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Abstract. User interfaces often behave 
unpredictably on erroneous input — rather than 
blocking errors and requiring the user to correct 
them. The consequences of this in the context of 
medical devices, which may give patients 
undetected overdoses, can be unfortunate. The 
solution should include better design, including 
the concept of safety locks, that block some 
forms of user error. 
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1. Introduction 
 

Machine guns have triggers, which the user 
squeezes to make them fire. Machine guns also 
have safety locks so that they cannot be fired by 
accident. Safety locks do not signficantly 
interfere with normal use of a gun, but they 
significantly reduce the probability of accidental 
misuse.  

Why do guns have safety locks? Well, we 
know two things: guns are dangerous, and even 
the best-trained users make slips from time to 
time (guns may also be left unattended). Safety 
locks significantly reduce the chances of 
unintended firing. 

Like a machine gun, any system controlled by 
a human requires some sort of trigger so that it 
can be made to operate when its user wants to 
operate it. (Of course many systems are more 
complex than guns: the actions triggered may 
require further control and refinement.)  

By analogy, any system that may have 
unwanted effects should have its analogues to 
safety locks. More specifically: 

• Any system that may have unwanted 
effects that are large compared to the 
final effort to make them happen, or are 
hard to undo should have safety locks.1 

                                                 
1 Safety locks are thus one solution to breaking the 
law of commensurate effort [8]. 

The only argument against safety locks is that 
they may add complexity or cost to a design and 
may in themselves cause types of error that 
would not or could not occur without them.  

For example, safety locks on guns may 
slightly slow down shooters taking their first 
shot. Somebody may then be shot because their 
gun was locked in safe mode and was not 
immediately usable to protect them. Almost 
certainly it does not make sense for a safety lock 
to have its own safety lock, so a more considered 
position is that any system with potentially 
unwanted effects should have a safety lock (or 
equivalent) unless the safety lock itself increases 
the risk of problems more than the problems it is 
supposed to reduce. In other words, a safety lock 
is a design trade-off. 

Even if we want to avoid safety locks so guns 
are faster to use, it is also a priority to ensure that 
a gun user doesn’t get killed by their own gun! A 
user being killed by accident would be far more 
inefficient than all of the small delays of using a 
safety lock each time the gun is needed to be 
deliberately fired. 

Computer systems are like machine guns. A 
simple action, perhaps intentional, perhaps a slip, 
can have enormous and quite unintended 
consequences.  

Imagine: a single keystroke triggers sending 
an unfortunate email to thousands of people. A 
button press triggers a patient receiving an 
overdose of a drug. Clicking “save” overwrites a 
file the user wanted to keep, and there is no undo 
to recover all the work that has been lost. 

Where are the safety locks when they are 
needed? 

This question is wrapped up within deeper, 
contextual questions: sometimes the user really 
wants to do something unfortunate but which 
only too late they realise was unfortunate. The 
user might really want to send the email, and 
perhaps nothing the computer can do will make it 
safer, and the user only realises their error when 
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thousands of complaints start coming back to 
them much later. 

Paul Cairns observes that “safety lock” is a 
concept more general than what is needed on 
obviously dangerous devices like guns. In 
electrical wiring systems, there are fuses. A fuse 
blowing is an inconvenience (it has to be 
replaced) but it stops an electrical fault of some 
sort escalating into perhaps a fire. A climber’s 
safety rope stops them falling uncontrollably. It 
does not stop them falling in the first place, and 
it may not save their lives (occasionally safety 
ropes are cut to save other people’s lives, so that 
not everyone is pulled off together), but a safety 
rope is a simple device that increases safety at 
small cost.  

In this paper, whilst we use machine guns as a 
dramatic background motivation for safety locks, 
conceptually we see them as a far more general 
idea, and ones that could be very widely used in 
many sorts of applications. 

Just because there are different sorts of safety 
lock and sometimes complicated answers to the 
questions does not mean we should ignore 
fundamental issues… 
 
2. Ignoring safety locks in programming 
 

A leading undergraduate textbook on 
algorithms [2], “the bible” of the field according 
to its blurb, explicitly says that it does not cover 
error handling. Almost 1,000 pages of text 
assumes all data is correct, and, if so, how to 
process it. The book has no sanity checks, no 
assertions, nothing on exception handling — in 
short, no safety locks. This is an example of how 
we train undergraduate programmers. 

If any data originates from a human — or 
originates from a program written by a human — 
there is no guarantee the data is error-free. In the 
worst case, the program it is fed into may behave 
sort-of like a machine gun and have untoward 
consequences. 
 
3. Ignoring safety in numbers 
 

Number entry is one of the most basic and 
widely-encountered  tasks.  

A user presses keys, say, 1, 2, •, then 3 (where 
I am using • to mean a decimal point, because 
small dots are hard to see and confusable with 
periods and other English punctuation)2 and then 
                                                 
2 The symbol embossed on the key may be •. On my 
computer keyboard, • is combined with >, but on 

the computer will convert the sequence of key 
presses, 12•3, to the number 12.3. Often the user 
will have to press ENTER or GO or some other 
key to indicate when they have finished entering 
the number. 

Although we write 12•3 or 12.3 (the keys) 
and 12.3 (the number), to a computer these are 
quite different concepts, and one has to be 
carefully converted to the other. Humans 
generally think of numbers as particular 
sequences of digits rather than as abstract values, 
so the subtle differences between keys, numerals 
and numbers are often glossed over. Recall that 
computers use binary; what we write in this 
paper as 34, say, may be represented inside the 
computer as 100010 — and even then one would 
search in vain to find anything that looks like 
100010, as the 1s and 0s are represented as 
electrical states, not as anything humanly 
readable. Indeed, our habitual ways of talking 
about numbers makes them look very easy, and 
correspondingly makes it quite hard to grasp how 
complex number entry really is. 

A typical approach to converting keystrokes 
to numbers is as follows. 

The computer starts off with the number 0. 
When a user hits a digit key, the number is 
multiplied by 10 and the value of the digit (not 
the key itself!) is added to it. So if the user 
presses the key with the label ‘3’ on it then the 
calculation 0×10+valueof(key3) = 3 is 
performed, and then the computer has the 
number 3. This may seem rather obvious and 
perhaps a little complex for what it achieves, but 
exactly the same process will work on the next 
key too. If the user keys ‘4’ next, another digit 
key, then the same process is repeated: 3×10+ 
valueof(key4) = 34.  

In this example, as can be seen, the user keyed 
‘3’ then ‘4’ and the computer determined that 
they entered the numerical value 34. The process 
is repeated so long as the user is keying digits. 
Figure 1 shows the algorithm as it would be 
written in a typical programming language. 

                                                                          
many devices, the • is on a dedicated key. Some 
electronics and program working together converts 
the location of the key on the keyboard (and whether 
SHIFT has been pressed, etc) to the ASCII or 
Unicode for a dot. Programmers rarely concern 
themselves with such details: in a normal program • 
always looks like “.” Sometimes the program code for 
converting keystrokes to codes is faulty, and then the 
user experiences so-called key bounce problems, such 
as ignored or extra keys seeming to be pressed. 
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The simple algorithm described above works 
very nicely until the user keys a dot or DELETE, 
or keys so many digits that the computer loses 
track of the value of the large number intended; 
then things get more complex and the algorithm 
ceases to be so simple… 

We will not pursue the elementary 
programming details further in this paper. 
Nevertheless it is interesting to note that when 
the user has done nothing, the computer is 
already thinking zero. However, nothing and 
zero are not the same, and perhaps this confusion 
— on the computer’s part — will cause what 
may seem like user errors from time to time. 
Here’s how: 

Many devices display the initial number as 
0.0, which may further confuse the user, as 0.0 
cannot possibly distinguish between a user who 
has keyed nothing, keyed zero, keyed a decimal 
point, keyed a decimal point followed by zero … 
and so on. To illustrate the problem: if a user 
walks up to a device displaying 0.0 and keys 5, 
the display could legitimately but unpredictably 
go to any of these values: 5.0, 0.5 or 0.05. This 
does not seem satisfactory for devices that are 
used in safety critical environments, such as in 
healthcare. 

A user may make a slip when entering 
numbers. Hypothetically, consider that they press 
12••3. This is clearly not a number; it is not well-
formed. What does the program do? Does it treat 
this as a “trigger squeeze” for some number or 
other, or does it recognize it as an inappropriate 
sequence of actions for number entry, and safely 
lock it out? 

If the computer’s number entry algorithm is 
as trivial as the one sketched above, then the 
program will get as far as 12 and then terminate 
with 12.0 as the number, rather than an error. 

Programmers rarely program number entry 
code themselves: it is needed so often it is often 
built-in so that there is a way of doing it 
automatically.  

Consider the programming language 
JavaScript, which is one of the most widely used 
programming languages, as it is used to script 
web browsers. In JavaScript, keystrokes can be 
converted to numbers automatically, and few 
programmers worry about how this works 
because it is so easy to do. Yet erroneous 
sequences of characters are incorrectly 
converted. For example, 1, 2, •, •, 3 is converted 
to “12” — it is treated as a valid number, but is 
given the wrong value.  

JavaScript provides several ways to convert 
sequences of keystrokes to numbers; for 
example, the built-in routine parseFloat converts 
the same string of characters 12..3 into “NaN” — 
now it is treated as “Not a Number.” It is then up 
to the programmer to check that NaN is not used 
as a number in the rest of the program, as this 
would cause knock-on problems. 

Trying parseFloat on 1.2.3 gives 1.2. It looks 
like parseFloat reads as much of a number as it 
can make sense of, then returns that as the value 
and ignores the rest. Indeed, parseFloat gives 0 
as the value for 0m (where ‘m’ is some non-digit, 
perhaps a letter) but gives NaN for m0. 

In other words, JavaScript programs can try 
to convert a sequence of user actions into a 
number using any of the various built-in 
mechanisms provided by the designers of the 
language, and depending on how they do it, they 
will get different results.  

Sometimes JavaScript recognizes errors 
(though it never blocks them), sometimes it 
ignores the error and generates some sort of 
number. Generally, JavaScript assumes errors 
can propagate, meaning that some other part of 
the program has to block NaN and do something 
sensible, rather than treating NaN as some 
number (maybe zero) or worse. 

If the programmer chooses to handle numbers 
explicitly themselves, different things may 
happen again, especially considering the building 
blocks of the language (including parseFloat) are 
unreliable. 

The keys of the computer or the keys of a 
device are the triggers that make it do things. We 
have shown that pressing some keys can trigger 
the computer to work incorrectly.  Conceptually 
trivial, but a safety lock would only have to 
block invalid number entry, and like a gun’s 
safety lock, need not interfere at all with normal 
— correct — number entry. 

Many more examples of the problem are 
given in [9], and some details of safety locks and 
their effectiveness are also presented (though the 

 
var n = 0; 
key = getKey(); 
while( isDigit(key) ) 
{ n = 10*n+valueOf(key); 
  key = getKey(); 
} 
return n; 

 
Figure 1. Simple code to read a number 
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present paper introduces and motivates the term 
‘safety lock’ itself). 
 
4. Complex inter-twining 
 

Our observations make clear that parsing a 
number, which we’ve discussed thoroughly 
above, displaying a number as the user enters it 
and editing it are very different activities, and 
their programming has to be very carefully 
integrated.  

Most likely many errors happen because the 
overall properties of number entry are not 
consistent: a DELETE key may delete a key but 
not have a predictable effect on the parsed 
number. We shall see various examples below of 
this and other related problems. 
 
5. Does it happen? Does it matter? 
 

There have been no reports of mass incorrect 
number entry on the web. People seem to pay 
their bills correctly. So it seems like poor 
programming is not a serious problem.  

Suppose you pay your bills online and 
accidentally enter an incorrect number, and you 
either over-pay or under-pay your bills. You 
probably say “oops,” and sort out the problem. It 
seems you made a mistake, so you fix the 
problem. 

Who would think of complaining to the 
designers of the programs they were using, or 
even to the designers of the programming 
language? 

In complete contrast, the 1994 Intel processor 
floating point problem was a cause célèbre 
because an unusual error, that Intel initially tried 
to dismiss as very unlikely, was easily 
reproduced by everybody who cared to try it [5]. 
Even though virtually nobody needed to do the 
particular sum, once people knew what the sum 
was, they could reproduce it and see that the 
result was incorrect. This undermined the 
credibility of the processor, and Intel had to 
retract and replace affected processors at cost. 

In contrast, nobody has complained about 
number errors, and nobody has said the Intel-
equivalent of “try doing 4195835÷3145727 with 
these particular numbers as it will go wrong.” 
[5][6] Perhaps if somebody said “try entering 
1•2•3 and see what happens” would lead to 
improvements in the quality of programming, 
and force developers to introduce safety locks? 

Whenever you use an interactive system that 
accepts numbers, try entering 1•2•3 and see what 

it does. Few systems, from Excel to 
Mathematica, from infusion pumps to web 
search engines, handle it correctly (see [9]). 

Evidently, systems do not process number 
entry errors dependably. Also, users seem not to 
complain and not to notice. The next question, 
then, is: does it matter? 
 
6. Errors that happen and that matter 
 

Syed et al [7] report an unfortunate medical 
incident where a nurse entered the number 0.5 
instead of 5, an error that led to respiratory arrest 
(i.e., potential death) of a patient. In the paper it 
is clearly assumed that the design of the device 
used was correct: the device behaved as 
designed, and its logs showed the nurse had 
entered 0.5. Problem solved; nurse error. 

Nurse A apparently entered a morphine 
concentration of 0.5 mg per mL instead of 5 mg 
per mL into the infusion pump; this is what the 
device has logged. With the device initialized 
with a concentration that is ten times too low, it 
would naturally pump a volume ten times too 
much of morphine into the patient.  

The patient was finally dosed with 153 mg of 
morphine. The then empty supply of morphine 
caused the device to alarm, which led to another 
nurse attending and detecting and correcting the 
error. The full details of the incident are very 
interesting and are beyond the scope of the 
present paper — for example, nurse A also made 
a separate error, which had the consequence of 
delaying the impact of the morphine overdose. 
Nevertheless, the patient arrested and the log of 
the device showed a number entry error. 

The paper reports that nurse A was uncertain 
how to set up the infusion pump, and asked for 
the assistance of a second nurse, nurse B. This 
suggests that the human factors engineering of 
the device was substandard or that the training of 
the nurse was inadequate relative to the work 
they were supposed to do. While the paper does 
not make clear whether this was supposedly a 
routine job for the nurse, it does make clear that 
poor training for nurses was a contributory factor 
to the error. One might more correctly rephrase 
this as poor training relative to the complexity of 
the device was inadequate. Presumably, prior to 
the incident the complexity of the device and/or 
the inadequacy of the training to enable nurses to 
use the device effectively was not recognized by 
management. 

It is presumably beyond the scope of the Syed 
et al paper to suggest it: but the manufacturers 
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simplifying and fixing their designs so they are 
easier and more reliable to use would be more 
strategic than retraining all the nurses that use the 
systems. Or hospital procurement should avoid 
purchasing systems that allow this sort of error. 
If procurement checked whether systems had 
safety locks, then eventually manufacturers 
would provide better systems. In the meantime, 
we note that it is surprising that manufacturers 
continue to design systems with trivial faults; the 
expertise to make them properly is readily 
available if they want to make use of it. 

The user apparently made a number entry 
error. The infusion pump involved, an Abbott 
Lifecare PCS Plus II Infuser type 4100, does not 
have number keys, but has “increase” and 
“decrease” buttons. Nor does it have a decimal 
point. This reduces the number of keys (numbers 
can be entered with 2 keys rather than 11) and 
perhaps makes the device look simpler, but it 
inevitably creates modes — for example, which 
digit (units, tens, etc) is being increased or 
decreased when pressing up or down buttons? Or 
is a value increased and decreased, and any digit 
in its decimal representation might change (e.g., 
going from 99 to 100 in one button press changes 
3 digits simultaneously)?  

Does the rate of increase change the longer 
the relevant button is held down (typically, the 
first press increments by 0.1 and if held down 
longer increments by 1 then by 10)?  

Every mode a user interface has increases the 
chance that the user mistakes the mode the 
device is in, and hence makes errors. 

The paper indicates that the infusion pump 
was set to a default setting of 0.5, and it suggests 
(but does not make sufficiently clear) that nurse 
A selected 0.5 rather than entered it explicitly. It 
appears the device was set up so that 0.5 is the 
initial value, and the user would then increase or 
decrease it to the desired target value. 

If so, there are various ways to explain the 
error, including the following: 

• A single key press error could have 
caused the error; the keying error may 
not have been noticed by the nurse. We 
note that the device does not beep when 
keys are pressed, thus making it hard to 
keep track of which buttons work. 

• Misreading the display as 5 would mean 
the nurse would accept it with no further 
action required. 

Another problem (described in the paper) is 
the device has an out-of-range check, which 
should have helped protect the patient. If a dose 
is to take longer than 4 hours, this is blocked. 

Unfortunately, entering the wrong 
concentration need not make the infusion of the 
drug take longer. It appears the device does not 
check concentrations (or the calculated drug 
delivery rates that are functions of the 
concentrations). 

 
7. Other scenarios 

 
We have discussed in some detail ways in 

which the nurse error may have been induced by 
device design. We know that other number errors 
cause incidents in healthcare and that the 
infusion pump involved in the story above is not 
the only style of pump. In general, then, there are 
other potential sources of number error. 

We now briefly consider other ways the 
number entry error could happen (on a different 
device) using numeric keys rather than 
increase/decrease keys. 

(1) We’ve already considered a simple 
possibility above. Assume that a • has already 
been pressed (perhaps some time ago, or by 
accident), but the display will show 0.0, which is 
also what it would display if • has not been 
pressed. (The standard initial display of 0.0 does 
not tell a user whether • has already been 
pressed.) If nurse A now presses 5, the value 
entered is 0.5 even though the nurse expects it to 
be 5.0 — based on the fact that on many 
previous occasions, pressing 5 when the device 
shows 0.0 has got it to 5.0. 

(2) Laura Gosby has pointed out that many 
devices have a fixed position for the decimal 
point, but digits move right-to-left as they are 
keyed. So many devices display 0.0 as their 
initial display. As a user presses 123 in that 
order, the display would change successively 
through 0.1, 1.2, 12.3. (Cash machines/ATMs 
often work like this.) In this scenario, nurse A 
simply presses 5, thinks they have pressed 5, but 
the device would treat it as 0.5, the wrong value 
and out by a factor of ten.  

(3) Perhaps nurse A keys 0••. This is a simple 
slip: 0••5 is not the start of a well-formed 
number. Nurse A recognizes this error, and 
presses the DELETE or CANCEL key to correct 
the erroneous keystroke. On any sensible device 
(like Microsoft Word) pressing •• DELETE has 
the meaning same as • alone. 
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However, most medical devices do not keep 
track of how many decimal points a nurse has 
keyed: a number either has no decimal points or 
one. So 0•• is recorded by a device as 0• with 
only a single decimal point. But then nurse A 
presses DELETE to correct the error. The result 
will be as if the nurse pressed 0, not 0•, because 
effectively both dots keyed by the user have 
gone. Next, nurse A presses 5, and the device has 
got 05 as the number entered, presumably equal 
to the numeric value 5, yet nurse A believes they 
have entered 0.5. 

This is a tenfold error (but, as it happens, in 
the wrong direction for the specific Syed et al 
scenario). Nevertheless it illustrates how a user’s 
reasonable expectations (learned from other 
familiar systems like word processors) may be 
seriously undermined by poor programming. 

(4) Another possibility is that the device 
initially displays 0.0, and as the user keys in 
digits and dots, the display updates. The nurse 
keys 5, and the display shows 0.5; if the nurse 
continued and keyed 0, the display would update 
to 5.0, as the 5 “scrolls” to the left. Who knows? 
But this is a plausible way that nurse A thinks 
they have keyed 5, but the device logs 0.5. 

(5) The nurse keyed • by mistake as their first 
key press, and noticed this slip. The nurse hit 
DELETE but the delete did not work, perhaps 
because the nurse did not press the key hard 
enough. Keying the digit 5 next would have led 
to the device treating the number as 0.5, not as 5. 

(6) Another, sadly common, possibility is that 
the device has timeouts. The nurse presses 0• and 
then is maybe distracted for a few seconds 
(perhaps to say something or attend to the 
patient) then continues by pressing 5. The nurse 
knows they pressed 0•5, but the device timed-out 
after the • and ignored it. The nurse has, so far as 
the device is concerned, entered 5.0. 

(7) On devices with up/down keys, the 
up/down keys may change the value displayed 
by 0.1. The user pressed UP and the number 
being entered cycles via 0.9 to 0.0 (or 0.1), 
because some other operation is required for UP 
to increment units and tens digits. On seeing the 
number reach 5, the nurse may have thought “I 
have increased the number, and it has changed to 
5, therefore I have finished.” Unfortunately, this 
is also a misreading error: the number is 0.5, 
even though the nurse saw it increase from 0.5 to 
0.6, 0.7… etc. This error would be even more 
likely if the user interface accelerates the rate of 
change the longer UP is pressed. 

(8) We know that the infusion pump involved 
uses 7 segment digit displays. A display of 0.5 
(which was selected) rather than 5 (which should 
have been selected) may easily have been 
misread, as decimal points in 7 segment displays 
are not very salient. Possibly the decimal point 
was faulty; possibly the machine was positioned 
so the dot could not be seen because of parallax. 
Possibly 0.5 is displayed as 05, with a slightly 
smaller decimal 5 but no decimal point at all. 

(9) The hypothetical scenarios above were 
limited to the specific 0.5 or 5.0 confusion, 
though they obviously generalize to other values, 
such as 0.1 and 1.0 confusions. The literature 
explores many other forms of numerical 
confusion — for example, Johnson et al [3] show 
how keying 135•0 can be taken as 1,350 because 
the device gratuitously ignores decimal points on 
values larger than 100. Cairns and Thimbleby [8] 
show how keying 10•5 gets 10.5 but 100•5 gets 
1,005 on the Baxter Colleague. In these two 
examples, the device’s handling of • depends on 
contingent modes that may not be, and probably 
are not, obvious to the user. 

(10) All the hypothetical examples above 
assume the user made a slip in the operation of the 
device. The solution to these sorts of problem are 
better device design and/or better user training. 
(We prefer better device design, since users will 
eventually make slips regardless of their training.) 
A different possibility is that the user intended to 
enter 0.5, but by mistake. Perhaps the prescription 
was misread? Perhaps there was a smudge before 
the 5 that was misread as a •? Perhaps if the dose 
had been written as 5•0 it would have been less 
likely to have been misread as 0•5? Most probably, 
if the training of everybody was that . is never 
written when • is intended, the (hypothetical) 
misreading would me far less likely.3 
                                                 
3 A user may intend to make a mistake, for example knowing 
perfectly well what the correct dose is; this is then a violation. 

 
Written around 1790BC, the Code of Hammurabi 
says things like, “If a builder builds a house for 
someone, and does not build it properly, and the 
house falls down and kills its owner, then the 
builder shall be put to death.” Likewise, today’s 
programmers should be plugged into their 
devices: not only is it a deterrent for bad 
programming, but if the programmer is killed by 
their own bad programming, they won’t have any 
children. Eventually evolution will take care of 
improving programming standards… 
 
Figure 2. Updating the Code of Hammurabi? 
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Sadly, these ten hypothetical scenarios (in 
addition to the ones possible on the actual device 
involved in the incident, which we described 
earlier) are all plausible: user interfaces are often 
badly designed, and it is all too easy to imagine 
the errors not being blocked by safety locks. 

In summary, there are many hypothetical 
ways that a device can log an apparent “user 
error” which has been induced by design, not by 
unreasonable behavior on the part of the user. 
Logs should at least record the exact keystrokes 
the user performed and their timings, not the 
final value the device somehow works out, 
perhaps erroneously, from the keystrokes.  

• Device logs should allow investigators to 
distinguish between different possible 
causes of error.  

One can infer in the Syed et al case that the 
device log was not sufficiently clear to suggest 
alternatives other than “obvious nurse error” to 
the authors of the paper. 

 
8. Discussion 

 
The list of possible causes of error is not 

intended to be exhaustive, nor are all possibilities 
suggested equally likely on the particular device 
at the centre of the reported case. The point is to 
raise a variety of ways in which the absence of 
safety locks can cause problems. Almost 
certainly one or more safety locks on the device 
in question failed or, more likely, were never 
designed into the device.  

Sadly, without more detailed information (of 
the device condition and set up, including default 
values, and of the incident itself) one can only 
speculate as to the specifics. 

The Syed et al paper mentions documented 
cases of concentration errors made before on the 
same device. Evidently, concentration errors are 
well known and encountered relatively often. 
One wonders whether there is a systematic 
reason for this class of error other than 
independent human error. The unvarying 
common factor in all the errors is the device (and 
its design). 

The paper says,  
“While the primary error involved incorrect 

programming4 of the PCA5 pump.”  

                                                 
4 Programming: i.e., the sequence of keystrokes 
performed by the nurse, not programming as in the 
software programming of the device. 

We would beg to disagree. The primary error, 
in our opinion, lies in the design of the device. 
Moreover, fixing the design would solve many of 
the paper’s recommendations, such as improved 
training. Why have better training for something 
that is over-complex, as it would be more 
strategic to improve the device — and 
reprogramming the device (e.g., in a firmware 
update) could be done without any training costs. 

The Syed et al paper makes six 
recommendations, including better nurse training 
(they do not mention that perhaps prescriptions 
should be written out more carefully, which 
would be an issue of pharmacy or consultant 
training).  

None of their recommendations cover better 
procurement of devices (why are bad devices 
purchased?) nor better design of devices (why 
are bad devices designed in the first place?) Nor 
is there any explicit learning from the 
investigation that might lead to better device 
design.  

Although the paper was written from a 
medical perspective, from our point of view, like 
many if not all such papers it is too vague about 
the design and use of the device. The assumption 
is that the nurse made the error, not that the 
device induced or contributed to the error.  
 
9. Conclusions 
 

Syed et al is only one paper, but its concerns 
and approach are not unusual [1]. There was a 
medical mishap, and the paper makes it clear that 
this error was not a one-off event for this device. 
The healthcare implications are discussed. 
Maybe there will be some management changes. 
Design was not criticized in detail, except 
tangentially in mentioning a human factors paper 
that shows that human factors can reduce error 
[4]. The paper leaves unexplored whether human 
factors redesign would have avoided the problem 
discussed. 

In summary: 

• Many devices have no safety locks in 
number entry; 

• Number entry errors may cause 
significant problems; 

                                                                          
5 PCA: patient controlled analgesia; i.e., an infusion 
pump with features for the patient to have some 
control over their drug dose. 
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• Analyses do not discuss details of use in 
sufficient detail to be certain of relevant 
design factors; 

• Although human factors can improve 
performance and safety, no connection is 
made between particular incidents and 
general solutions. 

Although the present paper has concentrated 
on number entry (because of its familiarity, 
clarity and ubiquity), there are problems with all 
forms of user interface. Number entry is, for the 
sake of exposition, merely easier to demonstrate 
as flawed. 

Machine guns are dangerous, but they are 
made considerably safer without compromising 
their effectiveness by having safety locks. Now 
imagine this: there is a machine gun available on 
the international market without a safety lock. I 
think we would all know about it: films would be 
made of exploits with it! 

Now imagine that somebody has been shot by 
a machine gun, but nobody mentions that the 
machine gun involved has no safety lock. If a 
gun has no safety lock, it would be likely to be 
mentioned in any accident investigation. Yet 
nobody mentions it. For some reason, people are 
not thinking about it.  

Bizarre with guns, maybe, but the story 
implies nobody is familiar with safety locks 
when it comes to programming and complex 
devices like hospital infusion pumps. Nobody 
notices safety lock absence. This paper has 
argued, as is more obvious with small arms, that 
safety locks in programming could lead to lives 
being saved. Elsewhere [9], we’ve shown they 
could halve mortality. 

The need for safety locks on machine guns 
can be easily and dramatically demonstrated. 
Imagine there is no safety lock: press the trigger, 
and the gun sprays bullets …and the gun’s recoil 
creates chaos…  

Without a safety lock, a gun is clearly lethal. 
Guns have the advantage, both for the rhetoric of 
this paper and in reality, that there is a very small 
psychological distance between pressing the 
trigger and a dangerous bullet emerging noisily! 

With any other device, try entering 1•2•3 (or 
make some other keying error) and see what 
happens. Sadly, patients with an avoidable 
overdose of morphine die quietly without any 
noisy drama. 
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