
Interactive Systems Need Safety Locks

Harold Thimbleby
Future Interaction Laboratory, FIT Lab

Swansea University, Wales
harold@thimbleby.net

Abstract. User interfaces often behave
unpredictably on erroneous input — rather than
blocking errors and requiring the user to correct
them. The consequences of this in the context of
medical devices, which may give patients
undetected overdoses, can be unfortunate. The
solution should include better design, including
the concept of safety locks, that block some
forms of user error.

Keywords. Safety locks, human error, number
entry, user interface design.

1. Introduction

Machine guns have triggers, which the user
squeezes to make them fire. Machine guns also
have safety locks so that they cannot be fired by
accident. Safety locks do not signficantly
interfere with normal use of a gun, but they
significantly reduce the probability of accidental
misuse.

Why do guns have safety locks? Well, we
know two things: guns are dangerous, and even
the best-trained users make slips from time to
time (guns may also be left unattended). Safety
locks significantly reduce the chances of
unintended firing.

Like a machine gun, any system controlled by
a human requires some sort of trigger so that it
can be made to operate when its user wants to
operate it. (Of course many systems are more
complex than guns: the actions triggered may
require further control and refinement.)

By analogy, any system that may have
unwanted effects should have its analogues to
safety locks. More specifically:

• Any system that may have unwanted
effects that are large compared to the
final effort to make them happen, or are
hard to undo should have safety locks.1

1 Safety locks are thus one solution to breaking the
law of commensurate effort [8].

The only argument against safety locks is that
they may add complexity or cost to a design and
may in themselves cause types of error that
would not or could not occur without them.

For example, safety locks on guns may
slightly slow down shooters taking their first
shot. Somebody may then be shot because their
gun was locked in safe mode and was not
immediately usable to protect them. Almost
certainly it does not make sense for a safety lock
to have its own safety lock, so a more considered
position is that any system with potentially
unwanted effects should have a safety lock (or
equivalent) unless the safety lock itself increases
the risk of problems more than the problems it is
supposed to reduce. In other words, a safety lock
is a design trade-off.

Even if we want to avoid safety locks so guns
are faster to use, it is also a priority to ensure that
a gun user doesn’t get killed by their own gun! A
user being killed by accident would be far more
inefficient than all of the small delays of using a
safety lock each time the gun is needed to be
deliberately fired.

Computer systems are like machine guns. A
simple action, perhaps intentional, perhaps a slip,
can have enormous and quite unintended
consequences.

Imagine: a single keystroke triggers sending
an unfortunate email to thousands of people. A
button press triggers a patient receiving an
overdose of a drug. Clicking “save” overwrites a
file the user wanted to keep, and there is no undo
to recover all the work that has been lost.

Where are the safety locks when they are
needed?

This question is wrapped up within deeper,
contextual questions: sometimes the user really
wants to do something unfortunate but which
only too late they realise was unfortunate. The
user might really want to send the email, and
perhaps nothing the computer can do will make it
safer, and the user only realises their error when

29
Proceedings of the ITI 2010 32nd Int. Conf. on Information Technology Interfaces, June 21-24, 2010, Cavtat, Croatia

thousands of complaints start coming back to
them much later.

Paul Cairns observes that “safety lock” is a
concept more general than what is needed on
obviously dangerous devices like guns. In
electrical wiring systems, there are fuses. A fuse
blowing is an inconvenience (it has to be
replaced) but it stops an electrical fault of some
sort escalating into perhaps a fire. A climber’s
safety rope stops them falling uncontrollably. It
does not stop them falling in the first place, and
it may not save their lives (occasionally safety
ropes are cut to save other people’s lives, so that
not everyone is pulled off together), but a safety
rope is a simple device that increases safety at
small cost.

In this paper, whilst we use machine guns as a
dramatic background motivation for safety locks,
conceptually we see them as a far more general
idea, and ones that could be very widely used in
many sorts of applications.

Just because there are different sorts of safety
lock and sometimes complicated answers to the
questions does not mean we should ignore
fundamental issues…

2. Ignoring safety locks in programming

A leading undergraduate textbook on
algorithms [2], “the bible” of the field according
to its blurb, explicitly says that it does not cover
error handling. Almost 1,000 pages of text
assumes all data is correct, and, if so, how to
process it. The book has no sanity checks, no
assertions, nothing on exception handling — in
short, no safety locks. This is an example of how
we train undergraduate programmers.

If any data originates from a human — or
originates from a program written by a human —
there is no guarantee the data is error-free. In the
worst case, the program it is fed into may behave
sort-of like a machine gun and have untoward
consequences.

3. Ignoring safety in numbers

Number entry is one of the most basic and
widely-encountered tasks.

A user presses keys, say, 1, 2, •, then 3 (where
I am using • to mean a decimal point, because
small dots are hard to see and confusable with
periods and other English punctuation)2 and then

2 The symbol embossed on the key may be •. On my
computer keyboard, • is combined with >, but on

the computer will convert the sequence of key
presses, 12•3, to the number 12.3. Often the user
will have to press ENTER or GO or some other
key to indicate when they have finished entering
the number.

Although we write 12•3 or 12.3 (the keys)
and 12.3 (the number), to a computer these are
quite different concepts, and one has to be
carefully converted to the other. Humans
generally think of numbers as particular
sequences of digits rather than as abstract values,
so the subtle differences between keys, numerals
and numbers are often glossed over. Recall that
computers use binary; what we write in this
paper as 34, say, may be represented inside the
computer as 100010 — and even then one would
search in vain to find anything that looks like
100010, as the 1s and 0s are represented as
electrical states, not as anything humanly
readable. Indeed, our habitual ways of talking
about numbers makes them look very easy, and
correspondingly makes it quite hard to grasp how
complex number entry really is.

A typical approach to converting keystrokes
to numbers is as follows.

The computer starts off with the number 0.
When a user hits a digit key, the number is
multiplied by 10 and the value of the digit (not
the key itself!) is added to it. So if the user
presses the key with the label ‘3’ on it then the
calculation 0×10+valueof(key3) = 3 is
performed, and then the computer has the
number 3. This may seem rather obvious and
perhaps a little complex for what it achieves, but
exactly the same process will work on the next
key too. If the user keys ‘4’ next, another digit
key, then the same process is repeated: 3×10+
valueof(key4) = 34.

In this example, as can be seen, the user keyed
‘3’ then ‘4’ and the computer determined that
they entered the numerical value 34. The process
is repeated so long as the user is keying digits.
Figure 1 shows the algorithm as it would be
written in a typical programming language.

many devices, the • is on a dedicated key. Some
electronics and program working together converts
the location of the key on the keyboard (and whether
SHIFT has been pressed, etc) to the ASCII or
Unicode for a dot. Programmers rarely concern
themselves with such details: in a normal program •
always looks like “.” Sometimes the program code for
converting keystrokes to codes is faulty, and then the
user experiences so-called key bounce problems, such
as ignored or extra keys seeming to be pressed.

30

The simple algorithm described above works
very nicely until the user keys a dot or DELETE,
or keys so many digits that the computer loses
track of the value of the large number intended;
then things get more complex and the algorithm
ceases to be so simple…

We will not pursue the elementary
programming details further in this paper.
Nevertheless it is interesting to note that when
the user has done nothing, the computer is
already thinking zero. However, nothing and
zero are not the same, and perhaps this confusion
— on the computer’s part — will cause what
may seem like user errors from time to time.
Here’s how:

Many devices display the initial number as
0.0, which may further confuse the user, as 0.0
cannot possibly distinguish between a user who
has keyed nothing, keyed zero, keyed a decimal
point, keyed a decimal point followed by zero …
and so on. To illustrate the problem: if a user
walks up to a device displaying 0.0 and keys 5,
the display could legitimately but unpredictably
go to any of these values: 5.0, 0.5 or 0.05. This
does not seem satisfactory for devices that are
used in safety critical environments, such as in
healthcare.

A user may make a slip when entering
numbers. Hypothetically, consider that they press
12••3. This is clearly not a number; it is not well-
formed. What does the program do? Does it treat
this as a “trigger squeeze” for some number or
other, or does it recognize it as an inappropriate
sequence of actions for number entry, and safely
lock it out?

If the computer’s number entry algorithm is
as trivial as the one sketched above, then the
program will get as far as 12 and then terminate
with 12.0 as the number, rather than an error.

Programmers rarely program number entry
code themselves: it is needed so often it is often
built-in so that there is a way of doing it
automatically.

Consider the programming language
JavaScript, which is one of the most widely used
programming languages, as it is used to script
web browsers. In JavaScript, keystrokes can be
converted to numbers automatically, and few
programmers worry about how this works
because it is so easy to do. Yet erroneous
sequences of characters are incorrectly
converted. For example, 1, 2, •, •, 3 is converted
to “12” — it is treated as a valid number, but is
given the wrong value.

JavaScript provides several ways to convert
sequences of keystrokes to numbers; for
example, the built-in routine parseFloat converts
the same string of characters 12..3 into “NaN” —
now it is treated as “Not a Number.” It is then up
to the programmer to check that NaN is not used
as a number in the rest of the program, as this
would cause knock-on problems.

Trying parseFloat on 1.2.3 gives 1.2. It looks
like parseFloat reads as much of a number as it
can make sense of, then returns that as the value
and ignores the rest. Indeed, parseFloat gives 0
as the value for 0m (where ‘m’ is some non-digit,
perhaps a letter) but gives NaN for m0.

In other words, JavaScript programs can try
to convert a sequence of user actions into a
number using any of the various built-in
mechanisms provided by the designers of the
language, and depending on how they do it, they
will get different results.

Sometimes JavaScript recognizes errors
(though it never blocks them), sometimes it
ignores the error and generates some sort of
number. Generally, JavaScript assumes errors
can propagate, meaning that some other part of
the program has to block NaN and do something
sensible, rather than treating NaN as some
number (maybe zero) or worse.

If the programmer chooses to handle numbers
explicitly themselves, different things may
happen again, especially considering the building
blocks of the language (including parseFloat) are
unreliable.

The keys of the computer or the keys of a
device are the triggers that make it do things. We
have shown that pressing some keys can trigger
the computer to work incorrectly. Conceptually
trivial, but a safety lock would only have to
block invalid number entry, and like a gun’s
safety lock, need not interfere at all with normal
— correct — number entry.

Many more examples of the problem are
given in [9], and some details of safety locks and
their effectiveness are also presented (though the

var n = 0;
key = getKey();
while(isDigit(key))
{ n = 10*n+valueOf(key);
 key = getKey();
}
return n;

Figure 1. Simple code to read a number

31

present paper introduces and motivates the term
‘safety lock’ itself).

4. Complex inter-twining

Our observations make clear that parsing a
number, which we’ve discussed thoroughly
above, displaying a number as the user enters it
and editing it are very different activities, and
their programming has to be very carefully
integrated.

Most likely many errors happen because the
overall properties of number entry are not
consistent: a DELETE key may delete a key but
not have a predictable effect on the parsed
number. We shall see various examples below of
this and other related problems.

5. Does it happen? Does it matter?

There have been no reports of mass incorrect
number entry on the web. People seem to pay
their bills correctly. So it seems like poor
programming is not a serious problem.

Suppose you pay your bills online and
accidentally enter an incorrect number, and you
either over-pay or under-pay your bills. You
probably say “oops,” and sort out the problem. It
seems you made a mistake, so you fix the
problem.

Who would think of complaining to the
designers of the programs they were using, or
even to the designers of the programming
language?

In complete contrast, the 1994 Intel processor
floating point problem was a cause célèbre
because an unusual error, that Intel initially tried
to dismiss as very unlikely, was easily
reproduced by everybody who cared to try it [5].
Even though virtually nobody needed to do the
particular sum, once people knew what the sum
was, they could reproduce it and see that the
result was incorrect. This undermined the
credibility of the processor, and Intel had to
retract and replace affected processors at cost.

In contrast, nobody has complained about
number errors, and nobody has said the Intel-
equivalent of “try doing 4195835÷3145727 with
these particular numbers as it will go wrong.”
[5][6] Perhaps if somebody said “try entering
1•2•3 and see what happens” would lead to
improvements in the quality of programming,
and force developers to introduce safety locks?

Whenever you use an interactive system that
accepts numbers, try entering 1•2•3 and see what

it does. Few systems, from Excel to
Mathematica, from infusion pumps to web
search engines, handle it correctly (see [9]).

Evidently, systems do not process number
entry errors dependably. Also, users seem not to
complain and not to notice. The next question,
then, is: does it matter?

6. Errors that happen and that matter

Syed et al [7] report an unfortunate medical
incident where a nurse entered the number 0.5
instead of 5, an error that led to respiratory arrest
(i.e., potential death) of a patient. In the paper it
is clearly assumed that the design of the device
used was correct: the device behaved as
designed, and its logs showed the nurse had
entered 0.5. Problem solved; nurse error.

Nurse A apparently entered a morphine
concentration of 0.5 mg per mL instead of 5 mg
per mL into the infusion pump; this is what the
device has logged. With the device initialized
with a concentration that is ten times too low, it
would naturally pump a volume ten times too
much of morphine into the patient.

The patient was finally dosed with 153 mg of
morphine. The then empty supply of morphine
caused the device to alarm, which led to another
nurse attending and detecting and correcting the
error. The full details of the incident are very
interesting and are beyond the scope of the
present paper — for example, nurse A also made
a separate error, which had the consequence of
delaying the impact of the morphine overdose.
Nevertheless, the patient arrested and the log of
the device showed a number entry error.

The paper reports that nurse A was uncertain
how to set up the infusion pump, and asked for
the assistance of a second nurse, nurse B. This
suggests that the human factors engineering of
the device was substandard or that the training of
the nurse was inadequate relative to the work
they were supposed to do. While the paper does
not make clear whether this was supposedly a
routine job for the nurse, it does make clear that
poor training for nurses was a contributory factor
to the error. One might more correctly rephrase
this as poor training relative to the complexity of
the device was inadequate. Presumably, prior to
the incident the complexity of the device and/or
the inadequacy of the training to enable nurses to
use the device effectively was not recognized by
management.

It is presumably beyond the scope of the Syed
et al paper to suggest it: but the manufacturers

32

simplifying and fixing their designs so they are
easier and more reliable to use would be more
strategic than retraining all the nurses that use the
systems. Or hospital procurement should avoid
purchasing systems that allow this sort of error.
If procurement checked whether systems had
safety locks, then eventually manufacturers
would provide better systems. In the meantime,
we note that it is surprising that manufacturers
continue to design systems with trivial faults; the
expertise to make them properly is readily
available if they want to make use of it.

The user apparently made a number entry
error. The infusion pump involved, an Abbott
Lifecare PCS Plus II Infuser type 4100, does not
have number keys, but has “increase” and
“decrease” buttons. Nor does it have a decimal
point. This reduces the number of keys (numbers
can be entered with 2 keys rather than 11) and
perhaps makes the device look simpler, but it
inevitably creates modes — for example, which
digit (units, tens, etc) is being increased or
decreased when pressing up or down buttons? Or
is a value increased and decreased, and any digit
in its decimal representation might change (e.g.,
going from 99 to 100 in one button press changes
3 digits simultaneously)?

Does the rate of increase change the longer
the relevant button is held down (typically, the
first press increments by 0.1 and if held down
longer increments by 1 then by 10)?

Every mode a user interface has increases the
chance that the user mistakes the mode the
device is in, and hence makes errors.

The paper indicates that the infusion pump
was set to a default setting of 0.5, and it suggests
(but does not make sufficiently clear) that nurse
A selected 0.5 rather than entered it explicitly. It
appears the device was set up so that 0.5 is the
initial value, and the user would then increase or
decrease it to the desired target value.

If so, there are various ways to explain the
error, including the following:

• A single key press error could have
caused the error; the keying error may
not have been noticed by the nurse. We
note that the device does not beep when
keys are pressed, thus making it hard to
keep track of which buttons work.

• Misreading the display as 5 would mean
the nurse would accept it with no further
action required.

Another problem (described in the paper) is
the device has an out-of-range check, which
should have helped protect the patient. If a dose
is to take longer than 4 hours, this is blocked.

Unfortunately, entering the wrong
concentration need not make the infusion of the
drug take longer. It appears the device does not
check concentrations (or the calculated drug
delivery rates that are functions of the
concentrations).

7. Other scenarios

We have discussed in some detail ways in

which the nurse error may have been induced by
device design. We know that other number errors
cause incidents in healthcare and that the
infusion pump involved in the story above is not
the only style of pump. In general, then, there are
other potential sources of number error.

We now briefly consider other ways the
number entry error could happen (on a different
device) using numeric keys rather than
increase/decrease keys.

(1) We’ve already considered a simple
possibility above. Assume that a • has already
been pressed (perhaps some time ago, or by
accident), but the display will show 0.0, which is
also what it would display if • has not been
pressed. (The standard initial display of 0.0 does
not tell a user whether • has already been
pressed.) If nurse A now presses 5, the value
entered is 0.5 even though the nurse expects it to
be 5.0 — based on the fact that on many
previous occasions, pressing 5 when the device
shows 0.0 has got it to 5.0.

(2) Laura Gosby has pointed out that many
devices have a fixed position for the decimal
point, but digits move right-to-left as they are
keyed. So many devices display 0.0 as their
initial display. As a user presses 123 in that
order, the display would change successively
through 0.1, 1.2, 12.3. (Cash machines/ATMs
often work like this.) In this scenario, nurse A
simply presses 5, thinks they have pressed 5, but
the device would treat it as 0.5, the wrong value
and out by a factor of ten.

(3) Perhaps nurse A keys 0••. This is a simple
slip: 0••5 is not the start of a well-formed
number. Nurse A recognizes this error, and
presses the DELETE or CANCEL key to correct
the erroneous keystroke. On any sensible device
(like Microsoft Word) pressing •• DELETE has
the meaning same as • alone.

33

However, most medical devices do not keep
track of how many decimal points a nurse has
keyed: a number either has no decimal points or
one. So 0•• is recorded by a device as 0• with
only a single decimal point. But then nurse A
presses DELETE to correct the error. The result
will be as if the nurse pressed 0, not 0•, because
effectively both dots keyed by the user have
gone. Next, nurse A presses 5, and the device has
got 05 as the number entered, presumably equal
to the numeric value 5, yet nurse A believes they
have entered 0.5.

This is a tenfold error (but, as it happens, in
the wrong direction for the specific Syed et al
scenario). Nevertheless it illustrates how a user’s
reasonable expectations (learned from other
familiar systems like word processors) may be
seriously undermined by poor programming.

(4) Another possibility is that the device
initially displays 0.0, and as the user keys in
digits and dots, the display updates. The nurse
keys 5, and the display shows 0.5; if the nurse
continued and keyed 0, the display would update
to 5.0, as the 5 “scrolls” to the left. Who knows?
But this is a plausible way that nurse A thinks
they have keyed 5, but the device logs 0.5.

(5) The nurse keyed • by mistake as their first
key press, and noticed this slip. The nurse hit
DELETE but the delete did not work, perhaps
because the nurse did not press the key hard
enough. Keying the digit 5 next would have led
to the device treating the number as 0.5, not as 5.

(6) Another, sadly common, possibility is that
the device has timeouts. The nurse presses 0• and
then is maybe distracted for a few seconds
(perhaps to say something or attend to the
patient) then continues by pressing 5. The nurse
knows they pressed 0•5, but the device timed-out
after the • and ignored it. The nurse has, so far as
the device is concerned, entered 5.0.

(7) On devices with up/down keys, the
up/down keys may change the value displayed
by 0.1. The user pressed UP and the number
being entered cycles via 0.9 to 0.0 (or 0.1),
because some other operation is required for UP
to increment units and tens digits. On seeing the
number reach 5, the nurse may have thought “I
have increased the number, and it has changed to
5, therefore I have finished.” Unfortunately, this
is also a misreading error: the number is 0.5,
even though the nurse saw it increase from 0.5 to
0.6, 0.7… etc. This error would be even more
likely if the user interface accelerates the rate of
change the longer UP is pressed.

(8) We know that the infusion pump involved
uses 7 segment digit displays. A display of 0.5
(which was selected) rather than 5 (which should
have been selected) may easily have been
misread, as decimal points in 7 segment displays
are not very salient. Possibly the decimal point
was faulty; possibly the machine was positioned
so the dot could not be seen because of parallax.
Possibly 0.5 is displayed as 05, with a slightly
smaller decimal 5 but no decimal point at all.

(9) The hypothetical scenarios above were
limited to the specific 0.5 or 5.0 confusion,
though they obviously generalize to other values,
such as 0.1 and 1.0 confusions. The literature
explores many other forms of numerical
confusion — for example, Johnson et al [3] show
how keying 135•0 can be taken as 1,350 because
the device gratuitously ignores decimal points on
values larger than 100. Cairns and Thimbleby [8]
show how keying 10•5 gets 10.5 but 100•5 gets
1,005 on the Baxter Colleague. In these two
examples, the device’s handling of • depends on
contingent modes that may not be, and probably
are not, obvious to the user.

(10) All the hypothetical examples above
assume the user made a slip in the operation of the
device. The solution to these sorts of problem are
better device design and/or better user training.
(We prefer better device design, since users will
eventually make slips regardless of their training.)
A different possibility is that the user intended to
enter 0.5, but by mistake. Perhaps the prescription
was misread? Perhaps there was a smudge before
the 5 that was misread as a •? Perhaps if the dose
had been written as 5•0 it would have been less
likely to have been misread as 0•5? Most probably,
if the training of everybody was that . is never
written when • is intended, the (hypothetical)
misreading would me far less likely.3

3 A user may intend to make a mistake, for example knowing
perfectly well what the correct dose is; this is then a violation.

Written around 1790BC, the Code of Hammurabi
says things like, “If a builder builds a house for
someone, and does not build it properly, and the
house falls down and kills its owner, then the
builder shall be put to death.” Likewise, today’s
programmers should be plugged into their
devices: not only is it a deterrent for bad
programming, but if the programmer is killed by
their own bad programming, they won’t have any
children. Eventually evolution will take care of
improving programming standards…

Figure 2. Updating the Code of Hammurabi?

34

Sadly, these ten hypothetical scenarios (in
addition to the ones possible on the actual device
involved in the incident, which we described
earlier) are all plausible: user interfaces are often
badly designed, and it is all too easy to imagine
the errors not being blocked by safety locks.

In summary, there are many hypothetical
ways that a device can log an apparent “user
error” which has been induced by design, not by
unreasonable behavior on the part of the user.
Logs should at least record the exact keystrokes
the user performed and their timings, not the
final value the device somehow works out,
perhaps erroneously, from the keystrokes.

• Device logs should allow investigators to
distinguish between different possible
causes of error.

One can infer in the Syed et al case that the
device log was not sufficiently clear to suggest
alternatives other than “obvious nurse error” to
the authors of the paper.

8. Discussion

The list of possible causes of error is not

intended to be exhaustive, nor are all possibilities
suggested equally likely on the particular device
at the centre of the reported case. The point is to
raise a variety of ways in which the absence of
safety locks can cause problems. Almost
certainly one or more safety locks on the device
in question failed or, more likely, were never
designed into the device.

Sadly, without more detailed information (of
the device condition and set up, including default
values, and of the incident itself) one can only
speculate as to the specifics.

The Syed et al paper mentions documented
cases of concentration errors made before on the
same device. Evidently, concentration errors are
well known and encountered relatively often.
One wonders whether there is a systematic
reason for this class of error other than
independent human error. The unvarying
common factor in all the errors is the device (and
its design).

The paper says,
“While the primary error involved incorrect

programming4 of the PCA5 pump.”

4 Programming: i.e., the sequence of keystrokes
performed by the nurse, not programming as in the
software programming of the device.

We would beg to disagree. The primary error,
in our opinion, lies in the design of the device.
Moreover, fixing the design would solve many of
the paper’s recommendations, such as improved
training. Why have better training for something
that is over-complex, as it would be more
strategic to improve the device — and
reprogramming the device (e.g., in a firmware
update) could be done without any training costs.

The Syed et al paper makes six
recommendations, including better nurse training
(they do not mention that perhaps prescriptions
should be written out more carefully, which
would be an issue of pharmacy or consultant
training).

None of their recommendations cover better
procurement of devices (why are bad devices
purchased?) nor better design of devices (why
are bad devices designed in the first place?) Nor
is there any explicit learning from the
investigation that might lead to better device
design.

Although the paper was written from a
medical perspective, from our point of view, like
many if not all such papers it is too vague about
the design and use of the device. The assumption
is that the nurse made the error, not that the
device induced or contributed to the error.

9. Conclusions

Syed et al is only one paper, but its concerns
and approach are not unusual [1]. There was a
medical mishap, and the paper makes it clear that
this error was not a one-off event for this device.
The healthcare implications are discussed.
Maybe there will be some management changes.
Design was not criticized in detail, except
tangentially in mentioning a human factors paper
that shows that human factors can reduce error
[4]. The paper leaves unexplored whether human
factors redesign would have avoided the problem
discussed.

In summary:

• Many devices have no safety locks in
number entry;

• Number entry errors may cause
significant problems;

5 PCA: patient controlled analgesia; i.e., an infusion
pump with features for the patient to have some
control over their drug dose.

35

• Analyses do not discuss details of use in
sufficient detail to be certain of relevant
design factors;

• Although human factors can improve
performance and safety, no connection is
made between particular incidents and
general solutions.

Although the present paper has concentrated
on number entry (because of its familiarity,
clarity and ubiquity), there are problems with all
forms of user interface. Number entry is, for the
sake of exposition, merely easier to demonstrate
as flawed.

Machine guns are dangerous, but they are
made considerably safer without compromising
their effectiveness by having safety locks. Now
imagine this: there is a machine gun available on
the international market without a safety lock. I
think we would all know about it: films would be
made of exploits with it!

Now imagine that somebody has been shot by
a machine gun, but nobody mentions that the
machine gun involved has no safety lock. If a
gun has no safety lock, it would be likely to be
mentioned in any accident investigation. Yet
nobody mentions it. For some reason, people are
not thinking about it.

Bizarre with guns, maybe, but the story
implies nobody is familiar with safety locks
when it comes to programming and complex
devices like hospital infusion pumps. Nobody
notices safety lock absence. This paper has
argued, as is more obvious with small arms, that
safety locks in programming could lead to lives
being saved. Elsewhere [9], we’ve shown they
could halve mortality.

The need for safety locks on machine guns
can be easily and dramatically demonstrated.
Imagine there is no safety lock: press the trigger,
and the gun sprays bullets …and the gun’s recoil
creates chaos…

Without a safety lock, a gun is clearly lethal.
Guns have the advantage, both for the rhetoric of
this paper and in reality, that there is a very small
psychological distance between pressing the
trigger and a dangerous bullet emerging noisily!

With any other device, try entering 1•2•3 (or
make some other keying error) and see what
happens. Sadly, patients with an avoidable
overdose of morphine die quietly without any
noisy drama.

10. Acknowledgements

This work was funded by EPSRC grant nos.
EP/G003971/1 and EP/G059063/1. The author is
grateful for discussions with Chitra Acharya,
Paul Cairns, and Laura Gosby.

11. References

[1] Blandford, A, Buchanan, G, Furniss, D,

Curzon, P, Thimbleby, H. Few are Looking:
Invisible Problems with Interactive Medical
Devices, Workshop on Interactive Systems
in Healthcare (WISH) in press, Proceedings
ACM CHI 2010, Atlanta.

[2] Cormen, TH, Leiserson, CE, Rivest, RL,
Stein, C. Introduction to Algorithms. 3rd
edition. MIT Press, 2010.

[3] Johnson, TR, Tang, X, Graham, MJ, Brixey,
J, Turley, JP, Zhang, J, Keselman, A, Patel,
VL. Attitudes toward Medical Device Use
Errors and the Prevention of Adverse
Events, The Joint Commission Journal on
Quality and Patient Safety, 33(11):689-694,
2007.

[4] Lin, L, Vicente KJ, Doyle DJ. Patient
Safety, Potential Adverse Drug Events, and
Medical Device Design: A Human Factors
Engineering Approach. Journal Biomed
Inform 2001, 34: 274-284.

[5] Moler, CB. A Tale of Two Numbers,
MATLAB News and Notes 1995, 10–12.

[6] Soderquist, P, Leeser, M. Area and
Performance Tradeoffs in Floating Point
Divide and Square-Root Implementations,
ACM Computing Surveys 1996, 28(3):519-
564.

[7] Syed, S, Paul, JE, Hueftlein, M, Kampf, M,
McLean, RF. Morphine Overdose from
Error Propagation on an Acute Pain Service.
Canadian Journal of Anesthesia 2006,
53(6):586-590.

[8] Thimbleby, H. User Interface Design.
Addison-Wesley, 1990.

[9] Thimbleby, H, Cairns P. Reducing Number
Entry Errors: Solving a Widespread, Serious
Problem. Journal Royal Society Interface, in
press, 2010.

36

