page 452. Sunil S. Bhopal, Jayshree Bagaria, Bayanne Olabi, and Raj Bhopal, “Children
and young people remain at low risk of COVID-19 mortality,” The Lancet Child &
Adolescent Health, 10 March 2021. DOI: 10.1016/S2352-4642(21)00066-3

The Spanish Government responded, as reported in this newspaper article a week
later: Beatriz García and Ariadna Reina García, “Sanidad admite un error en la
mortalidad infantil por covid: ‘Cuentan centenarios como menores”’ NIUS, 17 March
2021.
www.niusdiario.es/sociedad/sanidad/sanidad-reconoce-datos-muertes-ninos-
covid-erroneos-contabilizaban-centenarios-como-menores_18_3107220241.html

The story about bugs is worrying — what public health policies in Spain were
misdirected? — but the really important point the data begs is: what can we learn from
South Korea, who have had zero child deaths (according to the paper’s data) from
COVID-19?

490. Page 453. David M. Cutler and Lawrence H. Summers, “The COVID-19 Pandemic
and the $16 Trillion Virus,” Journal of the American Medical Association, published
online 12 October 2020. DOI: 10.1001/jama.2020.19759

32 Living happily ever after
491. Page 457. Frank Bajak, “FBI warns ransomware assault threatens US healthcare

system,” 29 October 2020. apnews.com/article/fbi-warns-ransomware-
healthcare-system-548634f03e71a830811d291401651610 See also for more technical
background and lots of useful advice and pointers to many resources: US National
Cyber Awareness System, Alert (AA20-302A): “Ransomware Activity Targeting the
Healthcare and Public Health Sector,” 28 October 2020.
us-cert.cisa.gov/ncas/alerts/aa20-302a

492. Page 458. Here’s a story of a large Indian diagnostic lab’s cybersecurity problems:
“After Dr Lal PathLabs here’s the Rx on healthcare data security: Scan, test, and treat
immediately,” see: economictimes.indiatimes.com/prime/technology-and-
startups/after-dr-lal-pathlabs-heres-the-rx-on-healthcare-data-security-scan-
test-and-treat-immediately/primearticleshow/78628718.cms

493. Page 458. Lizzie Dearden, “Coronavirus: UK vaccine programs face ongoing threat of
cyber attacks by hostile states: National Cyber Security Centre says a quarter of record
recorded incidents in the past year were coronavirus-related,” The Independent, 3

http://publications.parliament.uk/pa/jt5801/jtselect/jtrights/343/343.pdf
http://www.doi.org/10.1001/jama.2013.281053
http://www.doi.org/10.1001/jama.2013.281053
http://www.doi.org/10.1016/S2352-4642(21)00066-3
http://www.niusdiario.es/sociedad/sanidad/sanidad-reconoce-datos-muertes-ninos-covid-erroneos-contabilizaban-centenarios-como-menores_18_3107220241.html
http://www.niusdiario.es/sociedad/sanidad/sanidad-reconoce-datos-muertes-ninos-covid-erroneos-contabilizaban-centenarios-como-menores_18_3107220241.html
http://www.doi.org/10.1001/jama.2020.19759
http://apnews.com/article/fbi-warns-ransomware-healthcare-system-548634f03e71a830811d291401651610
http://apnews.com/article/fbi-warns-ransomware-healthcare-system-548634f03e71a830811d291401651610
http://us-cert.cisa.gov/ncas/alerts/aa20-302a
http://economictimes.indiatimes.com/prime/technology-and-startups/after-dr-lal-pathlabs-heres-the-rx-on-healthcare-data-security-scan-test-and-treat-immediately/primearticleshow/78628718.cms
http://economictimes.indiatimes.com/prime/technology-and-startups/after-dr-lal-pathlabs-heres-the-rx-on-healthcare-data-security-scan-test-and-treat-immediately/primearticleshow/78628718.cms
http://economictimes.indiatimes.com/prime/technology-and-startups/after-dr-lal-pathlabs-heres-the-rx-on-healthcare-data-security-scan-test-and-treat-immediately/primearticleshow/78628718.cms

NOTES | 549

November 2020. www.independent.co.uk/news/uk/home-news/covid-19-vaccine-
uk-cyberattacks-oxford-b1536171.html

494. Page 459. Co-regulation is described in many places, and is a method employed by
the EU. Here’s an interesting US chapter on it: Ira Rubinstein, “The Future of
Self-Regulation is Co-Regulation,” The Cambridge Handbook of Consumer Privacy,
Cambridge University Press, 2016.

495. Page 460. IEC 61508 is an international standard. Lots has been written about it and
about the various derived standards (such as for MISRA-C we’ve talked about in this
book).

The standard IEC 61508 is covered well in many books, such as David J. Smith
and Kenneth G. L. Simpson, Functional Safety: A straightforward guide to applying
IEC 61508 and related standards, second edition, Elsevier, 2004.

The 61508 Association has a useful website which has lots of information and
pointers to lots of resources: www.61508.org

496. Page 461. The website for the National Association of Medical Device Educators &
Trainers (NAMDET) is namdet.org

497. Page 461. Eirini Oikonomou, Jane Carthey, Carl Macrae, and Charles Vincent, “Patient
safety regulation in the NHS: Mapping the regulatory landscape of healthcare,” BMJ
Open, 9(7):e028663, 2019. DOI: 10.1136/bmjopen-2018-028663

498. Page 463. HSIB, the Healthcare Safety Investigation Branch’s website is
www.hsib.org.uk

499. Page 464. The World Health Organization (WHO): see www.who.int
500. Page 464. The International Medical Device Regulators Forum is a group of regulators

working together to harmonize device regulation. As of 2019, its members include
representatives from Australian regulators (Therapeutic Goods Administration),
Chinese ones (National Medical Products Administration), the EU, Japan, … US, and
more (but not the UK).

More details are on their web site, www.imdrf.org
501. Page 464. Institute for Healthcare Improvement: see www.ihi.org
502. Page 466. Edward R. Melnick, Christine A. Sinsky, and Harlan M. Krumholz,

“Implementing Measurement Science for Electronic Health Record Use,” JAMA,
2021. DOI: 10.1001/jama.2021.5487

503. Page 466. Bug bounties are provided by many companies, including Google. Bounties
can reach $1.5 million, so they are a strong motivation to find and report bugs.
www.bbc.co.uk/news/technology-50515647

504. Page 466. As an expert witness, I’ve repeatedly seen how manufacturers don’t want to
disclose information, they really don’t want to appear in court, and even when they do,
they don’t want a cup of coffee.

505. Page 467. Global NCAP, the Global New Car Assessment Program; see
www.globalncap.org

506. Page 469. The World Medical Association’s Declaration of Geneva can be found at
www.wma.net/what-we-do/medical-ethics/declaration-of-geneva

33 Good reading
507. Page 471. The detailed reasons why the NHS COVID-19 app failed are of course

complicated, but the underlying reason is Cat Thinking leading to over-confidence in
rapidly developing complex digital healthcare solutions on the whims of politicians
who aren’t at all grounded in what is technologically feasible to deliver.

For a quick UK-centered summary, see: Rory Cellan-Jones, “Coronavirus: What
went wrong with the UK’s contact tracing app?” BBC, 20 June 2020.
www.bbc.co.uk/news/technology-53114251

A more insightful report is this: James Ball, “The UK’s contact tracing app fiasco is

http://www.independent.co.uk/news/uk/home-news/covid-19-vaccine-uk-cyberattacks-oxford-b1536171.html
http://www.independent.co.uk/news/uk/home-news/covid-19-vaccine-uk-cyberattacks-oxford-b1536171.html
http://www.61508.org
http://namdet.org
http://www.doi.org/10.1136/bmjopen-2018-028663
http://www.hsib.org.uk
http://www.who.int
http://www.imdrf.org
http://www.ihi.org
http://www.doi.org/10.1001/jama.2021.5487
http://www.bbc.co.uk/news/technology-50515647
http://www.globalncap.org
http://www.wma.net/what-we-do/medical-ethics/declaration-of-geneva
http://www.bbc.co.uk/news/technology-53114251

550 | CHAPTER 34

a master class in mismanagement,” MIT Technology Review, 19 June 2020. www.
technologyreview.com/2020/06/19/1004190/uk-covid-contact-tracing-app-fiasco

508. Page 471. RIPPLE20 is the catchy name given to a whole range of bugs in internet
connectivity software used in many digital health devices, as well as in many IoT
(Internet of Things) products, from domestic fridges to hospital blood banks.

All internet connections require software to sort out the internet packets, using a
TCP/IP Stack (more briefly, the IP Stack).

Treck Inc (treck.com) is one of many companies that make TCP/IP stack
solutions, but Trek’s has serious bugs, which were identified in June 2020 by JSOF, a
small cybersecurity company. Some of Trek’s bugs are basic coding errors, like not
checking there is enough memory before starting an operation.

Treck’s buggy — and vulnerable — software is often embedded in small electronic
components, typically little boxes as small as 2 cm by 4 cm (about 0.75 by 1.5 inches).
These components are hidden inside medical devices and in many other connected
devices. A serious problem is that people have pretty much lost track of where they
are, and even whether their medical devices have affected components.

For full details, see JSOF’s website, which has details and reports at
www.jsof-tech.com/ripple20, June 2020.

Like most cybersecurity stuff, just do an internet search for RIPPLE20 to make
sure you get the most up-to-date information.

509. Page 471. Brandon Vigliarolo, “IBM finds vulnerability in IoT chips present in billions
of devices,” TechRepublic, 19 August 2020. www.techrepublic.com/article/ibm-
finds-vulnerability-in-iot-chips-present-in-billions-of-devices

510. Page 472. Benjamin Mazer, “Are medical errors a huge problem that’s simple to fix?”
BMJ Online, 9 November 2018. blogs.bmj.com/bmj/2018/11/09/benjamin-mazer-
are-medical-errors-a-huge-problem-thats-simple-to-fix

511. Page 474. Ronald M. Davis, “BMJ bans ‘accidents’,” BMJ, 322:1320, 2001. DOI:
10.1136/bmj.322.7298.1320

512. Page 480. Karl R. Popper, Conjectures and Refutations: The Growth of Scientific
Knowledge, Routledge and Kegan Paul, 1963.

513. Page 480. Karl R. Popper and Neil McIntyre, “The critical attitude in medicine: The
need for a new ethics,” BMJ, 287:1919–1923, 1983.

514. Page 490. Robert L. Wears, “Using information technology to reduce rates of
medication errors in hospitals,” BMJ, 320:788–791, 2000. DOI:
10.1136/bmj.320.7237.788

515. Page 492. Civica Rx: see civicarx.org
516. Page 493. Beth Griffith’s story is told on her twitter account, @bethangriffith

34 Notes
517. Page 497. DOIs illustrate a typical example of digital ambiguity and risks being

ignored in international standards (in this case, ISO 26324, 2010).
The DOI standard permits any printable characters in a DOI, which means DOIs

can include ordinary punctuation. Curiously, that means their use in text, such as in a
bibliography — as they are used throughout these notes — can cause serious
ambiguities.

Here’s an example of the DOI problem. Does this DOI, DOI:
10.1098/rsif.2010.0112, include the final comma? According to the international
standard, yes, according to common sense, no.

Hence, throughout these notes, DOIs have, so far as possible, always been written
at the end of a line or paragraph so there should be no ambiguity.

In short, DOIs are a parable for this book: all the work that goes into an
international standard, and yet the DOI standards team completely overlooked Work

http://www.technologyreview.com/2020/06/19/1004190/uk-covid-contact-tracing-app-fiasco
http://www.technologyreview.com/2020/06/19/1004190/uk-covid-contact-tracing-app-fiasco
http://treck.com
http://www.jsof-tech.com/ripple20
http://www.techrepublic.com/article/ibm-finds-vulnerability-in-iot-chips-present-in-billions-of-devices
http://www.techrepublic.com/article/ibm-finds-vulnerability-in-iot-chips-present-in-billions-of-devices
http://blogs.bmj.com/bmj/2018/11/09/benjamin-mazer-are-medical-errors-a-huge-problem-thats-simple-to-fix
http://blogs.bmj.com/bmj/2018/11/09/benjamin-mazer-are-medical-errors-a-huge-problem-thats-simple-to-fix
http://www.doi.org/10.1136/bmj.322.7298.1320
http://www.doi.org/10.1136/bmj.322.7298.1320
http://www.doi.org/10.1136/bmj.320.7237.788
http://www.doi.org/10.1136/bmj.320.7237.788
http://civicarx.org
http://twitter.com/bethangriffith
http://www.doi.org/10.1098/rsif.2010.0112
http://www.doi.org/10.1098/rsif.2010.0112

NOTES | 551

As Done, reliability, and human error. They had not thought about all the uses of
DOIs. Ironically, overlooking human error is itself a common human error.

My writing a blank after each DOI is aworkaround that ensures we can get a
badly designed computer standard to work in the real world (as represented by this
book anyway). Another, more effective workaround, would be for all programmers to
agree that they program their computers to ignore any trailing punctuation when
reading a DOI. This workaround would fix the international standard, and, even better,
requires no further work from us users. As always, fixing problems at the thick end of
the wedge has a much wider impact, and in this case, simplifies use and reduces error.

35 Healthcare openness and acknowledgments
518. Page 553. VW’s “dieselgate” emission trick, which affected over 11 million vehicles, is

well known. VW diesel cars were programmed to detect when they were being tested
for emissions, and they reduced their emissions to pass the test. However when they
detect they are on the open road, not being tested, they switch to better performance
by incurring worse emissions. See: Guilbert Gates, Jack Ewing, Karl Russell, and
Derek Watkins, “How Volkswagen’s ‘Defeat Devices’ Worked,” The New York Times,
16 March 2017. www.nytimes.com/interactive/2015/business/international/vw-
diesel-emissions-scandal-explained.html

519. Page 554. The approach to identifying patients, staff, hospitals, and systems taken in
this book is consistent with the British Medical Journal’s (BMJ’s) consent policies.
Peter A. Singer and the BMJ Ethics Committee, “Consent to the publication of patient
information,” BMJ, 329:566–8, 2004. DOI: 10.1136/bmj.329.7465.566

In addition to a wider-ranging and thoughtful discussion, this paper says,
“Publications about error should be encouraged as they are core to improvements in
patient safety in both relation to analysis of root causes and engendering a culture of
openness about error.”

I and Raden Norfiqri, this book’s artist, have redrawn screenshots and other
pictures where there may otherwise have been copyright issues, or issues where
bystanders could have been identified. The details that are shown explicitly in the
pictures are necessary to explain and understand the issues.

520. Page 555. See the CHI-MED website, www.chi-med.ac.uk for lots of details of this
very productive research project, “Computer-Human Interaction for Medical Devices.”

http://www.nytimes.com/interactive/2015/business/international/vw-diesel-emissions-scandal-explained.html
http://www.nytimes.com/interactive/2015/business/international/vw-diesel-emissions-scandal-explained.html
http://www.doi.org/10.1136/bmj.329.7465.566
http://www.chi-med.ac.uk

Traditional healthcare views
of confidentiality are
challenged by digital
healthcare. This chapter also
includes heartfelt thanks to
all the patients and
healthcare staff and others
who’ve told their stories and
brought this book to life.

35

Healthcare openness
and acknowledgments

This book explored and told the stories of people who have been injured or
who have died in healthcare, and it told the stories of clinicians who have
been affected by those incidents. Their names are highlighted in bold in the
index at the end of this book. I want to particularly acknowledge and thank
all of them and their families.

Some readers, especially thosewith traditional healthcare or clinical back-
grounds, may be uncomfortable about the open approach to discussing prob-
lems, devices, staff and patient details that I took in this book.

Let me explain why it is important to be open in digital healthcare.
Legislation and regulation drives improvements in safety. Today, for in-

stance, most countries are tightening pollution legislation, because car emis-
sions harm people and cars can be made safer. There are occasional glitches
when manufacturers have kept their problems secret,518 but these scandals
prove the rule. Being open helps everyone to improve. Openness helps peo-
ple see how design affects safety. Openness creates a virtuous circle: now
we know cars can be safer, we want to buy the safer cars, and therefore man-
ufacturers want to make safer cars. And car manufacturers certainly want us
to know which cars are which, so we buy their cars!

That is the culture of an industry that wants to make safer products.a
Today, very little about car safety is kept secret. If there is an accident, news
stories will mention the make of car, especially if it is new or innovative in
any way — like, if it is driverless.

In contrast, healthcare has a long tradition of respecting confidentiality
and privacy. Patient confidentiality is foundational in healthcare, but health-
care isn’t only about patients. In modern healthcare, there are many devices

a See Chapter 11: Cars are safer, page 137←

554 | CHAPTER 35

and systems — almost all digital or embedded digital — that are used widely.
Unlike patients, though, it really matters which devices we are using. What
are their identities? In contrast to personal patient details, it really matters,
and it profoundly affects care, which devices and systems are involved in the
incident. Even the version number of an infusion pump may be the differ-
ence between life and death for a patient being treated by it.

This book told the stories of digital healthcare systems. All the stories
were about common, typical digital products. It’d be bizarre if a book about
drugs discussed problems like side effects but didn’t name any drugs; like-
wise, it’s obvious that it wouldn’t have been possible to discuss digital sys-
tems properly and honestly in this book without naming them and exploring
them in some detail. Moreover, naming and clearly identifying these things
enables anyone to check the details of what I said.

One reason we are happy discussing drugs by name is that it’s obvious
that different drugs are different from each other— they do different things—
and therefore it obviouslymatters which drugs are used. Therefore they need
naming.

I hope, by now, this book hasmade it very clear, too, that infusion pumps,
medical accelerators, patient record systems— every digital device or system
in healthcare, even calculators and beds — are different from each other. It
really matters which ones are being used. They must be named. Besides, it’s
just good science to be clear.

Some of the systems I discussed have won awards. The systems that il-
lustrate this book’s stories weren’t picked on because they’re terrible; they’re
here because they are some of the best — indeed, many have saved lives.
Many of the stories in this book vividly illustrate how hard it is to make dig-
ital safe, and how hard it is for healthcare (and politicians and others) to
recognize that we urgently need to improve digital healthcare. It’s harder
than winning prizes.

Manufacturers and hospitals may point out that the specific systems or
versions of systems that have caused problems are obsolete models, and
there are new versions or completely different systems that are now in use.
That’s good, but the critical issue is whether their thinking has changed too.
If we don’t improve our thinking, we’ll get more of the same old problems.
We have to learn the lessons, and that starts by being clear what the prob-
lems are, and that in turn requires being explicit about all the specific digital
system identities.

Many stories in this book first appeared in the public domain, in news-
papers, on television, and in social media. In this book, all use of public
domain material has been fully cited; all other identifiable material used has
had consent from the people concerned. This is standard practice.519

HEALTHCARE OPENNESS AND ACKNOWLEDGMENTS | 555

Personal acknowledgments

I am very grateful to See Change (R&MA-P, Scotland) who very generously
fund all my work. My work was previously funded by the UK Engineer-
ing and Physical Sciences Research Council (EPSRC), in particular through
a grant called “Computer-Human Interaction for Medical Devices” (CHI-
MED), which involved a wonderful multi-university team.520

Many individuals have helped me enormously. I particularly want to
thank the people who told their personal stories in chapter 30, Signs of
Life, and I want to mention a few very important people who have sustained
me beyond the call of duty: Chitra Acharya, Aidan Byrne, Nick Fine, Ross
Koppel, Peter Ladkin, Paolo Masci, Patrick Oladimeji, Robin and Marianne
Anker-Petersen, Martyn Thomas, Dave Williams, John Williams, and my
OUP editor, Jamie Oates. Many thanks to the entire next generation of my
family — Deborah, Em, Isaac, Jemima, Oi, Sam, and Will — who have read
it and given me detailed comments too. But above all, this book would not
exist without the encouragement and support and tremendously thoughtful
input of my wife, Prue Thimbleby.447

All of the book’s weaknesses or errors are entirely my fault, despite all
my friends’ best efforts to help me. I thank my reading group — in addition
to those I named above — who waded through the many drafts of this book,
for their fantastic, detailed comments, and encouragements:

Stuart Anderson Kevin Fu Rosie Plummer
Ann Blandford Bod Goddard Rowan Pritchard Jones

Angela Branston Julie Greenall Philip Scott
Simon Braybrook Carolyn Greig Martin Sheldon
Carol Butler Beth Griffith Ben Shneiderman
Paul Cairns Rob Griffiths Mike Smith

Abigail Cauchi Michael Harrison Deborah Symmons
Rod Chapman Sue Heatherington Joel Telles
Bella Cheham Jan Hoogewerf Lisa Thomas
Alan Cox Daniel Jackson Sian Thomas
Peter Croft Michael Jackson Sarah Tombs
Paul Curzon Dagmar Lüttel David Watkins
Jelle Damhuis Paul Marshall David Whitaker
Jim Dawton Stephen Mason Dan White
Paul DeMuro Jason Maude GrahamWhite

Hanan Edrees Marie Moe David Widdows
Daniel Feldman Rhian Morris Suzette Woodward
Karen Francis Martin Newby Xixi Yao
Emma Friesen Josh Pike Alex Yeates

556 | CHAPTER 35

Picture and other credits

All the line drawings in this book are by Raden Norfiqri; please do see his
website link radenoactive.com for more of his excellent work. However, I
did all the graphs and charts, which were drawn in Mathematica.

More specific acknowledgements are as follows:
Front cover photographer Johan B. Skre Page 2: Drawing based on a fragment

of the Hippocratic Oath written on the third century Papyrus Oxyrhynchus 2547;
Wellcome L0034090. Wellcome Trust, CC BY 4.0. Page 28: CAT scan draw-
ings based on ChumpusRex, en.wikipedia.org/wiki/File:Ct-workstation-neck.jpg,
CC BY-SA 3.0. Page 40: Drawing based on a photo by Carlos Monroy, cmon-
roya@gmail.com, used with permission. Page 50: Photograph of drug bag label
by Institute for Safe Medication Practices Canada, used with permission. Page
82: X-ray of Anna Bertha Röntgen’s hand. Wilhelm Röntgen, who took the X-ray
in 1895, died in 1923: this work is now in the public domain. Page 83: Clarence
Dally taking an X-ray, from New York World, 1, 3 August 1903. CC BY-NC 3.0.
Page 116: Artist drawing based on screenshots from an app I helped build.119

Page 249: Drawing based on a photo of Dr Marie Moe, used with permission.
Page 252: Drawing based on a photo by Prof Ross Koppel, used with permission.
Page 253: Drawing of Swiss Gornergrat Bahn just below the top station Gorner-

grat, based on a photo by David Gubler, 2013, www.bahnbilder.ch CC BY-SA 3.0.
Page 278: Photograph of Rear Admiral Grace Murray Hopper’s notebook, where

she’d taped the first bug, a moth caught up in the machinery; from the US Naval
History and Heritage Command collection, catalog number NH 96566-KN, 1945.
www.history.navy.mil/our-collections/photography/numerical-list-of-images/
nhhc-series/nh-series/NH-96000/NH-96566-KN.html Page 342: Tweet by Dr
DavidWatkins, usedwith permission. Page 419: Tweet byDr ZoëNorris, usedwith
permission. Page 429: Artist drawing based on the Untire app, by Jelle Damhuis,
usedwith permission. Page 448: Tweet by Prof Neil Ferguson, in public domain.481

Good-faith efforts have been made to contact copyright holders of ma-
terial used in this book, but in a few instances the author has been unable to
locate or get a response from the sources. Copyright holders are invited to
contact OxfordUniversity Press. Over time, internet resourcesmove around,
so if there are any “link rot” problems with this book’s links, URLs, or DOIs
— or problems with any other information, for that matter — please email
me at harold@thimbleby.net

Prof Harold Thimbleby
harold@thimbleby.net – @haroldthimbleby

See Change Fellow in Digital Health
Wales

August 11, 2021

http://radenoactive.com
http://en.wikipedia.org/wiki/File:Ct-workstation-neck.jpg
mailto:cmonroya@gmail.com
mailto:cmonroya@gmail.com
http://www.bahnbilder.ch
http://www.history.navy.mil/our-collections/photography/numerical-list-of-images/nhhc-series/nh-series/NH-96000/NH-96566-KN.html
http://www.history.navy.mil/our-collections/photography/numerical-list-of-images/nhhc-series/nh-series/NH-96000/NH-96566-KN.html
mailto:harold@thimbleby.net
mailto:harold@thimbleby.net
http://twitter.com/haroldthimbleby

Prof Harold Thimbleby is See Change Fellow in Digital Health, based at
Swansea University, Wales. Harold is a popular speaker, and has been in-
vited to talk in over 30 countries.

Harold has been an expert witness in NHS criminal cases; his work ex-
posing problems in digital healthcare has stopped nurses going to prison —
a little of this story is mentioned in this book.87

Harold won the British Computer Society’s Wilkes Medal, and his last
book, Press On: Principles of Interaction Programming (MIT Press), won
several international awards.

Although a professor of Computer Science, he is an Honorary Fellow of
the Royal College of Physicians, the Edinburgh Royal College of Physicians,
and the Royal Society of Arts; he’s also a Fellow of the Learned Society of
Wales and a fellow of the Royal Society ofMedicine. He has been a Royal So-
ciety Wolfson Research Merit Award holder and a Leverhulme Trust Senior
Research Fellow, and he is 28th Gresham Professor of Geometry. Harold is
Expert Advisor on IT to the Royal College of Physicians, amember ofWHO’s
Patient Safety Network, Patient Safety Council Member of the Royal Society
ofMedicine, and an advisor to the Clinical Human Factors Group and the UK
Medicines & Healthcare products Regulatory Agency (MHRA).

Harold is also a patient. He has peripheral neuropathy,436 which makes
everyday activities like walking andwriting painful and increasingly difficult.

More details, including offprints of hundreds of articles and videos, are
available from Harold’s website, www.harold.thimbleby.net

Harold’s twitter handle is @haroldthimbleby

https://mitpress.mit.edu/books/press
http://www.harold.thimbleby.net
http://twitter.com/haroldthimbleby

Fonts for cancer

Buy Fonts Save Lives (BFSL) is a generous project that was founded by the
designer Paul Harpin after his niece Laura died of cancer when she was only
26. BFSL sells typefaces to raise money in support of Cancer Research UK
and Macmillan Cancer Support. See typespec.co.uk for details of BFSL, to
buy fonts, or to donate more fonts.

Nick Cooke designed theOrganon fonts, and donated them to BFSL. The
body text for this book is set in Organon Serif, and his complementary font
Organon Sans Serif is used to make quotes and figure captions stand out.
Both I and Oxford University Press, this book’s publisher, have made dona-
tions to BFSL for the use of the fonts.

Themodern Organon fonts have been subtly complementedwith Roboto
Slab for “computer text,” which is used in this book mainly for URLs and
program source code — the techy stuff.

Monospaced fonts, like Roboto Slab, hark back to the days of old type-
writers, when a font having a constant width made the early mechanical
typewriters considerably simpler to build. Today, monospaced fonts have
been taken up by programmers because their constant-width charactersmake
laying out program source code with neat indentations much easier. Con-
sistent indentation in turn makes programs easier to check, which itself is an
important contribution to reducing bugs.

Roboto Slabwas designed by Christian Robertson. Visually, it’s a typical
“computer” font, which is one reason I liked it for this book. Roboto Slab
is an Open (free) font, and encourages other people to contribute to it, for
instance to providemore styles, such as letters formore languages. See fonts.
google.com/specimen/Roboto+Slab for more details.

Fix IT was typeset with these fonts using LATEX (a powerful typesetting
system) with my own macros. One of LATEX’s many jobs was to generate a
slanted Organon font by using PostScript transformations.

http://typespec.co.uk
http://fonts.google.com/specimen/Roboto+Slab
http://fonts.google.com/specimen/Roboto+Slab

Index

All abbreviations used in this book can be found in the index.

Names in bold are in recognition of the fact that people have been
harmed or adversely affected as victims or as second victims.67

Normal page numbers — 2, 3, 4 — refer to concepts and ideas in
passing. For instance, if there is a patient incident at a hospital, the
hospital name can be found in the index, but the index entry isn’t
about the hospital, it’s just a detail of the story.

Page numbers in bold — 2, 3, 4— are entries discussing topics in
greater depth.

Page numbers in italics — 2, 3, 4 — are for authors of articles, papers,
or reports. These mostly refer to authors appearing in the Notes.a

Symbols & numbers
@, in PHP ⋄ 370
µ ⋄ 55
2:1 AV block ⋄ 46
2FA (Two-Factor Authentication) ⋄

213
510(k) ⋄ 201, 203, 206, 393
737 Boeing plane ⋄ 273, 352
737 MAX Boeing plane ⋄ 197, 352,

537
777 Boeing plane ⋄ 355
3400 Graseby infusion pump ⋄ 36

8601 (ISO 8601) ⋄ 247
9241-210 (ISO 9241-210) ⋄ 298,

311, 318, 319, 322, 333
10,000 hours ⋄ 490
13485 (ISO 13485) ⋄ 488
14971 (ISO 14971) ⋄ 333
26324 (ISO 26324) ⋄ 497, 550
61508 (IEC 61508) ⋄ 405, 460,

549
61508 Association ⋄ 549
62366 (ISO 62366) ⋄ 333
62740 (IEC 62740) ⋄ 481

a See Chapter 34: Notes, page 497←

562 | INDEX

A a
A+ ⋄ 403
A300 planes ⋄ see Airbus
Aase, Karina ⋄ 527
Abacus ⋄ 178
Abbott ⋄ 93, 220

AIM Plus ⋄ 49, 54, 55
FreeStyle Libre ⋄ 426
XceedPro ⋄ 92, 353, 441

Abbreviations ⋄ 55, 173
Abeler-Dörner, Lucie ⋄ 545
Abelson, Harold ⋄ 485
Abertawe Bro Morgannwg University

Health Board (ABMU) ⋄

507, see Cwm Taf
University Health Board,
and Swansea Bay
University Health Board

Abort, Retry, Fail ⋄ 37
ABS (Anti-lock Braking System) ⋄

356
Abstraction ⋄ 167
Abuzour, Aseel ⋄ 510
Accessibility ⋄ 422
Accident terminology ⋄ 474
Accountability ⋄ 409
ACE (Automatic Computing

Engine) ⋄ 291, 514
Acharya, Chitra ⋄ 115, 510, 555
ACM Digital Library ⋄ 290, 474
Acorn Computers ⋄ 29
Acute Coronary Syndrome (ACS) ⋄

110
Ada ⋄ 151, 446, 448, 487, see

Lovelace, Ada; SPARK
Ada

Adacore ⋄ 487
Adam, David ⋄ 546, 547
ADC (Automated Dispensing

Cabinet) ⋄ 172
Adcock, Jack ⋄ 43
Addenbrooke’s Hospital ⋄ 41
Adelman, Jason ⋄ 501
Administrative error ⋄ 114
Adverse incidents ⋄ 146
AECL (Atomic Energy of Canada

Limited) ⋄ 78

Aestiva and Aespire machines ⋄ 213
Agent ⋄ 158
Agile ⋄ 378, 390, 394, 398, 486,

539
Agile regulation ⋄ 461

AHPRA (Australian Health
Practitioner Regulation
Agency) ⋄ 198

AI (Artificial Intelligence) ⋄ 28, 105,
132, 152, 158, 227, 230,
251, 392, 488, 515, see
Machine Learning

Definition ⋄ 231
Ethics ⋄ 233, 523

AIM Plus, Abbott ⋄ 49, 54
Air bags ⋄ 356
Air Inter Flight 148 ⋄ 344
Air Traffic Control (ATC) ⋄ 348, 349
Airbus

A320 plane ⋄ 344, 350
A321 plane ⋄ 355
A340-300 plane ⋄ 361
A380 plane ⋄ 463

Aircraft carrier ⋄ 147
Airplane crashes ⋄ see Aviation

crashes
Airworthiness ⋄ 197
Akerlof, George A. ⋄ 141, 513
Alaris

GP infusion pump ⋄ 204, 412
PC infusion pump ⋄ 339

Alarm automation, alarm fatigue ⋄

185
Alarm fatigue ⋄ 126, 127, 266
Alberta Cancer Care Centre ⋄ 49
Alexa ⋄ 239
Alexander, Chris W. ⋄ 528
Algorithmic bias ⋄ 234
Algorithmics ⋄ 157
Algorithms ⋄ 173
Allen, Marshall ⋄ 524
Alloy ⋄ 485, 538
Allscripts Healthcare Solutions ⋄

371, 498
Alreja, Gaurav ⋄ 507
Alston, Philip ⋄ 517
Alternative Summary Reporting

(ASR) ⋄ 353

INDEX | 563

Always Conditions ⋄ 149, 376
Amalberti, René ⋄ 474
Amaro, Isabel ⋄ 43
Amato, Mary G. ⋄ 501
Amazon ⋄ 29, 239, 359, 378
Ambulances ⋄ 458
American Medical Association ⋄ 328
American National Standards

Institute (ANSI) ⋄ 333
Ames, Jonathan ⋄ 508
Ammenwerth, Elske ⋄ 515
Amorolfine ⋄ 422
An organization with a memory ⋄

266, 479
Anæsthetist ⋄ see Anesthesiologist,

Anesthetist
Analytical Engine ⋄ 151
Anderson, Janet E. ⋄ 527
Anderson, Ross ⋄ 487, 522
Anderson, Stuart O. ⋄ 555
Andrews, B. J. ⋄ 544
Android ⋄ 121
Anemia ⋄ 233
Anesthesiologist, Anesthetist ⋄ 37,

344
Assistant ⋄ 325
Machine ⋄ 213
Qualifications ⋄ 325

Angell, Marcia ⋄ 491
Anker-Petersen, Marianne ⋄ 555
Anker-Petersen, Robin ⋄ 555
ANSI (American National Standards

Institute) ⋄ 333
Anti-lock Braking System (ABS) ⋄

356
Antibiotics ⋄ 21
Antikythera mechanism ⋄ 513
Antipatterns ⋄ 278
ANTLR ⋄ 486
API (Application Programming

Interface) ⋄ 367, 515
Apollo 13 ⋄ 156
Apple ⋄ 29, 182, 194, 389

Apple GiveBack ⋄ 89
iOS ⋄ 179, 194
iPad ⋄ 194, 205, 320, 423,

432, 437
continues …

Apple continued …
iPhone ⋄ 121, 156, 179, 194
iWatch ⋄ 438
Macbook Pro ⋄ 215
Macintosh ⋄ 420

Apple, bad ⋄ 73
Application Programming Interface

(API) ⋄ 367, 515
Apps

Babyl ⋄ 341
Babylon ⋄ 232, 308, 309,

341–343
COVID Symptom Study ⋄ 230
Drip rate ⋄ 116
Drug dose ⋄ 52
Facebook ⋄ 29, 225, 226, 255,

307, 359, 369, 439
Medal ⋄ 417
Mersey Burns ⋄ 121–130, 293,

367, 368, 410, 511
NCalc ⋄ 229
POTTER ⋄ 130–133
Preventive Health ⋄ 225
Tracking apps ⋄ 396, 439, 471
Untire ⋄ 428
WhatsApp ⋄ 225, 254, 439,

525
Aquinas, Thomas ⋄ 507
Archimedes Center for Medical

Device Security ⋄ 488
Architect ⋄ 198
Architecture, three-tier ⋄ 542
Ariane 5 ⋄ 347
Arie, Sophie ⋄ 517
Arithmetic laws ⋄ 51
Aronson, Elliot ⋄ 484, 498
Arora, Sonal ⋄ 525
Arrhythmia ⋄ 427
Arteriovenous malformation

(AVM) ⋄ 305
Artificial Intelligence (AI) ⋄ 28, 105,

132, 152, 158, 227, 230,
251, 392, 488, 515, see
Machine Learning

Definition ⋄ 231
Ethics ⋄ 233, 523

Arts in Health Wales ⋄ 544
Ash, Michael ⋄ 517

564 | INDEX

Ashcroft, Darren M. ⋄ 510
Ashton, Melinda ⋄ 543
Ashton-Tate ⋄ 29
Asmaval (thalidomide) ⋄ 82
Aspirin ⋄ 90
ASR (Alternative Summary

Reporting) ⋄ 353
Assertions ⋄ 291
@, in PHP ⋄ 370
ATC (Air Traffic Control) ⋄ 348, 349
Atomic Energy of Canada Limited

(AECL) ⋄ 78
Atrioventricular block (AV block) ⋄

46, 427
Attribute substitution ⋄ 28, 141
Auctiontraderrsuk ⋄ 90
August errors ⋄ 115
Austerity ⋄ 185
Austin Hospital, Melbourne ⋄ 165
Austin, J. Matthew ⋄ 542
Australian Health Practitioner

Regulation Agency
(AHPRA) ⋄ 198

Authority hierarchy ⋄ 348
Autocorrection ⋄ 237, 398
Automated development ⋄ 298
Automated Dispensing Cabinet

(ADC) ⋄ 172
Automatic Computing Engine

(ACE) ⋄ 291, 514
AV block ⋄ 46, 427
Avery, Anthony J. ⋄ 510
Aviation ⋄ 113, 344, 347–361, 375
Aviation crashes ⋄ 221

Air Inter Flight 148 ⋄ 344
Eastern Airlines Flight 401 ⋄

262
KLM Flight 4805 ⋄ 348
Pan Am Flight 1736 ⋄ 348
Scandinavian Airlines System

Flight 933 ⋄ 262
United Airlines Flight 173 ⋄

263
US Airways Flight 1549 ⋄ 350

AVM (Arteriovenous
malformation) ⋄ 305

Avoid thinking ⋄ 170

Awdish, Rana ⋄ 237, 476, 507,
524

Ayoub, Anaheed ⋄ 540

B b
B-17 Flying Fortress ⋄ 65
B-Braun ⋄ 186, 411
Babbage, Charles ⋄ 151, 513
Babycentre ⋄ 225
Babyl (Rwandan Babylon)

App ⋄ 341
Babylon ⋄ 242

App ⋄ 232, 308, 309, 341–343
Backups ⋄ 213, 215
Backwards compatibility ⋄ 182
Bacon, Seb ⋄ 504
Bad apple ⋄ 73
Bad comment ⋄ 279
Badawi, Omar ⋄ 543
Badcock, James ⋄ 506
Bagaria, Jayshree ⋄ 548
Bailey, M. J. ⋄ 523
Baio, Gianluca ⋄ 541
Bajak, Frank ⋄ 548
Ball, James ⋄ 549
Bamberger, Peter A. ⋄ 513
Bank account ⋄ 383
Baraniuk, Chris ⋄ 520
Barclays Bank ⋄ 384
Barcode ⋄ 172, 256
Barda, Dikla ⋄ 526
Barnes, Jamie ⋄ 511
Barton, Jane ⋄ 84, 506
Basic, programming language ⋄ 286,

500
Batalden, Paul B. ⋄ 533
Bates, David W. ⋄ 498, 501, 525
Bawa-Garba, Hadiza ⋄ 43, 501,

502
Baxter, Charles R. ⋄ 511
Bayes Theorem ⋄ 417
Bayir, Hülya ⋄ 501
Baynes, Chris ⋄ 508
Baystate Health System ⋄ 97
Beatson Oncology Centre ⋄ 71
Beatson West of Scotland Cancer

Centre ⋄ 69
Beattie, Kieran ⋄ 518

INDEX | 565

Bellomo, R. ⋄ 523
Bellotti, Marianne ⋄ 492
Benefits, Risks, Alternatives, do

Nothing, Second opinion
(BRANS) ⋄ 84

Beral, Valerie ⋄ 536
Berger, Emery D. ⋄ 538
Berkeley StoryCenter ⋄ 423
Bernard, Alain ⋄ 541
Bertsimas, Dimitris ⋄ 512
Berwick, Don ⋄ 472, 473
van den Beuken, Frank ⋄ 538
Bevan, Nigel ⋄ 544
BFSL (Buy Fonts Save Lives) ⋄ 559
Bhopal disaster ⋄ 474
Bhopal, Raj ⋄ 548
Bhopal, Sunil S. ⋄ 548
Biases ⋄ 235, 268
Bice, Thomas ⋄ 527
Big data ⋄ 227, 439
Biggs, Tim ⋄ 545
Bile ⋄ 20
Bill & Melinda Gates Foundation ⋄

22
Billett, Stephen ⋄ 527
Billion definition ⋄ 498
Binary gender ⋄ 307
Biosimilars ⋄ 241
Birkmeyer, John D. ⋄ 542
Birmingham and Solihull Mental

Health NHS Foundation
Trust ⋄ 450

Bitcoin ⋄ 169, 240, 298, 524
Blaber, Reginald ⋄ 266
Black bile ⋄ 20
Black Box thinking ⋄ 221, 351, 490,

526
Blakeslee, Sandra ⋄ 526
Blame and train ⋄ 71
Blame Game ⋄ 71, 75
Blandford, Ann ⋄ 555
Blau, Helen M. ⋄ 524
The Bleeding Edge ⋄ 207, 491
Blockchain ⋄ 240, 298, 488, 524
Blood oxygenation ⋄ 438
Blood tests ⋄ 337
Blood-letting ⋄ 20, 498
Blue screen ⋄ 38

Blunt end ⋄ 329
Blythe, Jim ⋄ 530
BMI (Body Mass Index) ⋄ 173, 283,

408
BOC Healthcare ⋄ 418
Body Mass Index (BMI) ⋄ 173, 283,

408
Boehne, J. J. ⋄ 501
Boeing

737 MAX plane ⋄ 197, 352,
537

737 plane ⋄ 273
747 plane ⋄ 348
777 plane ⋄ 355
B-17 Flying Fortress ⋄ 65

Boer War ⋄ 81
Bonsall, David ⋄ 545
Borland, Sophie ⋄ 536
Boseley, Sarah ⋄ 547
Bostock, Nick ⋄ 502
Boudnik, Konstantin ⋄ 547
Boulanger, Jean-Louis ⋄ 538
Boundless Mind ⋄ 28
Bower, Peter ⋄ 510
Bowers, Simon ⋄ 519
Bowtie Model ⋄ 335
Bradshaw, Gary ⋄ 503
Braithwaite, Ian ⋄ 512
Braithwaite, Jeffrey ⋄ 530
BRANS (Benefits, Risks,

Alternatives, do Nothing,
Second opinion) ⋄ 84

Branston, Angela ⋄ 430, 555
Braude, Jacob M. ⋄ 274, 528
Braybrook, Simon ⋄ 555
Breast screening ⋄ 363
Breast Screening, Independent

Review ⋄ 363
Brewis, Harriet ⋄ 546
Brexit ⋄ 519
Bridgestone tires ⋄ 402
British Standards Institute (BSI) ⋄

333
Bromiley, Elaine ⋄ 263, 264, 490,

526
Bromiley, Martin ⋄ 264, 490, 526,

530
Brown, Charles ⋄ 216

566 | INDEX

Brucellosis ⋄ 432
Bryan, Cleve ⋄ 527
BSI (British Standards Institute) ⋄

333
Bucknall, Tracey ⋄ 504
Buffer overflow ⋄ 279
Bugs ⋄ see Millennium Bug

Bug bounty ⋄ 466
Definition ⋄ 17
Dijkstra quote ⋄ 362
Edison quote ⋄ 278
History ⋄ 278
Hopper quote ⋄ 278
Intentional ⋄ 17
Latent ⋄ 282
Wilkes quote ⋄ 157

Buildings, safer ⋄ 147, 164
Bundy, David ⋄ 516
Bunyan, Nigel ⋄ 506
Buonomano, Dean ⋄ 528
Bupa ⋄ 225
Burbury, K. L. ⋄ 523
Burg, John ⋄ 524
Burgess, Matt ⋄ 525, 533
Burkett, Genesis ⋄ 63
Burns, Ken Burns effects ⋄ 543
Bus safety ⋄ 356
Butler, Carol ⋄ 555
Butt, Mobasher ⋄ 341, 534
Buxton, Bill ⋄ 530
Buy Fonts Save Lives (BFSL) ⋄ 559
Bwg ⋄ 278
Byrne, Aidan ⋄ 555

C c
C language ⋄ 367, 446, 447

MISRA C ⋄ 375, 377, 447,
539, 549

Cadaverous particles ⋄ 15
Cæsar, Julius ⋄ 373
Cage, D. ⋄ 505
Cairns, Paul ⋄ 497, 503, 518, 540,

555
Calcium chloride ⋄ 177
Calculators ⋄ 51, 398

Casio HR-150TEC ⋄ 180
continues …

Calculators continued …
Casio HS-8V ⋄ 51, 179
HP EasyCalc 100 ⋄ 390, 391
iPhone iOS ⋄ 179
Pascal’s ⋄ 513

California ⋄ 478
Campbell, Denis ⋄ 519, 531, 546
Campbell, Stephen ⋄ 510
Canary, coal mine ⋄ 512
Cancer research ⋄ 334
Cancer Research UK ⋄ 559
Cancer-Related Fatigue (CRF) ⋄ 428
Canfield, Carolyn ⋄ 527
Cannula ⋄ 330
Car hire ⋄ 521
Car roadworthiness test, UK

(MOT) ⋄ 142
Car safety ⋄ 356
Carbon monoxide ⋄ 327
Carcillo, Joseph A. ⋄ 501
Card, Stuart K. ⋄ 543
Cardinal Health Alaris GP ⋄ 204
Carding, Nick ⋄ 506, 546
Carlin, Rosemary ⋄ 165
Carpal tunnel syndrome ⋄ 112
Carpendale, Sheelagh ⋄ 530
Carreyrou, John ⋄ 134, 512
Carson, Shannon S. ⋄ 527
Carter, Barbara R. ⋄ 498
Carter, K. Codell ⋄ 498
Carthey, Jane ⋄ 549
Casio ⋄ 389

HR-150TEC calculator ⋄ 180
HS-8V calculator ⋄ 51, 179

Cassidy, John ⋄ 517
Castleton, Lee ⋄ 99, 508
Cat Thinking ⋄ 25–30, 42, 88, 135,

170, 275, 334, 420, 484,
494, 549

Quotient ⋄ 234
Cataneli, V. P. ⋄ 516
Catastrophe ⋄ 147, 473
Catch 22 ⋄ 238
Cauchi, Abigail ⋄ 540, 542, 555
CbC (Correct by Construction) ⋄

361, 375
CDC (Centers for Disease Control) ⋄

509

INDEX | 567

CE marking ⋄ 93, 121, 181, 201,
519

Celi, Leo A. ⋄ 543
Cell phone ⋄ 178
Cellan-Jones, Rory ⋄ 549
Centaur Chemist ⋄ 392
Centers for Disease Control (CDC) ⋄

509
Central line ⋄ 330
Cerner Millennium ⋄ 41
Cerner PowerChart & PowerOrders ⋄

39, 45
Chakradhar, Shraddha ⋄ 523
Chamberlain, Alan ⋄ 510
Chander, Ajay ⋄ 524
Chapanis, Alphonse ⋄ 65
Chapman, Rod ⋄ 555
Check checking ⋄ 166
Check-in ⋄ 313
Checklists ⋄ 63, 330, 334, 533

WHO Surgical Checklist ⋄ 265,
334

Checkpoint Research ⋄ 526
Cheham, Bella ⋄ 425, 555
Chemie Grünenthal ⋄ 81
Cherry picking ⋄ 519
Chess ⋄ 162, 231, 515
CHFG (Clinical Human Factors

Group) ⋄ 264, 475
CHI-MED (Computer-Human

Interaction for Medical
Devices, EPSRC project) ⋄

555
Chickenpox ⋄ 431
Child protection ⋄ 430
Children’s Hospital, Pittsburgh ⋄ 39
Chivers, Tom ⋄ 523
Christensen, Clayton M. ⋄ 480, 499
Church, Alonzo ⋄ 152
Church–Turing Thesis ⋄ 152, 158
Ciftci, Farah ⋄ 544
Civica Rx ⋄ 491
Civility ⋄ 146
Clark, Robert S. B. ⋄ 501
Clarke, Jonathan ⋄ 525
Clarke, Rachel ⋄ 502
Class I – Class III devices ⋄ 201, 460
Clinical equipoise ⋄ 394

Clinical Human Factors Group
(CHFG) ⋄ 264, 475

Clinical phases ⋄ 391
clinicalTrials.gov ⋄ 520
Clinipad ⋄ 320
Cloned documentation ⋄ 310
Clonidine ⋄ 254
Closure ⋄ 290
Co-regulation ⋄ 459
Coal mine canary ⋄ 512
Cobalt 60 ⋄ 74
Code review ⋄ 273, 297, 332, 362,

386, 442
Cognitive biases ⋄ 268
Cognitive dissonance ⋄ 28, 270
Cohen, Deborah ⋄ 502, 519
Cohen, Jessica Kim ⋄ 510
Cohen, Maxine ⋄ 483
Coiera, Enrico ⋄ 510, 515
Coinage ⋄ 169
Coleman, Cameron ⋄ 527
Collinson, Patrick ⋄ 539
Color vision ⋄ 272
Colossus ⋄ 514
Combinatorial explosion ⋄ 162
Comma Separated Values (CSV) ⋄ 98
Commands ⋄ 284
Comments ⋄ 279
Commercial confidential ⋄ 542
Commodore ⋄ 29
Common Off The Shelf (COTS) ⋄

204
Common Sense, charity ⋄ 498
Common Vulnerabilities and

Exposures (CVE) ⋄ 481
Community Health Systems ⋄ 369
Complaints, patient ⋄ 422
Compliance issues ⋄ 160
Computability ⋄ 514
Computational complexity ⋄ 161
Computational Thinking (CT) ⋄

151–175, 203, 248, 251,
253, 267, 408, 464, 484,
532

Computer chess ⋄ 162, 515
Computer Factors ⋄ 174, 277–299

http://clinicalTrials.gov

568 | INDEX

Computer Science ⋄ 19, 79, 151,
159, 161, 222, 253, 278,
290, 377, 456, 476, 480,
485, 529

Computer-Human Interaction for
Medical Devices, EPSRC
project (CHI-MED) ⋄ 555

Conceptual Design ⋄ 299
Concurrency ⋄ 279
Confidentiality ⋄ 197

Confidentiality clauses ⋄ 41,
195, 526

Confirmation bias ⋄ 51, 269, 476
Confusable letters ⋄ 166
Confusion, last year of ⋄ 373
Consensus ⋄ 273
Continental tires ⋄ 402
Continuous Positive Airway Pressure

Machine (CPAP) ⋄ 238
Continuous Professional

Development (CPD) ⋄

457
Contract, programming ⋄ 64
Control Data Corporation (CDC) ⋄

29
Control group ⋄ 393
Cook, Richard I. ⋄ 505
Cooke, Julie ⋄ 536
Cooke, Nick ⋄ 559
Cooper, Alan ⋄ 483
Copas, Andrew J. ⋄ 541
Copyright ⋄ 250
Corfield, Gareth ⋄ 519
COrona VIrus Disease, COVID ⋄ 437
Correct by Construction (CbC) ⋄

361, 375
Corruption ⋄ 279
Cosenza, Emily ⋄ 529
Cosmic rays ⋄ 248
COTS (Common Off The Shelf) ⋄

204
Covent Garden tube station ⋄ 46
COVID-19 ⋄ 17, 111, 112, 230,

235, 396, 432, 437–453,
458, 471, 477

Symptom Study app ⋄ 230
Vaccination ⋄ 173

Covidien ⋄ 353

Cowboy builder ⋄ 357
Cox, Alan ⋄ 555
Cox, Anna L. ⋄ 518, 542
CPAP (Continuous Positive Airway

Pressure Machine) ⋄ 238
CPD (Continuous Professional

Development) ⋄ 457
Crash terminology ⋄ 474
Crew Resource Management

(CRM) ⋄ 348, 361
CRF (Cancer-Related Fatigue) ⋄ 428
Cricothyrotomy ⋄ 263, 526
Crimean War ⋄ 109
CRM (Crew Resource

Management) ⋄ 348, 361
Croft, Peter ⋄ 555
Croker, Richard ⋄ 504
Cronin, David ⋄ 483
Cross Cancer Institute ⋄ 49, 59
Cross Site Scripting (XSS)

vulnerability ⋄ 291
Cross, Stephen ⋄ 487
Cross-infection ⋄ 15
Crumple zone ⋄ 356
Cryptography, digital ⋄ 169, 298
CSV (Comma Separated Values) ⋄ 98
CT (Computational Thinking) ⋄

151–175, 203, 248, 251,
253, 267, 408, 464, 484,
532

Culture ⋄ 460
Cumberlege Review ⋄ 433
Cumberlege, Julia ⋄ 545
Cunningham, Melissa ⋄ 515
Curtis, Helen J. ⋄ 504
Curzon, Paul ⋄ 262, 484, 540, 555
Cutler, David M. ⋄ 548
Cvach, Maria ⋄ 511
CVE (Common Vulnerabilities and

Exposures) ⋄ 481
Cwm Taf University Health Board ⋄

507
Cybersecurity ⋄ 104, 211–222, 427,

457, 479, 488, 499, 521,
see National cybersecurity
centers

Cybervulnerability ⋄ 219, 221
continues …

INDEX | 569

Cybersecurity continued …
RIPPLE20 ⋄ 550
St Jude pacemaker ⋄ 219

Cystic fibrosis ⋄ 206

D d
D’Andrea, Guy ⋄ 542
Da Vinci robot ⋄ 356
Dabydeen, Lyvia ⋄ 502
Dael, Jackie van ⋄ 511
Dahl, O.-J. ⋄ 530
Dally, Clarence Madison ⋄ 81,

556
Damhuis, Jelle ⋄ 428, 555, 556
Dangerous words, most ⋄ 354
Dare, Tom ⋄ 547
Darzi, Ara ⋄ 511, 525
Das, Shanti ⋄ 524
Data entry ⋄ 409
Dates ⋄ 247
Datix ⋄ 109, 110, 482
Dave, Paresh ⋄ 545
Davey, Calum ⋄ 541
Davidoff, Frank ⋄ 533
Davidson, Aaron ⋄ 520
Davies, Mark ⋄ 116, 510
Davis, Jessica ⋄ 520
Davis, Ronald M. ⋄ 550
Dawton, Jim ⋄ 555
Daylight saving ⋄ 373
Deadlock ⋄ 279
Dean, James ⋄ 535
Dearden, Lizzie ⋄ 548
Death certificate ⋄ 111
Declaration of Geneva ⋄ 469
Declaration of Helsinki ⋄ 548
Declarations ⋄ 374
Declarative programming ⋄ 285
DeepMind Health ⋄ 227
DeepScan ⋄ 290
Defects per kLoC ⋄ 376
Defensive programming ⋄ 279
Degradation, graceful ⋄ 165
Dekker, Sidney ⋄ 146, 474, 484,

505, 513, 530
Delay and deny ⋄ 117, 422
DeMuro, Paul ⋄ 555
Dentist ⋄ 320

Department of Drug Administration,
Nepal ⋄ 198

Department of Veterans Affairs
(VA) ⋄ 371

DeRisi, Joe ⋄ 478
Dermatology ⋄ 235
DERS (Dose Error Reduction

Software) ⋄ 295, 306
Design Council ⋄ 319
The Design of Everyday Things ⋄

483
Design out error ⋄ 268
Design trade-offs ⋄ 88
Designer error ⋄ 65
Device logs ⋄ 169, 189
DeWitt clauses ⋄ 195, 461
DeWitt, David J. ⋄ 518
Diabetes ⋄ 426
Diagnosis error ⋄ 114
Diakopoulos, Nicholas ⋄ 483
Dick, Kirby ⋄ 520
DICOM (Digital Imaging and

Communications in
Medicine) ⋄ 508

Dieselgate ⋄ 551
Difference Engine ⋄ 151
Diffuse idiopathic skeletal

hyperostosis ⋄ 512
Digital cryptography ⋄ 169, 298
Digital Equipment Corporation

(DEC) ⋄ 29
Digital hygiene ⋄ 17
Digital Imaging and

Communications in
Medicine (DICOM) ⋄ 508

Digital library ⋄ 290
Digital literacy ⋄ 213
Digital Object Identifier (DOI) ⋄

497, 550
Digital Rights Management (DRM) ⋄

250
Digital Story ⋄ 117, 422, 544
Digivigilance (DV) ⋄ 83, 459
Dijkstra, Edsger Wybe ⋄ 299, 362,

529, 530
Diltiazem ⋄ 65
Discharge letter ⋄ 246
Dispersion ⋄ 443

570 | INDEX

Disruption ⋄ 479
Distaval (thalidomide) ⋄ 82
Diversity ⋄ 106, 233, 272, 302
Divide by zero ⋄ 280
Dixon-Woods, Mary ⋄ 510
DO-178C, Software Considerations

in Airborne Systems and
Equipment Certification ⋄

487
Doctors’ Association UK ⋄ 45
Documentation ⋄ 448
Doerfler, Ronald ⋄ 511
DOI (Digital Object Identifier) ⋄

497, 550
Domain-Specific Language (DSL) ⋄

294, 486
Domeier, Robert M. ⋄ 541
Donaldson, Sir Liam ⋄ 148, 266,

354, 474, 479, 513, 527
Donnelly, Laura ⋄ 537
Dopamine ⋄ 25, 464
Dopamine Labs ⋄ 28
Dose Error Reduction Software

(DERS) ⋄ 295, 306
Double Diamond design ⋄ 319
DoubleClick ⋄ 225
Down syndrome ⋄ 34, 43, 286, 462
Dreyer, Derek ⋄ 538
Drip rate app ⋄ 116
DRM (Digital Rights Management) ⋄

250
Drug dose app ⋄ 52
Drug naming ⋄ 254
Drugs, fake ⋄ 206
Drummond, Hector ⋄ 547
DSL (Domain-Specific Language) ⋄

294, 486
DSP-1181 drug ⋄ 392
Dual Effect, Principle of ⋄ 90
Dubberly, Hugh ⋄ 527
Dubernard, Jean Michel ⋄ 541
Duffy, Annie ⋄ 511
Duncan, Alison ⋄ 536
Dunn, Jack ⋄ 512
Dunning, David ⋄ 358, 536
Dunning-Kruger Effect ⋄ 358
Duquenoy, Penny ⋄ 523
Duty of Candour ⋄ 110

DV (digivigilance) ⋄ 83, 459
Dyer, Clare ⋄ 502, 506

E e
Early warning score ⋄ 230, 438
Ease of use/error trade-offs ⋄ 112,

412
Eastern Airlines Flight 401 ⋄ 262
eBay ⋄ 90, 359
Echo chambers ⋄ 269
Eckert, John Adam Presper ⋄ 156
Eclipse ⋄ 70, 509
Ecological experiment ⋄ 91
Ecological validity ⋄ 304
ECRI Institute ⋄ 475
Edison, Thomas Alva ⋄ 81, 278
Edrees, Hanan ⋄ 555
EDSAC (Electronic Delay Storage

Automatic Calculator) ⋄

157
Education, software ⋄ 452
EDVAC (Electronic Discrete Variable

Automatic Computer) ⋄

156
Edwards, Haley Sweetland ⋄ 499
Edwin Smith Papyrus ⋄ 497
Effective reproduction number, R ⋄

443, 446, 547
Eguale, T. ⋄ 501
Egyptians, Ancient ⋄ 20
Ehrenfeld, Jesse ⋄ 328
eICU (virtual or Electronic Intensive

Care Unit) ⋄ 420
Einstein, Albert ⋄ 21
Eisenberg, Mike ⋄ 472
Eknoyan, Garabed ⋄ 516
Electronic Delay Storage Automatic

Calculator (EDSAC) ⋄ 157
Electronic Discrete Variable

Automatic Computer
(EDVAC) ⋄ 156

Electronic evidence ⋄ 92, 100, 353,
482, 508

Electronic Numerical Integrator And
Computer (ENIAC) ⋄ 156

Elephant model ⋄ 275
Eller, L. K. W. ⋄ 516
Elliott Brothers ⋄ 29

INDEX | 571

Ellis, Andy ⋄ 501
Ellson, Andrew ⋄ 508
Elmqvist, Niklas ⋄ 483
Elson, R. B. ⋄ 501
Elton, Caroline ⋄ 477
Email

Email storm ⋄ 204, 519
Interoperability ⋄ 245

Embedded computers ⋄ 438
Emergency surgery ⋄ 130
Emergent behavior ⋄ 204
EMIS ⋄ 65, 371
Encrypted disk ⋄ 215
Energy efficiency ⋄ 402
Engineering and Physical Sciences

Research Council
(EPSRC) ⋄ 489, 555

Engstrom, Logan ⋄ 524
ENIAC (Electronic Numerical

Integrator And
Computer) ⋄ 156

Enigma, German ⋄ 152, 329
Epic ⋄ 41, 371, 373
Epidemiology ⋄ 445
EPSRC (Engineering and Physical

Sciences Research
Council) ⋄ 489, 555

Equal opportunity ⋄ 168
Equipoise, clinical ⋄ 394
Equivalence class ⋄ 173
Erez, Amir ⋄ 513
Ericsson, Anders ⋄ 490
Error

Correction ⋄ 165, 525
Intentional ⋄ 503
Preventable ⋄ 112
Slip ⋄ 503

Errorgance ⋄ 354
ESA (European Space Agency) ⋄ 347
ESLint ⋄ 290
Esteva, Andre ⋄ 524
Ethics ⋄ 90, 548

and AI ⋄ 171, 233
and consent ⋄ 554
Ethics Boards ⋄ 451

European Space Agency (ESA) ⋄ 347
Evans, Christopher Richard ⋄ 424,

544

Evans, Harold ⋄ 505
Everglades, Eastern Airlines Flight

401 ⋄ 262
Evley, R. ⋄ 531
Evtimov, Ivan ⋄ 524
Ewing, Jack ⋄ 551
Excel, Microsoft ⋄ 182, 202, 295,

440, 478
Experiment

Ecological ⋄ 91
Risky ⋄ 480

Expert witness ⋄ 93, 507
Externalization ⋄ 311
Eykholt, Kevin ⋄ 524

F f
F, father, female ⋄ 307, 413
Fabricant, Cliff Kuang with Robert ⋄

504
Facebook ⋄ 29, 225, 226, 255, 307,

359, 369, 378, 439
Facey, Peter V. ⋄ 515
Failing fast ⋄ 394
Failsafe ⋄ 292
Fake drugs ⋄ 206
False negative, False positive ⋄ 227
Falsified Medicines Directive ⋄ 206
Father ⋄ 307, 413
Fatigue, alarm ⋄ 185
Fax machines ⋄ 165
FDA ⋄ see Food and Drug

Administration
Feddie Reporting Award ⋄ 535
Feedback ⋄ 409
Feinmann, Jane ⋄ 525
Feldman, Daniel ⋄ 555
Feldman, Yishai ⋄ 514
Female ⋄ 307, 413
Fencepost error ⋄ 280
Fentanyl ⋄ 37
Ferguson, Neil ⋄ 547
Ferguson, Neil M. ⋄ 447–449, 547
Ferguson-Pell, M. W. ⋄ 544
Fernandes, Earlence ⋄ 524
Ferreira, M. V. S. ⋄ 516
Ferretti, Luca ⋄ 545
Feynman, Richard P. ⋄ 485
Fibonacci series ⋄ 537

572 | INDEX

Fine, Nick ⋄ 35, 555
Fines ⋄ 327
Finite State Machine (FSM) ⋄ 86,

503, 506
Finnegan, Gary ⋄ 522
First-class objects ⋄ 168
Fitts, Paul Morris ⋄ 65
Fix IT Oath ⋄ 469
Flanagan, Hugh ⋄ 487
Flexibility ⋄ 379, 486
Flight Path Angle (FPA) ⋄ 344
Flow ⋄ 290
Fluorouracil ⋄ 247
Flying Fortress, B-17 ⋄ 65
FOD (Foreign Object Damage) ⋄ 148
Fonts ⋄ 559
Food and Drug Administration

(FDA) ⋄ 198, 219, 507,
509, 540, 548

510(k) ⋄ 201, 203, 206, 393
ASR ⋄ 353
Device recalls ⋄ 46
Human Factors ⋄ 484
Kelsey, Frances ⋄ 82
MAUDE ⋄ 221, 353, 459, 481
Thalidomide ⋄ 82
Therac-25 ⋄ 79

Ford, Henry ⋄ 311
Foreign Object Damage (FOD) ⋄ 148
Forensic methods ⋄ 98
Formal Methods ⋄ 291, 299,

367–380, 383–399, 485
Forte (thalidomide) ⋄ 82
FORTRAN ⋄ 154
Fossbakk, Grete ⋄ 383, 539
Foulk, Trevor A. ⋄ 513
Fournel, Isabelle ⋄ 541
FPA (Flight Path Angle) ⋄ 344
Francis Report ⋄ 117, 473, 502
Francis, Karen ⋄ 555
Francis, Robert ⋄ 117, 473, 502
Frankin, Benjamin ⋄ 528
Fraser, Christophe ⋄ 545
Fraud ⋄ 134
Freeman Hospital ⋄ 356
Freestyle Libre ⋄ 426
Friedberg, Mark ⋄ 373
Friesen, Emma ⋄ 555

FSM (Finite State Machine) ⋄ 86,
503, 506

Fu, Kevin ⋄ 555
Fujitsu ⋄ 100, 508
Fundamental attribution error ⋄ 268
Fungibility ⋄ 360
Funk, Marjorie ⋄ 511
Fussell, Sidney ⋄ 522
Fuzzing ⋄ 133, 389, 540

G g
Gag clauses ⋄ 41, 195, 197, 461,

526
Gaines, Brian R. ⋄ 515
Gaines, Kim ⋄ 522
Galanter, William L. ⋄ 501
Galmiche, Hubert ⋄ 541
García, Ariadna Reina ⋄ 548
García, Beatriz ⋄ 548
Garcia, Pablo ⋄ 126, 266
Gas Safe Register ⋄ 327
Gates Foundation ⋄ 22
Gates, Guilbert ⋄ 551
Gates, Melinda Ann ⋄ 22
Gates, William (Bill) Henry Gates ⋄

22
Gawande, Atul ⋄ 472, 533
GCHQ (Government

Communications
Headquarters) ⋄ 444

GDPR (General Data Protection
Regulation) ⋄ 225

GE Healthcare ⋄ 212
Aestiva and Aespire machines ⋄

213, 345
Gemmell, L. ⋄ 531
Gender ⋄ 231, 271

Gender identity ⋄ 204, 307,
342

General Data Protection Regulation
(GDPR) ⋄ 225

General Medical Council (GMC) ⋄

43, 45, 461
General Motors ⋄ 90, 345
General Practitioner (GP) ⋄ 344
General Purpose Language (GPL) ⋄

294
Georgiou, Andrew ⋄ 515

INDEX | 573

Gerada, Clare ⋄ 177, 516
Germ theory ⋄ 16
German Enigma ⋄ 152, 329
Getting Rid of Stupid Stuff ⋄ 413,

475
Gidengil, Courtney ⋄ 544
Gillespie, Alex ⋄ 511
Gimblett, Andy ⋄ 517, 540
Git ⋄ 298
Glasgow Royal Infirmary ⋄ 81
Glass, Laura ⋄ 477
Global HITIP ⋄ 468
Global NCAP ⋄ 467
Global UDI Database (GUDID) ⋄

404
Glover, Rory ⋄ 341, 533
Glucometer ⋄ 92
GMC (General Medical Council) ⋄

43, 45, 461
Goddard, Bod (Andrew) ⋄ 555
Gold Standard (RCTs) ⋄ 393
Goldacre, Ben ⋄ 491, 504, 522, 543
Golden, Edwarda ⋄ 544
González, Alveo ⋄ 73
González, Olivia Saldaña ⋄ 73,

287
Good Design Award ⋄ 96, 414
Goodwin, Bill ⋄ 500, 501
Google ⋄ 225, 369

DeepMind Health ⋄ 227
Google Scholar ⋄ 474

Gordon, Suzanne ⋄ 473
GOSH (Great Ormond Street

Hospital for Children) ⋄

305
Gosport War Memorial Hospital ⋄

84, 103, 115, 117, 506
Goss, Foster R. ⋄ 524
Gover, Ayala ⋄ 513
Government Communications

Headquarters (GCHQ) ⋄

444
Gow, Jeremy ⋄ 518
GP (General Practitioner) ⋄ 344
GPL (General Purpose Language) ⋄

294
Graceful degradation ⋄ 165, 221,

292

Graham, Ronald L. ⋄ 537
Graseby ⋄ 196

3400 infusion pump ⋄ 36
MS 16A syringe driver ⋄ 84,

326, 506
MS 26 syringe driver ⋄ 84,

326, 506
Great Ormond Street Hospital for

Children (GOSH) ⋄ 305
Greedy method ⋄ 251
Green, Matthew ⋄ 369
Greenall, Julie ⋄ 555
Greenberg, Saul ⋄ 530
Greenbone Networks ⋄ 508
Greenhalgh, Trisha ⋄ 499, 541
Greenlight Guru ⋄ 488
Greenwood, George ⋄ 503
Gregory, Andrew ⋄ 524
Greig, Carolyn ⋄ 555
Griffith, Beth ⋄ 493, 555
Griffith, Bethan ⋄ 550
Griffiths, Rob ⋄ 555
Grigg-Booth, Anne ⋄ 84, 506
Grissinger, Matthew ⋄ 504
Grossman, Jerome H. ⋄ 480
Grünenthal ⋄ 81
GS1 ⋄ 256
Guards

Programming ⋄ 283
Saw, woodwork ⋄ 73

Gubler, David ⋄ 556
GUDID (Global UDI Database) ⋄

404
Guise, Veslemøy ⋄ 527
Gupta, Sanjay ⋄ 502

H h
Hacker club ⋄ 545
Haddon-Cave, Charles A. ⋄ 481
Hajratalli, Narissa Karima ⋄ 512
Hall, R. ⋄ 531
Hallett, Christine ⋄ 498
Halliday, Josh ⋄ 546
Hallman, Ben ⋄ 535
Halwala, Mettaloka ⋄ 165
Hamblin, Steven ⋄ 534
Hammerla, Nils ⋄ 534

574 | INDEX

Hammersmith and Fulham Clinical
Commissioning Group ⋄

242
Hamnett, Nathan ⋄ 511
Han, Yong Y. ⋄ 501
Hancock, Matt ⋄ 240, 419, 543
Hancock, Stephen ⋄ 512
Handshaking ⋄ 103, 165
Handwashing ⋄ 15, 443
Haneef, Razaan ⋄ 510
Hansen, Wilfred J. ⋄ 531
Hanson, Chris ⋄ 486
Haraldseid-Driftland, Cecilie ⋄ 527
Harel, David ⋄ 514
Hargreaves, James R. ⋄ 541
Harlow, Max ⋄ 522
Harpin, Laura Grace ⋄ 559
Harpin, Paul ⋄ 559
Harris, Lisa H. ⋄ 531
Harris, Stanley ⋄ 526
Harrison, Michael D. ⋄ 540, 555
Harvard Medical School ⋄ 130
Harvard University Mark II

computer ⋄ 278
Harvey, William ⋄ 21
Hatton, Les ⋄ 533
Hawai‘i Pacific Health ⋄ 413, 475
Hawass, Zahi ⋄ 512
Hawthorne-Johnson, Carol ⋄ 373
HCI (Human-Computer

Interaction) ⋄ 482
Health and Safety at Work Act ⋄ 207,

520
Health and Safety Executive (HSE) ⋄

208
Health Foundation ⋄ 499
Health Level 7 (HL7) ⋄ 250
Health Service Executive ⋄ 214
Healthcare Safety Investigation

Branch (HSIB) ⋄ 463,
482, 499

Healthline ⋄ 225
Healy, Joanne L. ⋄ 541
Heartbleed ⋄ 326, 369
Heath, Chip ⋄ 275, 528
Heath, Dan ⋄ 275, 528
Heather, Ben ⋄ 536
Heatherington, Sue ⋄ 555

Heathrow airport ⋄ 113
Heaven, Will Douglas ⋄ 524
Heedless programming ⋄ 373, 538
Helm, Toby ⋄ 517, 522
Henly, Anne S. ⋄ 532
Henry, C. Jeya K. ⋄ 529
Henson, Philip ⋄ 512
Herndon, Thomas ⋄ 517
Hertzfeld, Andy ⋄ 543
Hewlett Packard calculator

EasyCalc 100 ⋄ 390, 391
HF (Human Factors) ⋄ 62, 146, 174,

259–275, 329, 349, 483
HFE (Human Factors Engineering) ⋄

260
Hiatt, Kimberly ⋄ 177
Hickman, Joel ⋄ 522
Hickman, Thu-Trang T. ⋄ 501
Hidden variables ⋄ 231
High integrity programming ⋄ see

SPARK Ada
Hilfiker, David ⋄ 526
Hill climbing ⋄ 251
Hilton, Lisette ⋄ 524
Hindsight bias ⋄ 188, 269
Hippocrates ⋄ 243, 509

Hippocratic Oath ⋄ 1, 242,
243, 469

HL7 (Health Level 7) ⋄ 250
Hoare, Charles Antony (Tony)

Richard ⋄ 164, 377, 379,
515, 530

Hodges, Christopher ⋄ 519
Hodgkins, Michael ⋄ 501
Hollenbeck, Celeste ⋄ 538
Hollnagel, Erik ⋄ 474, 505, 530
Holzmann, Gerard J. ⋄ 528
Home Office ⋄ 242
Hoogewerf, Jan ⋄ 555
Hopkins, Angela ⋄ 507
Hopper, Grace Brewster Murray ⋄

278, 556
Horizon ⋄ 99–103
Hormones ⋄ 25, 464
Hosken, Andrew ⋄ 526
Hospedia ⋄ 196
Hospira AIM Plus ⋄ 55
Hospital Safety Grade ⋄ 403

INDEX | 575

Houses, safer ⋄ 147, 164
HSE (Health and Safety Executive) ⋄

208
HSIB (Healthcare Safety

Investigation Branch) ⋄

463, 482, 499
Huddleston, Jeanne M. ⋄ 522
Hudson River ⋄ 350
Hudson, George ⋄ 373
Hueske-Kraus, Dirk ⋄ 511
Human Error ⋄ 474
Human Factor, the ⋄ 260
Human Factors (HF) ⋄ 62, 146, 174,

259–275, 329, 349, 483
Human Factors Engineering (HFE) ⋄

260
Human-Computer Interaction

(HCI) ⋄ 482
Humility ⋄ 274
Humors ⋄ 20
Humphrey, Watt S. ⋄ 486
Hunt, Jeremy ⋄ 355, 363
Hussain, Tallal ⋄ 512
Hutchins, Marcus ⋄ 211
Hwang, Jason ⋄ 480
Hypoxia ⋄ 438

I i
Iacobucci, Gareth ⋄ 498, 534
ICD (International Classification of

Diseases) ⋄ 111
ICIJ (International Consortium of

Investigative Journalists) ⋄

513
ICL (International Computers

Limited) ⋄ 508
Idler, Ellen L. ⋄ 525
IEC (International Electrotechnical

Commission) ⋄ 333, 409
IEC 61508, Functional safety

of electrical, electronic,
programmable electronic
safety-related systems ⋄

405, 460, 549
IEC 62740, Root cause

analysis ⋄ 481
IEEE Xplore ⋄ 290
Ig Nobel Prize ⋄ 536

IKEA ⋄ 311
iLab ⋄ 43
Ilyas, Andrew ⋄ 524
Immigration rules ⋄ 242
Imperative programming ⋄ 284
Imperial College ⋄ 449
Implants ⋄ 488
Implementation bias ⋄ 156, 267,

403
Impossible error ⋄ 73
In Shock: How Nearly Dying Made

Me a Better Intensive
Care Doctor ⋄ 476, 507

Inattentional blindness ⋄ 261
Incident

Analysis ⋄ 174, see Root Cause
Analysis

Investigation ⋄ 66, 462
Terminology ⋄ 474

Incorporation bias ⋄ 235
Independent Breast Screening

Review ⋄ 363
India ⋄ 89
Indirection ⋄ 159
Infection ⋄ see Semmelweis, Ignaz

Philipp
Central line ⋄ 330, 473
Drug resistant ⋄ 178
Hospital ⋄ 432
Hospital-acquired ⋄ 355
Infection control ⋄ 164, 432,

478
SIR model ⋄ 446
Test and Trace ⋄ 439, 440

Infinite loop ⋄ 280
Infodemic ⋄ 444
Infusomat ⋄ 186, 411
Innovation, disruptive ⋄ 479
Innovator’s Dilemma ⋄ 480
Insanity, Einstein definition ⋄ 21
Institute for Healthcare

Improvement ⋄ 463
Institute for Safe Medication

Practices (ISMP) ⋄ 390,
392, 409, 475, 503, 516,
540

ISMP Canada ⋄ 49, 55, 57, 59,
503

576 | INDEX

Institutional Review Boards ⋄ 451
Intentional bug ⋄ 17
Intentional error ⋄ 503
Interactive numeral ⋄ 57, 181, 284,

383, 385, 478, 503
International Classification of

Diseases (ICD) ⋄ 111
International Computers Limited

(ICL) ⋄ 29, 508
International Consortium of

Investigative Journalists
(ICIJ) ⋄ 513

International Electrotechnical
Commission ⋄ see IEC

International Medical Device
Regulators Forum ⋄ 463

International Organization for
Standardization ⋄ see ISO

International Unit (IU) ⋄ 56
Internationalization ⋄ 237, 247,

273, 295, 325, 344
Internet of Things (IoT) ⋄ 418, 550
Interoperability ⋄ 64, 127, 245–257,

337, 413, 479, 488
Intravenous (IV) ⋄ 56
Invariants ⋄ 293
Invisible Women: Exposing Data

Bias in a World Designed
for Men ⋄ 523

iOS, iPad, iPhone ⋄ see Apple
IoT (Internet of Things) ⋄ 418, 550
Irony, theory ⋄ 274
Isabel ⋄ 431, 544
ISMP (Institute for Safe Medication

Practices) ⋄ 390, 392,
409, 475, 503, 516, 540

ISMP Canada ⋄ 49, 55, 57, 59,
503

ISO (International Organization for
Standardization) ⋄ 333,
409

ISO 8601, Date and time
format ⋄ 247

ISO 9241-210, Ergonomics of
human-system
interaction ⋄ 298, 311,
318, 319, 322, 333

continues …

ISO (International Organization for
Standardization)
continued …

ISO 13485, Medical devices:
Quality management
systems ⋄ 488

ISO 14971, Risk management
for medical devices ⋄ 333

ISO 26324, Digital Object
Identifiers ⋄ 497, 550

ISO 62366, Medical devices —
Application of usability ⋄

333
Israel, Paul ⋄ 528
IT literacy ⋄ 213
Iterative design ⋄ 298, 304,

313–324, 333, 398, 430
IU (International Unit) ⋄ 56
IV (intravenous) ⋄ 56

J j
Jackson, Daniel ⋄ 485, 529, 538,

555
Jackson, Michael (professor) ⋄ 555
Jackson, Michael (singer) ⋄ 245
Jackson, Michael (software

architect) ⋄ 547
Jacobs, Steven ⋄ 483
James, Alex ⋄ 476
James, John T. ⋄ 476, 509
James, M. Ian ⋄ 511
JAMVENT ventilator ⋄ 449
Jandoo, Tarveen ⋄ 541
JavaScript ⋄ 289, 296, 367, 385,

446, 528
Jesus, M. F. A. ⋄ 516
Jewelers ⋄ 358
Jewett, Christina ⋄ 509, 535
Jobs, Steve ⋄ 420
Johns Hopkins Hospital ⋄ 330, 369,

476
Johns Hopkins University ⋄ 369
Johnson, Alistair E. W. ⋄ 543
Johnson, Matthew G. ⋄ 522
Johnston, Arthur M. ⋄ 505
Jones, Helen ⋄ 527
Jones, James ⋄ 506
Jones, Paul ⋄ 502

INDEX | 577

Jordan, M. M. ⋄ 544
Jourdan, Jacques-Henri ⋄ 538
JSOF ⋄ 550
Julious, Steven A. ⋄ 523
Jung, Ralf ⋄ 538
Just Culture ⋄ 44, 101, 474, 516,

527

K k
Kaafarani, Haytham M. A. ⋄ 512
Kahneman, Daniel ⋄ 28, 484, 499
Kalanithi, Paul ⋄ 477
Kawachi, Ichiro ⋄ 525
Kay, Adam ⋄ 477
Kazi, Dhruv S. ⋄ 541
Keane, Daniel ⋄ 529
Kearns, Michael ⋄ 523
Keers, Richard N. ⋄ 510
Kelion, Leo ⋄ 533, 546
Kelly, Tim P. ⋄ 538
Kelman, Brett ⋄ 516
Kelsey, Frances ⋄ 82
Ken Burns effects ⋄ 543
Kenber, Billy ⋄ 541
Kendall, Michelle ⋄ 545
Kenney, Charles ⋄ 479
Keysar, Boaz ⋄ 532
Keystrokes ⋄ 413
Khairat, Saif ⋄ 527
Khan, Kanza ⋄ 510
Kidder, Tracy ⋄ 514
Kidney stone ⋄ 231
Kinnear, Hadrian ⋄ 531
Kiosk, check-in ⋄ 313–314
Kitty Hawk ⋄ 361
Kleinman, Zoe ⋄ 520
KLM Flight 4805 ⋄ 348
kLoC (thousand (kilo) Lines of

Code) ⋄ 376, 538
Klonin, Hilary ⋄ 502
Klonopin ⋄ 254
Knight, John ⋄ 487
Knowles, Tom ⋄ 522, 524
Knuth, Donald E. ⋄ 170, 485, 516,

537
Ko, Justin ⋄ 524
Kobie, Nicole ⋄ 525, 533
Kohno, Tadayoshi ⋄ 524

Kolbert, Elizabeth ⋄ 484
Kontopantelis, Evangelos ⋄ 510
Koppel, Ross ⋄ 310, 473, 501, 508,

527, 530, 531, 537, 555,
556

Kothari, Vijay ⋄ 530
Koyama, Alain K. ⋄ 504
Kramer, Daniel B. ⋄ 541
Krause, Rachel ⋄ 508
Krebbers, Robbert ⋄ 538
Kruger, Justin ⋄ 358, 536
Krugman, Paul ⋄ 517
Krumholz, Harlan M. ⋄ 549
Kugelman, Amir ⋄ 513
Kuhn, Gustav ⋄ 526
Kumar, Sajeesh ⋄ 543
Kuprel, Brett ⋄ 524
Kuziemsky, Craig ⋄ 508

L l
Ladkin, Peter B. ⋄ 508, 555
Lai, Kenneth H. ⋄ 237, 524
Laing, Judith M. ⋄ 519
Land Rover ⋄ 401
Landauer, Thomas K. ⋄ 530
Landin, Peter ⋄ 367, 368, 379
Larsen, T. ⋄ 523
LASCAD (London Ambulance

Service Computer Aided
Dispatch system) ⋄ 347

Last year of confusion ⋄ 373
Latent bug ⋄ 282
LATEX ⋄ 344, 559
Layers, OSI ⋄ 542
Lead-time bias ⋄ 227
Leake, Jonathan ⋄ 547
Leap years ⋄ 373
Leape, Lucian L. ⋄ 113, 472, 509,

542
Leapfrog Hospital Safety Grade ⋄

403
Learn Not Blame campaign ⋄ 45
Learned intermediary ⋄ 195
Lee, Dave ⋄ 524, 525
Lee, Insup ⋄ 540
Lee, Paul ⋄ 510
Lees, Peter ⋄ 527
Left Ventricular Failure (LVF) ⋄ 110

578 | INDEX

Legacy systems ⋄ 492
Legal presumption ⋄ 99, 101
Leggett, Theo ⋄ 535
Lego ⋄ 152, 357
Lehmann, Christoph U. ⋄ 537
Lemons ⋄ 141
Length time bias ⋄ 523
Lenzer, Jeanne ⋄ 491, 513
Letters, confusable ⋄ 166
Leveson, Nancy ⋄ 79
Leveson, Nancy G. ⋄ 487, 505
Levitt, Brooke ⋄ 127
Levy, Paul G. ⋄ 531
Lewis, James J. ⋄ 541
Lewis, Michael ⋄ 477, 546
Li, Bo ⋄ 524
Li, Ling ⋄ 504
Li, Shanshan ⋄ 525
Li, Yunqui (Karen) ⋄ 504, 540
LifeLabs ⋄ 216–217
Linder, Jeffrey A. ⋄ 544
Lipowitz’s alloy ⋄ 74
Literacy, IT ⋄ 213
Littlewood, Bev ⋄ 508
Liu, Gang ⋄ 512
Liveness properties ⋄ 376
LMIC (Low and Middle Income

Countries) ⋄ 89, 341, 467
Loeb, Walter ⋄ 536
Loeliger, Jon ⋄ 529
Log-in delays ⋄ 20, 298
Logging ⋄ 165, 169, 189, 409
Lomas, Natasha ⋄ 534
London Ambulance Service

Computer Aided Dispatch
system (LASCAD) ⋄ 347

London Science Museum ⋄ 152
Longitudinal experiments ⋄ 53
Longo, Joy ⋄ 513
Los Angeles Airport, Scandinavian

Airlines System Flight
933 ⋄ 262

Loss of situational awareness ⋄ 261
Loudin, Beverly ⋄ 501
Lourdes Hospital Transplant

Center ⋄ 265
Lovelace, Ada ⋄ 151
Lovett, Laura ⋄ 533

Low and Middle Income Countries
(LMIC) ⋄ 89, 341, 467

Lucca, Jenny ⋄ 126, 266
Lupkin, Sydney ⋄ 538
Lüttel, Dagmar ⋄ 555
LVF (Left Ventricular Failure) ⋄ 110
Lynch, Paul ⋄ 545
Lyon Airport ⋄ 344

M m
M, mother, male ⋄ 307, 413
Macdonald, James ⋄ 116
Machine Learning (ML) ⋄ 105, 130,

132, 161, 227, 230, 237,
444, see Artificial
Intelligence

Macintosh, Apple ⋄ 420
Mack, Elizabeth ⋄ 516
MacKenna, Brian ⋄ 504
Mackenzie, Dana ⋄ 541
Macknik, Stephen ⋄ 526
Macmillan Cancer Support ⋄ 559
Macrae, Carl ⋄ 515, 527, 549
Maddox, Claire-Sophie Sheridan ⋄

504
Madry, Aleksander ⋄ 524
Magic ⋄ 262, 484
Magoun, Alexander B. ⋄ 528
Magrabi, Farah ⋄ 510, 515
Mahajan, R. P. ⋄ 531
Mahase, Elisabeth ⋄ 546
Maj, Petr ⋄ 538
Malaria ⋄ 114
Male ⋄ 307, 413
Malik, Myra ⋄ 527
Malware ⋄ 18, 19, 211–222
MalwareTech (Hutchins, Marcus) ⋄

211
Manchester Baby ⋄ 514
Maneuvering Characteristics

Augmentation System
(MCAS) ⋄ 535

Manjoo, Farhad ⋄ 537
Manslaughter ⋄ 43
Manufacturer and User Facility

Device Experience
(MAUDE) ⋄ 221, 353,
459, 481, 507

INDEX | 579

Marchione, Marilynn ⋄ 531
Mark, Roger G. ⋄ 543
Marquardt, Nicolai ⋄ 530
Marsh, Stephen ⋄ 523
Marshall, Paul ⋄ 508, 555
Martinez-Conde, Susana ⋄ 526
Martins, Thomas ⋄ 437
Masci, Paolo ⋄ 502, 540, 555
Mason, Stephen ⋄ 482, 508, 555
Massachusetts General Hospital ⋄

130
Massachusetts General Hospital

Utility
Multi-Programming
System (MUMPS) ⋄ 371

Massachusetts Institute of
Technology (MIT) ⋄ 130

Maternal death ⋄ 15
Mathematica ⋄ 537
Mathew, D. ⋄ 531
Mathews, Anna W. ⋄ 519
Matters, What matters to me? ⋄ 308
Matthews-King, Alex ⋄ 536
Maturity model ⋄ 479
Mauchly, John ⋄ 156
MAUDE (Manufacturer and User

Facility Device
Experience) ⋄ 221, 353,
459, 481, 507

Maude, Isabel ⋄ 431
Maude, Jason ⋄ 431, 555
Maxwell, Anthony ⋄ 536
Mayer, Erik K. ⋄ 511
Mazer, Benjamin ⋄ 550
Mazzei, Patricia ⋄ 520
McAllister, Gary ⋄ 493
McArthur, Paul ⋄ 511
MCAS (Maneuvering Characteristics

Augmentation System) ⋄

535
McCloskey, Jimmy ⋄ 545
McCormick, J. ⋄ 505
McCullough, Matthew ⋄ 529
McDermid, John A. ⋄ 538
McEvoy, Dustin ⋄ 501
mcg (microgram) ⋄ 55
McGowan, Chris ⋄ 286
McGrath, Kathy ⋄ 534

McGreevey III, John D. ⋄ 501
McHale, Jean V. ⋄ 519
McIntyre, Neil ⋄ 480, 550
McOwan, Peter ⋄ 484
McPhail, Jane ⋄ 511
Medal app ⋄ 417
Medical Malpractice Lawyers.com ⋄

63
Medicare ⋄ 114
Medicines and Healthcare Products

Regulatory Agency
(MHRA) ⋄ 197, 208,
449, 482, 507

Medicines, fake ⋄ 206
MedSec Holdings ⋄ 220
MedStar Health National Center for

Human Factors in
Healthcare ⋄ 475

Medtronic ⋄ 353
Mehrotra, Ateev ⋄ 544
Mehta, Karan ⋄ 534
Melanson, Denise ⋄ 49–59,

61–63, 172
Melnick, Edward R. ⋄ 549
Menabrea, Luigi Federico ⋄ 513
Mendeleev, Dmitri Ivanovich ⋄ 234
Mental Capacity Act ⋄ 92, 93
Mental health ⋄ 149, 214, 266, 450
Mentoring ⋄ 457
Menus ⋄ 414
Merchant, Shezana ⋄ 543
Mersey Burns app ⋄ 121–130, 293,

367, 368, 410, 511
Meta-skills ⋄ 536
Meticillin-Resistant Staphylococcus

Aureus (MRSA) ⋄ 178
Meyer, Bertrand ⋄ 539
Meyer, Donna ⋄ 322
Meyer, Frank ⋄ 323
MFA (Multi Factor Authentication) ⋄

213
mg (milligram) ⋄ 55
MHRA (Medicines and Healthcare

Products Regulatory
Agency) ⋄ 197, 208, 449,
482, 507

Michelin ⋄ 402
Michell, Michael ⋄ 536

580 | INDEX

Microgram (mcg) ⋄ 55
Microsoft

Excel ⋄ 182, 202, 295, 440,
478

Windows ⋄ 286
Mid Staffordshire NHS Foundation

Trust ⋄ 117, 473
Midazolam (Versed) ⋄ 172
Middleton, Katherine ⋄ 534
Mikie ⋄ 424
Miles, L. F. ⋄ 523
Millennium Bug ⋄ 33, 64, 247, 286,

373, 452, 462, 499, 538
Milligram (mg) ⋄ 55
Milstein, Arnold ⋄ 542
Minimal Viable Product (MVP) ⋄

319
Mintz, Morton ⋄ 506
Miracle on the Hudson ⋄ 350
Misdirection ⋄ 262
Misfeature ⋄ 184
MISRA (Motor Industry Software

Reliability Association) ⋄

375, 447
MISRA C ⋄ 375, 377, 447,

448, 539, 549
Misra, Seema ⋄ 508
MIT (Massachusetts Institute of

Technology) ⋄ 130
Mitigating biases ⋄ 271
ML (Machine Learning) ⋄ 105, 130,

132, 161, 227, 230, 237,
444, see Artificial
Intelligence

ml/mL confusion ⋄ 506
Mobile phone ⋄ 178, 261
Model T car ⋄ 311
Module ⋄ 163, 515
Moe, Marie Elisabeth Gaup ⋄ 46,

248, 427, 502, 525, 544,
555, 556

Monroy, Carlos ⋄ 556
Moorfields Eye Hospital ⋄ 227
Moran, Thomas P. ⋄ 543
Morcambe Bay NHS Trust ⋄ 476
Morris, Rhian Melita ⋄ 426, 555
Morriston Hospital ⋄ 313
Moser, Kath ⋄ 536

Most dangerous words ⋄ 354
MOT (car roadworthiness test, UK) ⋄

142
Mother ⋄ 307, 413
Motor Industry Software Reliability

Association (MISRA) ⋄

375, 447
Mountain railway ⋄ 251
Mouse clicks ⋄ 413
Move fast and break things ⋄ 378
Mr W ⋄ 34, 286
MRSA (Meticillin-Resistant

Staphylococcus Aureus) ⋄

178
MS 16A, MS 26 Graseby syringe

drivers ⋄ 84, 326, 506
µ ⋄ 55
Muddy Waters Capital ⋄ 220
Mullainathan, Sendhil ⋄ 515, 523
Mullee, Mark A. ⋄ 523
Multi Factor Authentication (MFA) ⋄

213
Multi-disciplinary team ⋄ 105
Multidata ⋄ 74, 291
Multiplan ⋄ 182
MUMPS (Massachusetts General

Hospital Utility
Multi-Programming
System) ⋄ 371

Murgia, Madhumita ⋄ 522
Murphey, Charlene ⋄ 172
Murphy, Christine ⋄ 524
MVP (Minimal Viable Product) ⋄

319

N n
N Version Programming (NVP) ⋄

333, 533
Nader, Ralph ⋄ 27, 90, 140, 490,

513
NAFDAC (Nigerian National Agency

for Food & Drug
Administration &
Control) ⋄ 198

Nair, Sukumaran ⋄ 356
Najeeb, Maisha ⋄ 305
Nallamothu, Brahmajee K. ⋄ 541

INDEX | 581

NAMDET (National Association of
Medical Device Educators
& Trainers) ⋄ 461

Nardelli, Enrico ⋄ 514
National Academy of Sciences ⋄ 206
National Association of Medical

Device Educators &
Trainers (NAMDET) ⋄

461
National Cancer Institute of

Panama ⋄ 73, 125
National Cancer Research Institute

(NCRI) ⋄ 533
National Cyber Security Centre

(NCSC) ⋄ 217, 488
National Cybersecurity and

Communications
Integration Center
(NCCIC) ⋄ 212, 488

National Early Warning Score
(NEWS) ⋄ 229

National Health Service (NHS) ⋄ 19,
89, 246, 361

NHS Digital ⋄ 217, 290
Systems and structure ⋄ 493

National Institute for Health and
Care Excellence (NICE) ⋄

206, 511, 519
National Patient Safety Agency

(NPSA) ⋄ 88, 506
National Programme for IT

(NPfIT) ⋄ 19
National Reporting and Learning

System (NRLS) ⋄ 481,
507

NCalc 2.0 ⋄ 229
NCAP (New Car Assessment

Programme) ⋄ 140, 467
NCCIC (National Cybersecurity and

Communications
Integration Center) ⋄ 212,
488

NCRI (National Cancer Research
Institute) ⋄ 533

NCSC (National Cyber Security
Centre) ⋄ 217, 488

Near miss ⋄ 111, 145, 264

Near-Field Communication (NFC) ⋄

172
Nebehay, Stephanie ⋄ 535
Necrotizing fasciitis ⋄ 431
Needlestick injury ⋄ 149
Nellis, Stephen ⋄ 545
Nemeth, Christopher P. ⋄ 505
Nepal ⋄ 89

Department of Drug
Administration ⋄ 198

Never Events ⋄ 115, 149, 376
Neves, Ana Luisa ⋄ 511
Neville, Sarah ⋄ 533
New Car Assessment Programme

(NCAP) ⋄ 140, 467
New York ⋄ 350
New York Marathon ⋄ 248, 427, 428
Newby, Martin ⋄ 555
Newell, Allen ⋄ 543
NEWS (National Early Warning

Score) ⋄ 229
NFC (Near-Field Communication) ⋄

172
Nguyen, Trung C. ⋄ 501
NHS (National Health Service) ⋄ 19,

89, 246, 361
NHS Digital ⋄ 217, 290
Systems and structure ⋄ 493

NICE (National Institute for Health
and Care Excellence) ⋄

206, 511, 519
Nichani, Sanjiv ⋄ 502
Nichols, James ⋄ 507
Nicolas, Clara T. ⋄ 522
Nielsen, Jakob ⋄ 530
Niezen, Gerrit ⋄ 542
Nigerian National Agency for Food &

Drug Administration &
Control (NAFDAC) ⋄ 198

Nightingale, Florence ⋄ 109, 111,
509

The Nimrod Review ⋄ 481
Nix, Barry ⋄ 501
Njå, Ove ⋄ 527
NMC (Nursing & Midwifery

Council) ⋄ 43, 93
Noble, Safiya Umoja ⋄ 524
Non-computable ⋄ 152

582 | INDEX

Non-Hodgkin Lymphoma ⋄ 428
Nony, Patrice ⋄ 541
Norepinephrine ⋄ 25, 464
Norfiqri, Raden ⋄ 551, 556
Normal accidents ⋄ 473
Norman, Don ⋄ 483
Norris, Lisa ⋄ 26, 69, 117, 510
Norris, Zoë ⋄ 419, 543, 556
Norwegian University of Science and

Technology (NTNU) ⋄

502
Notifiable event ⋄ 110
Notified Body ⋄ 202
Novoa, Roberto A. ⋄ 524
NPfIT (National Programme for

IT) ⋄ 19
NPSA (National Patient Safety

Agency) ⋄ 88, 506
NRLS (National Reporting and

Learning System) ⋄ 481,
507

NTNU (Norwegian University of
Science and
Technology) ⋄ 502

Null pointer ⋄ 280
Number v Numeral ⋄ 385, see

Interactive numeral
Numeric keypad ⋄ 409
Nunjucks ⋄ 290
Nurse rounds ⋄ 413
Nursing & Midwifery Council

(NMC) ⋄ 43, 93
Nursing Commission, US ⋄ 177
Nurtay, Anel ⋄ 545
NVP (N Version Programming) ⋄

333, 533

O o
O’Connell, Mark ⋄ 494
O’Connor, Anne ⋄ 214
O’Kane, Kevin C. ⋄ 537
Oates, James ⋄ 555
Obermeyer, Ziad ⋄ 523
Objects, first-class ⋄ 168
Obsessive-Compulsive Disorder

(OCD) ⋄ 392
Ofri, Danielle ⋄ 527
OI (Oxygenation Index) ⋄ 133

Oikonomou, Eirini ⋄ 549
Olabi, Bayanne ⋄ 548
Oladimeji, Patrick ⋄ 405, 518, 540,

542, 555
Olsen, Kai A. ⋄ 539
Ong, Mei-Sing ⋄ 510
Onnela, Jukka-Pekka ⋄ 512
Open source ⋄ 290, 296, 449, 500

Fonts ⋄ 559
Systems ⋄ 241

OpenEMR ⋄ 370
OpenSSL ⋄ 369
Opioid crisis ⋄ 18
Optimization ⋄ 169

Premature ⋄ 278, 281
Oracle ⋄ 195
Orange-wire test ⋄ 148, 461
Organon font ⋄ 559
Orlowski, Andrew ⋄ 522
Orr, Richard A. ⋄ 501
Osborne, George ⋄ 185
Oscars ⋄ 466
OSI layers ⋄ 542
Ostrom, Carol M. ⋄ 516
Ottmar, Paige ⋄ 527
Out by one ⋄ 280
Out-of-the-box thinking ⋄ 490
Overloading ⋄ 280
Oxygen cylinder ⋄ 418
Oxygenation Index (OI) ⋄ 133
Oxytocin ⋄ 25, 464
Oyxgenation, blood ⋄ 438

P p
Pacemaker ⋄ 46, 219, 248, 427
PACS (Picture Archiving and

Communication
Systems) ⋄ 508

Pagel, Mark ⋄ 544
Pagels, Elaine ⋄ 544
Pair programming ⋄ 332, 442
Pallin, Samuel ⋄ 225
Palus, Shannon ⋄ 515
Pan Am Flight 1736 ⋄ 348
Panagioti, Maria ⋄ 510
Panama, National Cancer Institute ⋄

73, 125
Pandemic ⋄ 231

INDEX | 583

Pantanowitz, Liron ⋄ 507
Paperlessness ⋄ 97, 156, 171, 246,

508, 532
Papert, Seymour ⋄ 485
Paperwork ⋄ 388
Papyrus

Edwin Smith ⋄ 497
Oxyrhynchus ⋄ 2, 469

Paradox, Simpson’s ⋄ 231
Parker, Michael ⋄ 545
Parkland formula ⋄ 128
Parnas, David Lorge ⋄ 163, 515
Parr, Terence ⋄ 486
Parsa, Ali ⋄ 534
parseFloat ⋄ 385, 539
Pascal, Blaise ⋄ 178, 513
Pasteur, Louis ⋄ 16, 21
Patashnik, Oren ⋄ 537
Patents ⋄ 250
Patient actors ⋄ 320
Patient complaint ⋄ 422
Patient Controlled Analgesia (PCA) ⋄

339
The Patient Experience Library ⋄

433
Patient Information Leaflet (PIL) ⋄

422
Patient safety ⋄ 472–479, 489
patient.info ⋄ 432
Patnick, Julietta ⋄ 536
Patterns ⋄ 278
Paul, J. P. ⋄ 544
PCA (Patient Controlled Analgesia) ⋄

339
Peaches ⋄ 141
Pearl, Judea ⋄ 541
Peer-review ⋄ 290, 449
Pentobarbital ⋄ 237
Perez, Alex ⋄ 504
Perez, Caroline Criado ⋄ 523
Perez, Criado ⋄ 523
Perfect system fallacy ⋄ 75
Periodic table ⋄ 234
Perlis, Alan J. ⋄ 485
Perrow, Charles (Chick) ⋄ 473
Personas ⋄ 321
Petkovsek, Marko ⋄ 516
Peto, Richard ⋄ 536

Pétraud, Jean Paul ⋄ 524
Pettitt, Stephen ⋄ 356
Petzold, Charles ⋄ 514
Pharmacovigilance (PV) ⋄ 83
Pharmacy ⋄ 49
Pharmacy robot ⋄ 126
Phases, clinical ⋄ 391
Phenobarbital ⋄ 237
Phipps, Denham ⋄ 510
Phishing ⋄ 219, 440
Phlegm ⋄ 20
PHP ⋄ 370
Picture Archiving and

Communication Systems
(PACS) ⋄ 508

Pike, Josh ⋄ 555
PIL (Patient Information Leaflet) ⋄

422
Pilot error ⋄ 65
Ping, Po ⋄ 25
Pirelli tires ⋄ 402
PKE (Public Key Encryption) ⋄ 298
Plaisant, Catherine ⋄ 483
Plane crashes ⋄ see Aviation crashes
Pleasance, Chris ⋄ 545
Plummer, Rosie ⋄ 555
Po ⋄ 25
Pobgee, Peter ⋄ 544
Poisson distribution ⋄ 538
Poling, Samantha ⋄ 510
Pollard, Tom J. ⋄ 543
Pollin, Robert ⋄ 517
Polymorphic types ⋄ 374, 538
Pool, Robert ⋄ 490
Popper, Karl R. ⋄ 480, 550
Portland International Airport ⋄ 263
Post Office ⋄ 99–103
Post-market

Surveillance ⋄ 91, 226, 322,
393, 394

Trials ⋄ 396
Potassium chloride ⋄ 71, 149
POTTER app ⋄ 130–133
Powell-Smith, Anna ⋄ 522
PowerChart ⋄ 39, 45
PowerOrders ⋄ 39, 45
PowerPoint Engineering ⋄ 481
Powers, Brian ⋄ 523

584 | INDEX

Practice Fusion ⋄ 18, 226, 498
Præscriptiones ⋄ 169
Prakash, Atul ⋄ 524
PrecisionWeb ⋄ 93, 96
Preclinical phase ⋄ 392
Premature optimization ⋄ 278, 281
The Premonition: A Pandemic

Story ⋄ 477, 546
Press On: Principles of Interaction

Programming ⋄ 483, 506,
518, 540, 557

Preston, Caroline E. ⋄ 526
Presumption, legal ⋄ 99, 101
Pretis, Felix ⋄ 522
Preventable error ⋄ 112
Preventive Health app ⋄ 225
Primary Care Physician ⋄ see GP
Priming ⋄ 269
Primum non nocere (Hippocratic

Oath) ⋄ 509
Princess of Wales Hospital ⋄ 92, 103
Principle of Dual Effect ⋄ 90, 507
Prison ⋄ 327
Pritchard Jones, Rowan ⋄ 511, 555
Privacy ⋄ 250

Privacy law ⋄ 225
Privacy International ⋄ 239, 524
Professional staff fallacy ⋄ 75
Professionalism ⋄ 328
Programming infusion pumps ⋄ 502
Programming language ⋄ see

Programming tools
Ada ⋄ 151, 446, 448, 487
Approach taken ⋄ 504
Basic ⋄ 286, 500
C ⋄ 446, 447
Design ⋄ 168
Excel ⋄ 182, 202, 295, 440,

478
FORTRAN ⋄ 154
JavaScript ⋄ 289, 296, 367,

385, 446, 528
MISRA C ⋄ 375, 377, 447,

448, 549
PHP ⋄ 370
Python ⋄ 377
continues …

Programming language continued …
R ⋄ 446
Rust ⋄ 375
Scheme ⋄ 485, 486
SPARK Ada ⋄ 64, 290, 291,

296, 375, 385, 487
Programming tools

Assertions ⋄ 291
Closure ⋄ 290
Code review ⋄ 297
Concepts ⋄ 299
Contracts ⋄ 64
DeepScan ⋄ 290
Defensive programming ⋄ 279,

480
DSL ⋄ 294
ESLint ⋄ 290
Flow ⋄ 290
Formal Methods ⋄ 291,

367–380, 383–399, 485
Further reading ⋄ 484
Git ⋄ 298
Guards ⋄ 284
Invariants ⋄ 293
Nunjucks ⋄ 290
Open source ⋄ 296
PureScript ⋄ 290

Project Insecurity ⋄ 370
Prolactin ⋄ 25, 464
Pronovost, Peter J. ⋄ 247, 330, 473,

525, 532, 542
Proxies ⋄ 232
Psychotherapy ⋄ 214
Public good ⋄ 243
Public health ⋄ 135
Public Key Encryption (PKE) ⋄ 298
Publication bias ⋄ 420
PubMed ⋄ 474
Puerperal fever ⋄ 15
Pulmonary edema ⋄ 109
Punishment fallacy ⋄ 75
PureScript ⋄ 290
PV (Pharmacovigilance) ⋄ 83
PVSio-web ⋄ 388
Python ⋄ 377

INDEX | 585

Q q
QI (Quality Improvement) ⋄ 305,

338, 479
QR (Quick Response) code ⋄ 53, 54,

404
QRISK ⋄ 363, 536
Quach, Katyanna ⋄ 523
Qualifications ⋄ 327, 468

Anesthesiologist ⋄ 325
Programmer ⋄ 327

Quality Improvement (QI) ⋄ 305,
338, 479

Quattrociocchi, Walter ⋄ 527
Queensland Health ⋄ 211
Quetelet index ⋄ 173
Quetelet, Adolphe ⋄ 516
Quick Response (QR) code ⋄ 53, 54,

404
Quist, Arbor J. L. ⋄ 501

R r
R, effective reproduction number ⋄

443, 446, 547
Røise, Olav ⋄ 527
Racism ⋄ 233
Radio-Frequency IDentification

(RFID) tag ⋄ 53, 54, 247,
404, 542

Radiotherapy ⋄ 69, 73, 116, 196,
287

Raffa, Jesse D. ⋄ 543
Rahmati, Amir ⋄ 524
Raine, G. E. T. ⋄ 544
Ram, Aliya ⋄ 533
Rameses II ⋄ 512
Randell, Brian ⋄ 498
Randomized Controlled Trials

(RCTs) ⋄ 41, 393, 488,
541

Ransomware ⋄ 213, 457
Rashidee, A. H. ⋄ 501
Ratwani, Raj M. ⋄ 501
RCA (Root Cause Analysis) ⋄ 57, 75,

481
RCTs (Randomized Controlled

Trials) ⋄ 41, 393, 488,
541

Reader, TomW. ⋄ 511
Reason, James ⋄ 61, 474
Reciprocity ⋄ 450
Recruitment ⋄ 457
Recursion ⋄ 377, 539
Redundancy ⋄ 52, 264, 283
Ree, Eline ⋄ 527
Refereeing ⋄ 273
Reflexion Health ⋄ 541
Regulation ⋄ 82, 88, 91, 96, 104,

186, 195, 197, 201–208,
234, 239, 241, 243, 251,
267, 322, 334, 354, 361,
387, 398, 458–462, 464,
482, 491, 513, 525, 540

Agile ⋄ 461
Co-regulation ⋄ 459–461
Regulator’s Fallacy ⋄ 147
Regulatory burden ⋄ 241, 393
Regulatory capture ⋄ 353, 461
Transport ⋄ 458

Rehn, Olli ⋄ 185
Reimann, Robert ⋄ 483
Reinhart, Carmen M. ⋄ 185
Repetitive Strain Injury (RSI) ⋄ 112
Report errors ⋄ 464
Reproducibility ⋄ 161, see Scientific

Method
Requirements ⋄ 359
Resilience ⋄ 268

Risk resilience ⋄ 268
Retractable Technologies Inc. ⋄ 513
Reynolds, Rebecca ⋄ 543
RFID (Radio-Frequency

IDentification) tag ⋄ 53,
54, 247, 404, 542

Rhesus factor ⋄ 413
Rhode Island Hospital ⋄ 115
Ricciardi, Walter ⋄ 474
Richards, David ⋄ 547
Richards, Mike ⋄ 536
Ridel, Richard J. ⋄ 153, 514
Rierson, Leanna K. ⋄ 359, 487
RIPPLE20 ⋄ 215, 471, 550
Risk

Assessment ⋄ 405
Resilience ⋄ 268

Riskin, Arieh ⋄ 513

586 | INDEX

Riskin, Kinneret S. ⋄ 513
Risky experiment ⋄ 480
Rituximab ⋄ 412, 542
Riviera Beach, Florida ⋄ 213
Roadworthiness ⋄ 459
Roberts, Andy ⋄ 533
Roberts, Elizabeth F. S. ⋄ 531
Robertson, Christian ⋄ 559
Robot ⋄ 126
Robotics ⋄ 488
Roboto Slab font ⋄ 559
Robust programming ⋄ 378
Rodger, James ⋄ 536
Rogoff, Kenneth S. ⋄ 185
Rollers ⋄ 409
Rolls-Royce Trent 900 ⋄ 463
Romano, Patrick S. ⋄ 542
Romero-Brufau, Santiago ⋄ 522
Röntgen, Anna Bertha ⋄ 81, 556
Röntgen, Wilhelm ⋄ 81, 556
Root Cause Analysis (RCA) ⋄ 57, 75,

481
Rossi, Francesca ⋄ 523
Rostrum camera ⋄ 543
Roth, Aaron ⋄ 523
Rounds, nurse ⋄ 413
Royal Cornwall Hospitals ⋄ 256
Royal Free Hospital ⋄ 228
Royal Mail ⋄ 508
RSI (Repetitive Strain Injury) ⋄ 112
RTChart ⋄ 70
Rubinstein, Ira ⋄ 549
Rukšėnas, Rimvydas ⋄ 540
Runciman, Colin ⋄ 515
Runciman, William ⋄ 510
Ruskin, Keith ⋄ 511
Russell, J. ⋄ 531
Russell, Karl ⋄ 551
Rust ⋄ 375
Rwanda ⋄ 341

S s
SA (Situational Awareness) ⋄ 167,

259, 261, 332
Sachdeva, Sam ⋄ 501
Sacks, Oliver ⋄ 476
Saeed, Mohammad ⋄ 502
Safavi-Naeini, Payam ⋄ 502

Safety ⋄ see Aviation crashes,
Cybersecurity

Choose safety ⋄ 401
Health and Safety at Work Act ⋄

207, 520
Health and Safety Executive ⋄

208
Safer buildings ⋄ 147, 164
Safety case ⋄ 30, 462, 464,

499
Safety One, Safety Two ⋄

145–149, 175, 361, 459,
474

Safety Two, 111, 146, 164,
362, 414, 430, 434, 456,
466

Safety properties ⋄ 376
Safety ratings ⋄ 404
Signs of Safety ⋄ 430
SIL (Safety Integrity Level) ⋄

460
Start from safety ⋄ 460

St Helens and Knowsley Teaching
Hospitals NHS Trust ⋄

193
St Jude ⋄ 220
St Mary’s Hospital London ⋄ 431
Salazar, Alejandra ⋄ 501
Saleem, Sahar N. ⋄ 512
Samal, Lipika ⋄ 525
SaMD (Software as a Medical

Device) ⋄ 203
Samson, Arsula ⋄ 71
San Francisco Medical Center’s

Benioff Children’s
Hospital ⋄ 126

Sanity checks ⋄ 500
Santurkar, Shibani ⋄ 524
SARS-CoV-2 ⋄ 437
SAS ⋄ see Scandinavian Airlines

System
Saw guards ⋄ 73
Scala, Antonio ⋄ 527
Scandinavian Airlines System Flight

933 ⋄ 262
Scapegoat ⋄ 44, 73, 74, 506

Scapegoat thinking ⋄ 141
Scarbrough, Sheila ⋄ 516

INDEX | 587

Scheurer, Danielle ⋄ 516
Schiff, Gordon D. ⋄ 501
Schnell, Santiago ⋄ 547
Science ⋄ 170, 228, 273
Science Museum, London ⋄ 152
Scientific Method ⋄ 480, see

Reproducibility
Scott, Philip ⋄ 555
Scottish Executive ⋄ 71
Scutari (now Üsküdar, Turkey) ⋄ 109
SDOH (Social Determinants Of

Health) ⋄ 243, 517
Seaton, Chris ⋄ 128, 511
Seattle Children’s Hospital ⋄ 177
Secemsky, Eric A. ⋄ 541
Second victim ⋄ 74, 177, 505
Secretary of State for Health

Hancock, Matt ⋄ 240, 419
Hunt, Jeremy ⋄ 355

Seddon, John ⋄ 251, 303, 525
See Change ⋄ 555
Seger, A. C. ⋄ 501
Seggelmann, Robin ⋄ 326, 369
Self check-in ⋄ 313
Sellars, Sarah ⋄ 536
Semigran, Hannah L. ⋄ 544
Semmelweis, Ignaz Philipp ⋄ 15, 146
Sendelbach, Sue ⋄ 511
Seng, Daniel ⋄ 482
Separation of concerns ⋄ 169, 408
Sepsis ⋄ 229
Serious harms ⋄ 114
Serious Untoward Incident (SUI) ⋄

474
Setia, Namrate ⋄ 507
Seven-segment display ⋄ 340, 344,

533
Sexism ⋄ 233
Seyfert, Bernhard ⋄ 15
Shannon, Claude E. ⋄ 515

Shannon Number ⋄ 162
Shape, story ⋄ 543
Shead, Sam ⋄ 522
Sheldon, Martin I. ⋄ 555
Shelton, Roberta ⋄ 437
Shen, Changyu ⋄ 541
Shepardson, David ⋄ 534
Sheridan, Susan ⋄ 474

Shires, Tom ⋄ 511
Shneiderman, Ben ⋄ 483, 512, 524,

555
Shojania, Kaveh G. ⋄ 510
Shokrollahi, Kayvan ⋄ 511
Shoris, Irit ⋄ 513
Shorrock, Steven ⋄ 483, 513, 530
Short selling ⋄ 220, 521
Shulman, Seth ⋄ 522
Side effects ⋄ 83, 90
Signals ⋄ 122
Signs of Safety ⋄ 430
SIL (Safety Integrity Level) ⋄ 460
Silent hypoxia ⋄ 438
Simpson’s Paradox ⋄ 231
Simpson, Kenneth G. L. ⋄ 549
Singer, Jack A. ⋄ 225
Singer, Peter A. ⋄ 551
Singer, Sara J. ⋄ 542
Single point of failure ⋄ 354
Sinsky, Christine A. ⋄ 549
SIR models ⋄ 446
Situational Awareness (SA) ⋄ 167,

259, 261, 332
Sketching ⋄ 304, 319, 530
Skill mapping ⋄ 105
Skills, meta ⋄ 536
Škoda ⋄ 137, 140
Skre, Johan B. ⋄ 556
Slip ⋄ 503
Smart pumps ⋄ 499
Smith, Cedric M. ⋄ 509
Smith, Charlie ⋄ 521
Smith, David H. ⋄ 501
Smith, David J. ⋄ 549
Smith, Joseph M. ⋄ 399, 541
Smith, Mike ⋄ 555
Smith, Sean ⋄ 530
Smithers, Rebecca ⋄ 545
Smiths Medical ⋄ 196
Smyth, Chris ⋄ 536, 541
SNOMED-CT ⋄ 250, 255, 256, 536
Social Determinants Of Health

(SDOH) ⋄ 243, 517
Social engineering ⋄ 216, 218
Sodium chloride ⋄ 63
Softenon (thalidomide) ⋄ 82
Software architect ⋄ 198

588 | INDEX

Software as a Medical Device
(SaMD) ⋄ 203

Software Considerations in Airborne
Systems and Equipment
Certification, DO-178C ⋄

487
Software Engineering Boards ⋄ 451
Software rot ⋄ 372
Software warranty ⋄ 193, 438
Solomon, Rhian ⋄ 531
Somerville, S. S. ⋄ 544
Song, Dawn ⋄ 524
SOPs (Standard Operating

Procedures) ⋄ 38, 61, 67,
75, 159, 174, 254, 260,
267, 272

South Africa ⋄ 89
South Korea ⋄ 439, 548
Souza, G. M. ⋄ 516
Spanish Flu ⋄ 444
SPARK Ada ⋄ 64, 290, 291, 296,

375, 385, 487
Sparrow, Lisa ⋄ 71
Spector, Tim ⋄ 230
Speight, Nigel ⋄ 502
Spelling correction ⋄ 237, 398
Spiegelhalter, David ⋄ 541
Spinney, Laura ⋄ 546
Spreadsheets ⋄ 182, 185, 440
Spurgeon, Peter ⋄ 487
Srinivasan, Ramya ⋄ 524
Srivastava, Biplav ⋄ 523
St Helens and Knowsley Teaching

Hospitals NHS Trust ⋄

193
St Jude ⋄ 220
St Mary’s Hospital London ⋄ 431
STAMP (Systems-Theoretic

Accident Model and
Processes) ⋄ 487

Standard Operating Procedures
(SOPs) ⋄ 38, 61, 67, 75,
159, 174, 254, 260, 267,
272

Standards
Cost of ⋄ 488
continues …

Standards continued …
DO-178C, Software

Considerations in
Airborne Systems and
Equipment Certification ⋄

487
HL7, Health Level 7 ⋄ 250
IEC 61508, Functional safety

of electrical, electronic,
programmable electronic
safety-related systems ⋄

405, 460, 549
IEC 62740, Root cause

analysis ⋄ 481
ISO 8601, Date and time

format ⋄ 247
ISO 9241-210, Ergonomics of

human-system
interaction ⋄ 298, 311,
318, 319, 322, 333

ISO 13485, Medical devices:
Quality management
systems ⋄ 488

ISO 14971, Risk management
for medical devices ⋄ 333

ISO 26324, Digital Object
Identifiers ⋄ 497, 550

ISO 62366, Medical devices —
Application of usability ⋄

333
SNOMED-CT, Systematized

Nomenclature of
Medicine — Clinical
Terms ⋄ 250, 255, 256,
536

Staphylococcus aureus ⋄ 178
Stapler, surgical ⋄ 353
Star Trek ⋄ 153
Stepped Wedge Trials (SWTs) ⋄ 396
Stewart, J. S. ⋄ 544
Still Not Safe: Patient Safety and the

Middle-managing of
American Medicine ⋄

479, 489
Stokes, Paul ⋄ 506
Stopping fallacy ⋄ 75
Story shape ⋄ 543
Story, D. A. ⋄ 523

INDEX | 589

Storytelling ⋄ 117, 417–434
Arts in Health Wales ⋄ 544
Berkeley StoryCenter ⋄ 423
Digital Story ⋄ 117, 422, 544
Story shape ⋄ 543

Strasbourg Airport ⋄ 344
Strict liability ⋄ 127
Strom, Jordan B. ⋄ 541
Strong typing ⋄ 374
Stroumsa, Daphna ⋄ 531
Substantial equivalence ⋄ 201, 203
Substitution rule ⋄ 44, 84, 270
Success bias ⋄ 29, 420
SUI (Serious Untoward Incident) ⋄

474
Suicide ⋄ 177
Sujan, Mark-Alexander ⋄ 487
Sullenberger III, Chesley B. “Sully” ⋄

350, 535
Sullivan, Thomas ⋄ 542
Sumerians ⋄ 178
Summers, Lawrence H. ⋄ 548
Sunrise EMR ⋄ 286
Sunstein, Cass R. ⋄ 527
Superbugs ⋄ 178
Superspreaders ⋄ 443
Surgical Checklist, WHO ⋄ 265, 334
Surgical stapler ⋄ 353
Susceptible-infected-recovered

(SIR) model ⋄ 446
Sussman, Gerald Jay ⋄ 485, 486
Sutcliffe, Kathleen M. ⋄ 489
Swade, Doron ⋄ 514
Swansea Bay University Health

Board ⋄ 423
Swetter, Susan M. ⋄ 524
Swiss Cheese Model ⋄ 61–67, 75,

89, 116, 126, 127, 147,
268, 345, 348, 422, 473

Switch ⋄ 275, 528
SWTs (Stepped Wedge Trials) ⋄ 396
Syed, Matthew ⋄ 490, 526
Symbolic mathematics ⋄ 537
Symmons, Deborah ⋄ 555
Systematic reviews ⋄ 488
Systems ⋄ see Devices and systems

Systems-Theoretic Accident Model
and Processes (STAMP) ⋄

487
SystmOne ⋄ 65, 363

T t
Taplin, Jonathan ⋄ 539
Tartaglia, Riccardo ⋄ 474
Task analysis ⋄ 303
Task saturation ⋄ 259, 261, 331,

332
Tavris, Carol ⋄ 484, 498
Taylor, Theresa ⋄ 43
TCP/IP stack ⋄ 550
Teamwork ⋄ 332, 380, 442
Technical debt ⋄ 331
Teich, Peter ⋄ 384
Tele-ICU ⋄ see eICU
Telefonica ⋄ 450
Telemedicine ⋄ 488
Teletype ⋄ 424
Telles, Joel ⋄ 555
Temperton, James ⋄ 519
Tenerife North Airport ⋄ 348
Tennent, R. D. ⋄ 515
Tensival (thalidomide) ⋄ 82
Tesla car ⋄ 238
Test suite ⋄ 173, 333
Test, Trace, and Isolate (TTI) ⋄ 396,

440
Texting ⋄ 261
Thach, T-T. ⋄ 501
Thalidomide ⋄ 81, 91, 103, 230,

394
The Bleeding Edge ⋄ 207, 491
The Design of Everyday Things ⋄

483
The Phoenix Partnership (TPP) ⋄

363
Theory of irony ⋄ 274
Therac-25 ⋄ 78
Theranos ⋄ 134
Thimbleby, Deborah ⋄ 455, 555
Thimbleby, Emily ⋄ 555
Thimbleby, Harold ⋄ 468, 483, 497,

501–504, 507, 508, 510,
continues …

590 | INDEX

Thimbleby, Harold continued …
515, 517, 518, 532, 533,
538, 540, 542, 546, 547,
556, 557

Thimbleby, Isaac ⋄ 69, 137, 455,
555

Thimbleby, Jemima ⋄ 555
Thimbleby, Oi ⋄ 555
Thimbleby, Peter ⋄ 109, 414, 511
Thimbleby, Prue ⋄ 117, 423, 531,

543, 555
Thimbleby, Samuel ⋄ 555
Thimbleby, Will ⋄ 517, 555
Thinking ⋄ see Cat Thinking,

Computational Thinking,
Computer Factors,
Human Factors, Safety,
Swiss Cheese, Wedge
Thinking, etc

Avoid thinking ⋄ 170
Black Box thinking ⋄ 221, 351,

490, 526
Cat Thinking ⋄ 25–30, 275,

484, 494, 549
Computational Thinking ⋄

151–175, 484
Elephant model ⋄ 275
Out-of-the-box thinking ⋄ 490
Scapegoat ⋄ 141
Wedge Thinking ⋄ 325–335,

473, 551
Thinking, Fast and Slow ⋄ 28, 484
Thomas, Duncan P. ⋄ 498
Thomas, Kim ⋄ 525
Thomas, Lisa ⋄ 423, 555
Thomas, Martyn ⋄ 500, 508, 524,

555
Thomas, Sian ⋄ 432, 555
Thompson, Jennifer A. ⋄ 541
Thorp, Liam ⋄ 173, 516
Thousand (kilo) Lines of Code

(kLoC) ⋄ 376, 538
Three-tier architecture ⋄ 542
Thrun, Sebastian ⋄ 524
Timeouts ⋄ 36, 281, 309
Timestamp ⋄ 247, 500
Tire ratings ⋄ 401
Tired of Cancer ⋄ 428

Tires ⋄ 402
Titcombe, James ⋄ 476
Titcombe, Joshua ⋄ 476
To Err is Human ⋄ 475
Tombs, Sarah ⋄ 555
Tools ⋄ 290
Topaz, Maxim ⋄ 524
Topol, Eric ⋄ 488
Torjesen, Ingrid ⋄ 545
Torous, John ⋄ 512
Toxic shock syndrome ⋄ 431
Toyota Production System (TPS) ⋄

305, 479
TPP (The Phoenix Partnership) ⋄

363
TPS (Toyota Production System) ⋄

305, 479
Tracheostomy ⋄ 263
Tracking apps ⋄ 439, 471
Trade-offs

Blood oxygenation ⋄ 545
Design ⋄ 88
Ease of use/errors ⋄ 112, 412
Number entry ⋄ 409

Traffic lights ⋄ 292
Training ⋄ 325, 492
Tran, Brandon ⋄ 524
Trans (transfemale, transmale) ⋄ 307
Travis, Gregory ⋄ 354, 535
Treck Inc ⋄ 550
Trojan Horse ⋄ 19, 219
Trust ⋄ 38, 233
Truth values ⋄ 371
Tsai, Alexander C. ⋄ 525
Tsipras, Dimitris ⋄ 524
TTI (Test, Trace, and Isolate) ⋄ 396,

440
Tuberculosis ⋄ 114
TUI Airways ⋄ 273
Tunnel vision ⋄ 259, 260, 262
Turing, Alan Mathison ⋄ 152, 441,

529
Turing Awards ⋄ 529
Turing Complete ⋄ 153
Turing Machine ⋄ 152

Turner, Clark S. ⋄ 505
Turner, Steve ⋄ 501
Twitter ⋄ 225, 237, 341, 342, 419

INDEX | 591

Two Wedge Model ⋄ 334
Two-Factor Authentication (2FA),

Two-Step
Authentication ⋄ 213

Types
Polymorphic ⋄ 374, 538
Type errors ⋄ 282, 478
Typed languages ⋄ 374

U u
UCD (User Centered Design) ⋄ 53,

58, 116, 134, 171, 237,
301–311, 313–324, 331,
339, 362, 445, 475, 482,
483, 530

UCTA (Unfair Contract Terms Act
1977) ⋄ 194

UDI (Unique Device Indicator) ⋄ 53,
54, 404

Umansky, Eric ⋄ 238
UN (United Nations) ⋄ 355
Unconscious incompetence ⋄ 267
Undo ⋄ 132
Unfair Contract Terms Act 1977

(UCTA) ⋄ 194
Unique Device Indicator (UDI) ⋄ 53,

54, 404
United Airlines Flight 173 ⋄ 263
United Nations (UN) ⋄ 355
UnitedHealthcare ⋄ 238
Universal Health Services ⋄ 457
University Hospitals of Leicester ⋄

502
University of Michigan Archimedes

Center ⋄ 488
University of Pennsylvania ⋄ 156
Unnoticed error ⋄ 53
Unpropagated updates ⋄ 282
Unsafe at Any Speed ⋄ 90, 140, 490
Unsafe medication ⋄ 114
Untire app ⋄ 428
Up/down keypad ⋄ 409
US Airways Flight 1549 ⋄ 350
Use error ⋄ 123, 282
User Centered Design (UCD) ⋄ 53,

58, 116, 134, 171, 237,
continues …

User Centered Design continued …
301–311, 313–324, 331,
339, 362, 445, 475, 482,
483, 530

User eXperience (UX) ⋄ 482
User needs ⋄ 483

V v
VA (Department of Veterans

Affairs) ⋄ 371
Vaccines ⋄ 457
Vaidyam, Aditya ⋄ 512
Valgis (thalidomide) ⋄ 82
Valgraine (thalidomide) ⋄ 82
Validation ⋄ 185
Valsdottir, Linda R. ⋄ 541
Vanderbilt University Medical

Center ⋄ 172
VanderWeele, Tyler J. ⋄ 525
Vaneau, Michel ⋄ 541
VanishPoint ⋄ 149
Vanunu, Oded ⋄ 526
Varis 7 ⋄ 70
Vastamo ⋄ 214
Vaughan, Jenny ⋄ 45
Vaught, RaDonda Leanne ⋄ 172
Vecuronium ⋄ 172
Velmahos, George C. ⋄ 512
Venkataram, Shekhar T. ⋄ 501
Ventilators ⋄ 449

JAMVENT ⋄ 449
Versed (Midazolam) ⋄ 172
Version control ⋄ 215, 298
Veterans Information Systems and

Technology Architecture
(VistA) ⋄ 371

Video recorders ⋄ 538
Vienna General Hospital ⋄ 15
Vigliarolo, Brandon ⋄ 550
Vincent, Charles ⋄ 474, 549
Virginia Mason Medical Center ⋄

305, 479
Virtual or Electronic Intensive Care

Unit (eICU) ⋄ 420
Virtual reality ⋄ 428
Virtual training ⋄ 468

592 | INDEX

Virus
Computer ⋄ 19, 218
COrona VIrus Disease ⋄ 437
COVID-19 ⋄ 17, 111, 112,

173, 230, 396, 432,
437–453, 458, 477

VistA (Veterans Information Systems
and Technology
Architecture) ⋄ 371

Vitek, Jan ⋄ 538
Vitek, Olga ⋄ 538
Vlaskovits, Patrick ⋄ 531
Vogel, David A. ⋄ 487
Vogeli, Christine ⋄ 523
Vogus, Timothy J. ⋄ 542
Vohr, Eric ⋄ 473, 532
Volatile memory ⋄ 205
Volk, Lynn A. ⋄ 501
Vulnerability ⋄ 391
VW dieselgate ⋄ 551

W w
MrW ⋄ 34, 286
Wachter, Robert M. ⋄ 511, 542
WAD (Work As Done) ⋄ 302, 305,

311, 321, 550
WAG (Work to Achieve Goals) ⋄ 304
WAI (Work As Imagined) ⋄ 302,

311, 321
Wainwright, Daniel ⋄ 545
Wainwright, Martin ⋄ 501
Wakefield, Jane ⋄ 540
Walker, Alex J. ⋄ 504, 522
Walker, Molly ⋄ 516
Walker, Peter ⋄ 546
Walter, Dan ⋄ 476
Walter, Pam ⋄ 476
Wang ⋄ 29
WannaCry ⋄ 18, 211, 240
Ward, Victoria ⋄ 506
Wariyar, Sethu ⋄ 502
Warranty, software ⋄ 110, 193, 438
Warren, Leigh R. ⋄ 525
Washing hands ⋄ 15, 146, 443
Washington, George ⋄ 20
Waste Electrical and Electronic

Equipment Directive
(WEEE) ⋄ 89

WAT (Work As Twisted) ⋄ 304
Watch-dog ⋄ 279
Watkins, David ⋄ 341, 342, 555,

556
Watkins, Derek ⋄ 551
Watson, Christie ⋄ 477
Watson, R. Scott ⋄ 501
Wearable computing ⋄ 438
Wears, Robert L. ⋄ 489, 530, 550
WebMD ⋄ 225
Wedge Thinking ⋄ 325–335, 473,

551
Two-Wedge Model ⋄ 334
Wedge Model ⋄ 328, 349

WEEE (Waste Electrical and
Electronic Equipment
Directive) ⋄ 89

Wegner, Daniel M. ⋄ 528
Weis, Justin M. ⋄ 531
Weisman, Jamie ⋄ 18
Wellcome Trust ⋄ 489
Welsh bwg ⋄ 278
Westbrook, Johanna I. ⋄ 504
What matters to me? ⋄ 308
WhatsApp ⋄ 225, 254, 439, 525
Wheaton, Margot ⋄ 536
Whitaker, David ⋄ 555
White, Dan ⋄ 555
White, Graham ⋄ 555
Whitney, D. L. ⋄ 501
WHO (World Health Organization) ⋄

83, 114, 149, 237, 355,
463, 468, 533

International Classification of
Diseases ⋄ 111

Surgical Checklist ⋄ 265, 334
Widdows, David ⋄ 555
Wiig, Siri ⋄ 527
Wilf, Herbert S. ⋄ 516
Wilkes, Maurice Vincent ⋄ 157

Wilkes Medal ⋄ 157, 557
Williams, Claire ⋄ 483
Williams, David ⋄ 325, 511, 515,

547, 555
Williams, John ⋄ 555
Williams, Rhiannon ⋄ 531
Wilson, J. ⋄ 544
Wilson, Mary ⋄ 536

INDEX | 593

Windows, Microsoft ⋄ 286
Wing, Jeannette Marie ⋄ 158, 514
Wisniewski, Hannah ⋄ 512
Witch hunt ⋄ 73
Wood working ⋄ 73
Woodcock, Andrew ⋄ 546
Wooden computer ⋄ 153
Woodward, Suzette ⋄ 473, 555
Woolcock, Nicola ⋄ 536
Words, most dangerous ⋄ 354
Work As Done (WAD) ⋄ 302, 305,

311, 321, 550
Work As Imagined (WAI) ⋄ 302,

311, 321
Work As Twisted (WAT) ⋄ 304
Work to Achieve Goals (WAG) ⋄ 304
Workarounds ⋄ 38, 39, 134, 146,

171, 273, 303, 309, 310,
393, 510, 551

Workshops, requirements ⋄ 359
World Bank ⋄ 534
World Health Organization ⋄ see

WHO
World Medical Association ⋄ 469
World War I ⋄ 21, 81
World War II ⋄ 65, 152
Worthington, David ⋄ 501
Wrench, picking up ⋄ 147
Wright, Adam ⋄ 501
Wright, Dave ⋄ 501
Wright, Orville ⋄ 361
Wright, Sarah ⋄ 531
Wright, Wilbur ⋄ 361
Write-only programming ⋄ 372
Wroblewski, Luke ⋄ 531
Wrong operator ⋄ 282

Wu, Albert ⋄ 472, 505
Wuhan ⋄ 437
Wymant, Chris ⋄ 545

X x
X-rays ⋄ 81, 103, 115
XceedPro, Abbott ⋄ 92, 353, 441
XSS (Cross Site Scripting)

vulnerability ⋄ 291

Y y
Yao, Xixi ⋄ 555
Year 2000 (Y2K) bug ⋄ 33, 64, 247,

286, 373, 452, 462, 499,
538

Yeates, Alex ⋄ 555
Yeh, Michael W. ⋄ 541
Yeh, Robert W. ⋄ 541
Yellow bile ⋄ 20

Z z
Zabala-Genovez, J. Luis ⋄ 544
Zaikin, Roman ⋄ 526
Zautner, Kaia ⋄ 177
Zeilberger, Doron ⋄ 516
Zero knowledge ⋄ 298
Zhang, Yi ⋄ 502
Zhao, Lele ⋄ 545
Zhou, Li ⋄ 524
Ziering, Amy ⋄ 520
Ziman, John ⋄ 527
ZOE ⋄ 230
Zoom ⋄ 437
Zuckerberg San Francisco General

Hospital ⋄ 478
Zuckerberg, Chan ⋄ 478

The problem is not so much to see what
nobody has yet seen, as to think what nobody
has yet thought concerning that which
everybody sees.

— Arthur Schopenhauer

A virtuoso is not someone who never makes
an error, but someone who detects and
recovers from the error.

— James Reason

To kill an error is as good a service as, and
sometimes even better than, the establishing
of a new fact.

— Charles Darwin

Unless someone like you cares a whole awful
lot, nothing is going to get better. It’s not.

— Dr Seuss

Fix IT
See and solve the problems of digital healthcare

Fix IT is not just about the bugs and cybersecurity threats that affect digital
healthcare. More importantly, it’s about the solutions that can make digi-
tal healthcare much safer. The stories in this book will empower patients,
clinical staff, and digital developers to help transform digital healthcare for
the better.

This is an important, badly needed book, written in a lively enjoyable style. It
should be required reading for anyone who is in healthcare or who develops,

designs, and builds healthcare instruments, devices, and procedures.
DON NORMAN

Founder and Director of the Design Lab at the University of California San Diego
Author of The Design of Everyday Things

This book draws you in from the start. It is a must read for anybody who cares
about improving the state of healthcare with the goal of better patient outcomes.

SALLY LEWIS
Primary Care Physician and National Clinical Lead
for Value-Based and Prudent Healthcare, Wales

This is an extraordinary book: a potent and engaging compendium of revelatory
stories, bold insights, wise advice, and fresh thinking. This book has the potential
to revolutionize digital healthcare, and will be a source of inspiration to everyone,

whether in healthcare or beyond.
DANIEL JACKSON

Professor of Computer Science, MIT

Harold Thimbleby’s lifetime devotion to fixing the problems with medical devices
and systems shines through in this amazing book. The profusion of compelling

examples are told with stories of real patients who were harmed and heroic
medical professionals who tried their best. The deadly dramas are lucidly told with

literary skill and scientific integrity, which should inspire Hollywood films.
BEN SHNEIDERMAN

Distinguished University Professor, University of Maryland

This is an extraordinary book that forces me to change my medical informatics
courses every week!

ROSS KOPPEL
Professor of Sociology, University of Pennsylvania

1

