Experiences of ‘Literate Programming’ using cweb

(a variant of Knuth’s WEB)

H. THIMBLEBY

Department of Computer Science, University of York, Heslington, York YOI 5DD, United Kingdom

Cweb is a literate programming system for the programming language C. Experience developing and using it forms the

basis of this paper, the purpose of which is to:
@ support Knuth’s enthusiasm for literate programming;

® discuss developments in literate programming support, both within the current framework of cweb and to interactive

graphics support;

@ discuss the implementation issues, considering cweb as part of a simple IPSE (Integrated Project Support Environment);

the conclusions for IPSEs appear pessimistic.

Received November 1984

1. INTRODUCTION

After hearing Donald Knuth extol his literate program-

ming system, WEB? 8, T decided to implement a UNIx*

version of it, which came to be called cweb. Cweb is

a tool to facilitate high-quality program documentation

in a combination of C (the programming language) and

troff (a text-formatting language).

In principle, literate programming is not language
dependent; it is a system for annotating and decomposing
formulae of various kinds so that the formulae are
recoverable. Means are also provided to format the
combined annotations and formulae to a high standard
of presentation and to provide derived cross-reference
information. The idea has a wide range of application:
® for commentaries on classical literature, e.g. on

Virgil’s Aeneid;

o for multi-lingual commentaries on computer pro-
grams — see the Japanese translation of Knuth’s
paper® by Toshiaki Kurokawa?;

o for formal commentary on programs, e.g. combining
programs with their specification;

o for informal commentary on programs, e.g. books
about programming;

e for annotating a formal record of an interactive
session — see section 7.1 below.

In cweb the formulae are C programs and the annota-
tion is free natural language text; cweb is thus a notation
to associate C program code and its documentation as
closely as possible, and a system which can convert this
interleaved description into either program source or to
documentation annotating the source. The source code
generated is, of course, directly acceptable to the C
compiler. The combined code and documentation can be
processed and possibly typeset to result in a high-quality
presentation including a table of contents, index,
cross-referencing information, and due regard for
typographical conventions (such as bold fonts for
reserved words). The result is called a ‘literate program’
because the final document is not only readable, but may
actually be appreciated as literature for humans. Literate
programming changes the programmer’s perspective
from programming for a machine to explaining to other
people (peers, students or examiners!) what he intends the

* UNIX is a trademark of AT&T Bell Laboratories.

machine to do. The main concern of the programmer,
hopefully, becomes excellence of style and exposition. To
help make the exposition clearer, literate programming
systems enable the program to be written down in an
order and with a structure (or ‘web’) that is most
comprehensible rather than strictly obeying the topolog-
ical laws of the underlying programing language. In fact,
the web mechanism is a static alternative to procedural
abstraction in the programming language which enables
fragments of code and documentation to be abstracted
and related. Cweb differs from Knuth’s WEB system
mainly in the choice of languages: WEB is based on
Pascal and TgX rather than C and troff/nroff. In
addition WEB provides a few extensions to Pascal (e.g.
a more flexible identifier syntax) which are partly or fully
available in standard C.

After I had been working on cweb for a short time,
Knuth sent me the literate program for his system.
Although it was written in an awkward subset of Pascal
(in order to be portable) and running into 173 pages, I
actually enjoyed reading it and I felt had a good grasp
of its inner workings after only a few hours. I wanted to
see if I could achieve the same results with C.

Cweb was designed on the following principles.

(1) It should provide simple but sufficient facilities for
literate programming but should not enforce particular
styles of programming. In particular, any previously valid
C program text should be handled correctly.

(2) It should permit the programmer maximum
control over the format of the documentation but should
provide sensible defaults so that it could be used to the
full without the programmer ‘going into’ formatting as
an end in itself. It is assumed that C programmers are
probably prejudiced in favour of a constant-width font
(such as used in Kernighan & Ritchie®), but an Algol
publication-like presentation (italic identifiers, strings
with explicit spaces, bold reserved words. ..) should not
be precluded. A discussion of the presentation of source
code can be found in Baecker and Marcus.!

(3) There should be few automatic features: the
programmer should get exactly what he asks for. This is
to facilitate programmers experimenting with styles of
literate programming and requiring explicit control over
the system. All of the automatic features actually
provided by cweb are orthogonal and can be controlled
independently.

THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986 201

0TO0Z ‘2T AINC uo easuems sajepn 1o Alsianiun e 6o sfeulnolpiopxo’juliody/:dny woly papeojumoq

http://comjnl.oxfordjournals.org

H. THIMBLEBY

(4) Finally, although it was recognised that cweb
would be a transitional tool in the sense that what was
learned from its use would inevitably lead to its eventual
obsolescence, it should be implemented thoroughly. The
interesting design issues in cweb are related to human
factors and details of ‘feature integration’ — the actual
implementation is relatively trivial. In design one learns
only to the extent that attention is paid to detail. Thus
cweb is a full production implementation, in the hope of
exposing as many design issues as possible.

Asusual, the original aim for elegance was compromised
in order to achieve sufficiency without interfering with
existing practice. It should have been no surprise to
rediscover the system design rule

Generality increases sublinearly and complexity increases

superlinearly when combining unrelated systems.

This paper reports on my experience of trying to
implement a good idea in what turned out to be a most
tortuous environment — C, troff and UNix. Cweb barely
qualifies as an Integrated Project Support Environment
(IPSE) but it is surely a plausible part of an IPSE, in the
sense that an IPSE might hope to integrate documentation
and program code, so I hold out even less hope of success
for more ambitious attempts at IPSEs that integrate
existing tools (such as general-purpose programming
languages, databases and so on). Notwithstanding these
difficulties, literate programming deserves greater atten-
tion, and later parts of the paper explore possible
developments.

2. HOW CWEB WORKS
2.1. Basic notation

For explanatory purposes it is easiest to think of cweb as
a conventional macro processor. Given a file of
interleaved documentation, macro definitions and calls,
cweb can be asked to evaluate the macro calls (and
produce source code for a compilable program) or to
translate the same specification into input to a text
formatter so that the program and associated documen-
tation are presented as usefully as possible.
A macro definition has the form:

@< name @>= body

body is terminated implicitly at the start of the next
section of the web specification (g.v.). The same syntactic
form may be used subsequently to append to the hody.
The choice of ‘@’ ‘and the symbols ‘@<’, ‘@>="1is
arbitrary: merely that they do not occur naturally in C.
A macro call has the form:

@< name @>

When code is produced, each call is textually replaced
by the corresponding body, or code bodies concatenated
in their original order if there was a series of definitions.
To make cweb easier to use, macro calls may occur before
and after definitions, without regard for definition before
use. Macro names are arbitrary length and may be
abbreviated by appending ‘....°. Abbreviation may be
used before and after a full occurrence of a name. Note
that the abbreviation mechanism is decoupled from the
definition mechanism, in the sense that definitions of
macros need not use their full names. In addition, white
space (sequences of spaces, newlines, tabs) in names
compare equal, so cweb is relaxed about the layout of

202 THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986

names. As will be seen shortly, names may contain
embedded C code for expository purposes.

Documentary structure is introduced by defining
macros in units called ‘sections’. A section has two parts,
documentation and code in that order, and may take one
of two forms:

@ @
documentation documentation
@< name @>= @c

code code

In either case, documentation or code parts may be
omitted. The section on the right is ‘unnamed’, its code
is appended to the initial text which forms the basis of
the source code: the code of an unnamed section is treated
as if appended to the body of a single anonymous macro,
the body of which is actually the source code corre-
sponding to the web specification.

The C language allows programs to utilise source code
from existing files (using the #include’ mechanism),
frequently to gain access to library or other definitions.
Cweb has an orthogonal feature whereby macro bodies
can be placed in named files which can then be re-used
with an ‘include’ directive. This allows, for example,
global definitions to be written as near to their associated
operations as wished (e.g. for documentation purposes),
but for the actual code to have more extensive scope
because, once placed in a separte file, it can be included
many times over elsewhere. To achieve this, a macro
name may be given a quoted prefix in the form
‘" file-name ™. The body of the macro is then written on
to the named file. This is the effect, but the implementa-
tion of the write is arranged to minimise actual changes to

" the file and to permit several macro bodies from diverse

cweb source files to accumulate within the same file. It
works as follows. Cweb searches the named file for macro
bodies from the current cweb source file (the one
defining the macro). Cweb will then only update the file
if the macro body is new or changed. All other text in the
file is left unaffected. Finally, this form of macro other-
wise behaves normally, and it may be appended or
invoked as any other.

So far in the explanation, cweb really provides no more
than a convenient macro processor with features for
commentary and features which facilitate restructuring
the program with respect to the order and distribution of
definitions and calls. The second function of cweb is to
take the same specification and present it aesthetically, as
a work of literate programming complete with the
trimmings of a significant work of literature: table of
contents, cross-references and indices. Cweb processes the
same specification and produces code to drive a text
formatter, which in turn can drive a line printer,
phototypesetter or other hard-copy device. In this mode
cweb therefore takes full account of font details, such as
italics for variables, bold for reserved words and so on.

Two main extra features for hard-copy presentation of
the literate program are: first, a heading to introduce a
major section of a program

@* heading
documentation

This heading will later appear in the table of contents.
And second, a notation for flagging code in documenta-
tion, comments and macro names, so that it may be

0TO0Z ‘2T AINC uo easuems sajepn 1o Alsianiun e 6o sfeulnolpiopxo’juliody/:dny woly papeojumoq

http://comjnl.oxfordjournals.org

‘LITERATE PROGRAMMING’ USING CWEB

formatted using the same typographical conventions as
code elsewhere. Thus in documentation any text between
dollar signs is formatted with the same conventions as
other program code, but it does not contribute to the
executable program code. (Again, ‘$’ is an arbitrary
symbol.) Any text formatted as code, whether or not
ultimately executable, is automatically scanned for
identifier uses to make index entries.

2.2. Small example

Given the cweb specification fragment:

specification

@* Maths Functions
We define a function $exp(x, y)$
to return x to the power y.
@c
long exp(x, y)
{ long z;

@<Check y is positive@>

return z;

}
@ @<Check $y...@>=
if(y <0)
error

Troff is capable of formatting x¥, so one could achieve
‘We define a function...to return x¥’ using suitable
commands, but the fancy superscript notation would
distract from this example. As it stands the example
would produce the following output when run through
cweb, then formatted by troff:

Sformatted output

12. Maths Functions. We define a function exp(x, v)
to return x to the power y.

long exp(x, y)
{ long z;

{Check y is positive 13)
return z;
}
13. {(Check y is positive 13) =
if (y <0)

error. ..

This code is used in section 12.

The following C code might be produced from the same
specification. The lines starting * #11ine * are compiler
directives added by cweb so that any compiler diagnostics
would refer back to the correct line (and section number)
in the original cweb source file, which we assume here
was called ‘mathlib’. Unfortunately the diagnostics will
still be rather cryptic (what is ‘sec. 13 in 12 mathlib’?)
because the compiler cannot handle longer strings in this
context: the line-numbering compiler directives were
originally intended for more modest applications.

code output

#line 237 "sec.1l2 mathlib"

long exp(x, y)

{ long z;

#line 244 "sec.13 in 12 mathlib"
1f(y <0)

error ...

#line 240 "sec.12 mathlib"

return z;

}

2.3. Additional features for controlling format

Unlike WEB, cweb does not pretty print by changing the
layout of programs (e.g. using an algorithm such as the
one presented by Oppen'!). In cweb it is assumed that
the programmer has access to a display editor, and the
program layout he chooses is the preferred one anyway.
(Actually, troff is not as general as TgX, and pretty
printing cannot be specified in terms of device parameters
such as line length.) But the fonts used in formatting need
not be constant pitch, and the layout the programmer
wants may not be retained exactly in the formatted
version. Cweb provides ‘alignment’ markers (or ‘self-
setting’ tabs) such that all nth alignment markers ‘@n’
within a particular section are aligned vertically when
finally formatted. An example:

specification

#define SPACE@1 ' '
#define TABQ@1l '\t'
#define NEWLINE@1
case SPACE:

case TAB:

case NEWLINE:@3 continue;

case '-':

case '+':@3 sign = c;@4 break;
case '.':@3 dot = true;@4 break:
default:@3 @<error@>

l\nl

Jormatted output

define SPACE
define TAB A\t
define NEWLINE "\n"’

case SPACE:
case TAB:

case NEWLINE: continue
case ' — :
case '+ :
case " .
default:

break ;
break ;

sigh = ¢;
dot = true:
{error 42>

THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986 203

0TO0Z ‘2T AINC uo easuems sajepn 1o Alsianiun e 6o sfeulnolpiopxo’juliody/:dny woly papeojumoq

http://comjnl.oxfordjournals.org

H. THIMBLEBY

Here, all the code to the right of the colons is aligned
despite the varying widths of the case constants, and the
two breaks are vertically aligned over each other. There
need be no horizontal relationship between the different
numbered alignment columns, except that in this case
‘@4’ is somewhat to the right of *@3°. This alignment
mechanism is an obvious candidate for automatic
specification (which could easily be done using an
attributed grammar to place the ‘@#°), but by adherence
to the present design principles this has not been
attempted. Additional explicit control of fine spacing is
provided by codes which insert small spaces and by a
‘literal’ notation which permits the embedding of
arbitrary troff control code within C text.

As troff is rather basic, eweb also provides full control
over font correction, to avoid certain printed characters
being awkwardly spaced or even colliding when, say, the
ascender of an italic letter (like ‘f”) leans towards an
upright character (like a bar, ‘|").

The few remaining features, which need not be
discussed in detail here, assist the programmer in
constructing cross-references, controlling fonts, contribu-
ting to a more helpful index, and so on.

3. THE RELATION OF CWEB TO MODULAR
PROGRAMMING

A macro-processing isomorphism was used to explain the
operation of cweb above. Equivalently it is possible to
view cweb as introducing a notation for statically invoked
procedures with dynamically bound free identifiers.
Intentionally, cweb does not restrict the procedure body
to ‘sensible’ or even well-formed categories. Dynamic
binding has often been criticised on the basis that it
reduces program clarity (e.g. Tennent!®), particularly
because all local identifiers are implicit object
parameters to procedure invocations. Thus local or
private information may be subject to unintentional
corruption in other components of a program. Also for
a language which uses dynamic binding for run-time
invocations, this form of privacy invasion cannot be
detected statically in general. Cweb does not suffer so
seriously, for two reasons. First, a distinctive notation is
used for invocation of procedures with dynamically
bound free identifiers. Secondly, the invocation is static,
and so type and other security checking can be performed
statically.

But dynamic binding provides a significant benefit
which is an especially important contribution to
structuring developing programs: the hierarchal structure
of the invocations of these procedures is semantically
transparent. Thus the programmer is free to restructure
the program without transforming its text in any other
way. This is very important if the program is being
documented, or the existing documentation is being
refined. New, clearer ways if structuring the program may
occur to a programmer as he documents, and he can make
quite radical changes — moving code between cweb pro-
cedure/macro definitions and their invocations — without
risking modifications to the existing code.

For these reasons it is not anomalous that cweb
procedures do not have explicit parameters. If they had,
changing an explanatory abstraction and its documenta-
tion might entail changing code, which might not be
achieved without introducing errors. However, in

204 THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986

Marneffe and Ribben’s related ‘Holon Programming’
system'’, the so-called holons (which correspond to
our macros) could have explicit parameters. Then after
analysing the web and flow of control, their system chose
open or closed replacement for invocations.

The special notation used for a procedure invocation
permits an arbitrary length and much more explicit name
for a module than would be possible within the identifier
micro-syntax of the programming language. The name-
abbreviation mechanism is to encourage the use of
sensible names which might otherwise be far too tedious
to type in full at each occurrence in the base programming
language. Indeed, names (being treated as documentation)
may refer to identifiers and language constructs explicitly
without difficulty, using the ‘$’ notation.

4. THE BENEFITS OF LITERATE
PROGRAMMING

The initial impression of cweb is a hacker’s paradise,
emphasised by the use of brief messy keywords like
‘@*’, but experience with cweb does not bear this out.

Cweb allows the programmer to interleave documenta-

tion and program with considerable ease. The important :

point is that the (trivial) notation to support this is
unobtrusive: if documentation (or even commentary) is
going to be written anyway, the ‘keystroke’ overhead of
using cweb is negligible.
Here are more points in cweb’s favour:
® The effect of expounding about a program (as in
lecturing) is to point up deficiencies. Any omissions
become apparent and program quality improves.
Cweb also motivates by making documentation
pleasing to the eye, and by providing indices and
cross-references. Cweb provides much more incentive
to ‘document-as-you-code’.
® When documentation and program are as closely
coupled as they are in cweb files, they are very much
more likely to be consistent with each other. When
programs are developed on-line, or even typed-up
from paper notes, the ease of dropping into docu-
mentation encourages the programmer to express
his intentions fully. If a source file is edited, perhaps
to refine a program fragment, the relevant documen-
tation is readily brought up to date at the same time.
Thus cweb encourages both full and consistent
documentation.
® Because cweb permits full access to troff, documenta-
tion can make full use of the typographical
capabilities that come with troff and its various
support tools for setting equations, tables and
diagrams. In particular, mathematical statements can
be formatted using proper symbols. Less obviously,
cweb can also be used to make stylistic adjustments
to the program, for example to cause a C identifier
name ‘NIL’ to be printed as the greek letter ‘¢’
throughout. (The same tricks can be used to
compensate for grotty line printers which cannot
distinguish letter ‘1’ from digit ‘1°.)
® A language such as C requires declarations (and other
syntactic categories) in particular order, and external
functions not returning integer values require dec-
laration before use, etc. Cweb largely overcomes
this problem. Also, definitions (including C macro
definitions) which are required in common header files

0TO0Z ‘2T AINC uo easuems sajepn 1o Alsianiun e 6o sfeulnolpiopxo’juliody/:dny woly papeojumoq

http://comjnl.oxfordjournals.org

‘LITERATE PROGRAMMING’ USING CWEB

may be declared close to their use, and cweb will
maintain the header files.

Cweb is particularly useful in the implementation
stages when following a system design methodology;
it automates the construction of a linear C program
from an arbitrarily nested abstract specification (the
web). If the system structure has not been fully refined,
cweb is able to produce an executable C program
for testing and development purposes: if undefined
modules are used, cweb substitutes a call to a C
procedure which can be used as an executable stub.
If the system structure is ill formed (e.g. recursive),
cweb produces helpful documentation with appro-
priate diagnostics.

If one writes a routine to perform some task 7, by the
time error checking, diagnostic generation and error
recovery have been included the routine to do T
appears to be an error routine, with 7 occupying
maybe 59, of it somewhere at the bottom. So a good
programmer omits or curtails the checking to ensure
that the routine looks as if it does 7. Cweb provides
a notation to make the error checking take one
statement, so the programmer is more likely to do
both it and T properly.

Cweb allows the programmer to modify comments,
documentation, indentation, even the entire web
structure without causing the code file to be updated.
This means that if make (a UNix ‘least effort’
program configurer) is being used to construct
programs, make will only recompile a code file after
a direct change has been made to the code in the
corresponding cweb file. This is, of course, very
helpful when editing header files which are included
in many C files. Without this help, even editing a
comment in a header file would necessitate recompil-
ation of all code files depending on that header, or at
least entail some administrative burden.

Even if C is used conventionally and then cweb used
subsequently, the program quality is likely to
improve, not least because the C code will be reviewed
as documentation is added. Several programs which
have been modified for cweb have had bugs uncovered
and fixed as descriptive abstractions were introduced.
No other known documentation method could have
such a profound effect. Usually documenting a
program is so tedious anyway that either the
documentation ends up being full of half-truths or, if
true, half full of bug warnings.

To produce C and troff files, cweb takes about
one-sixth of the time of their respective processors, cc
and troff. This is negligible. Future versions could
easily improve on this figure.

The programmer can code in sensible chunks (e.g. a
dozen or so lines at a time) without worrying about
the run-time overheads of the chunking mechanism.
Psychological considerations were some of the
primary motivations for one of the direct precursors
of literate programming?8.

There are many incidental advantages too numerous
to mention here; for example, commented-out C code
is hard to mistake as executable because it is
formatted differently.

Of examples which could be given of cweb-in-use,
perhaps the most encouraging is the improvement in
the presentation of student projects which have

involved considerable programming effort. In the past
program listings were submitted for examination as
subsidiary material, which was usually extensive,
superficially homogeneous and disorganised in com-
parison with the written project report. The project
report would also contain extensive reference to the
program and often laborious internal documentation.
Those students who have used cweb have presented
informative programs integral to the project report,
and the previously tedious internal documentation is
in one place and is easier to mark.

o Finally programs (as works submitted to machines
rather than to humans) are not covered by the British
1956 Copyright Act. But works of literary merit are,
and it is possible that a literate program would have
a much stronger claim to copyright protection than
a conventional program which, in law, is not
specifically intended for human appreciation.

5. THE DISADVANTAGES OF LITERATE
PROGRAMMING

The most subtle disadvantage of cweb complements one
major advantage: because it motivates programmers to
document their programs, programmers will be more
egoistic about their programs. This will result in all the
problems which Weinberg illuminates so well®. We
also found a reluctance to write corrections on typeset
documents; a typeset document presumably looks far too
good to be wrong. .. however, cweb can produce output
for line printers which do not have this drawback. But
the immediate disadvantages of cweb are not in the
obvious effort in learning an extra system (which is surely
compensated for by its advantages), but in learning - or,
worse, by being accidentally caught-out by - arbitary
conventions and the normally helpful default behaviour
of cweb, which is intended to ease its integration with
other program tools. It is unfortunate that a user of cweb
may be affected by consequences of the curious
conventions of a software tool he has no intention of
using.

Cweb produces C source, which includes compiler
directives to ensure programming errors are reported in
terms of the line numbers and sections of the original cweb
source file. (Because of the unintegrated nature of UNIx
programming tools, the compilers produce diagnostics
with line numbers, which the programmer must re-
member himself and then use explicitly with an editor
to locate the offending lines.) Providing line numbers and
sections is the default, but at least one source-code tool
cannot handle these ‘helpful’ directives, so a flag is
available to the cweb user to request less informative but
more portable directives. This is a feature which need only
be learned by those programmers using that particular
source tool, but it is not an intuitive feature which a naive
programmer would expect to exist when he first
encounters the problem, not already knowing of the
facility.

Another example relates to the fact that the C
preprocessor implements both these line-number direc-
tives and a macro-processing facility of its own. In
principle cweb can define bodies for these preprocessor
macros, but the preprocessor cannot handle the nested
line-number directives inside its own macro definitions!

THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986 205

0TO0Z ‘2T AINC uo easuems sajepn 1o Alsianiun e 6o sfeulnolpiopxo’juliody/:dny woly papeojumoq

http://comjnl.oxfordjournals.org

H. THIMBLEBY

The arbitrariness and especially the unrelatedness of these
quirks makes cweb much harder to learn.

Other examples could be given; they are all terribly
arcane, and so far as I can see unavoidable in principle,
at least while C, troff and the other tools as given are fixed.

Although cweb was described well enough in §2 to be
used, the user manual runs to 40 pages (including
appendices). When the details are considered, cweb
becomes more complex (although it must be said that the
greater part of the manual is concerned with typography).
It is not clear that the learning-time disadvantage of cweb
would be ‘spread out’ if cweb was language-independent,
even if the same notation could be used with other
languages. The difficulties in learning cweb arise largely
through lack of precise specification of such language
features as comments, directives, line continuations,
significant identifier length (which is not a constant in C),
the effects of non-printing or non-standard characters,
parity, conditional compilation... Language indepen-
dence is discussed further in §8.1 below.

Cweb obviously adds a CPU time overhead on
program development. The current version of cweb takes
approximately one-sixth of the time that the compiler
takes to compile the generated program source to object
code modules. (There is considerable scope for strategic
optimisation which was not attempted in the prototype
version.) No experiment has been performed to see if
total program development time is reduced (because of
greater programmer efficiency), which is possible, but
unlikely because of the extra investment encouraged in
documentation. The investment in documentation would
be expected to more than pay for itself during program
maintenance, which is notoriously the most expensive
part of the program life cycle.

Understanding a correct program is greatly facilitated
by cweb, and the larger the program the more noticeable
the improvement, but ‘small scale’ on-line debugging is
actually made harder (really as a consequence of the
editor not being integrated into the ‘web way’ of doing
things). For example, if a loop fails to satisfy its
invariant, but the body of the loop has been abstracted
away as a macro, the programmer will have to flip
between two (or more) places in a file which would have
been contiguous if it were not for the ‘helpful’ web
structure. On the other hand, similar remarks can be
made about any form of structuring, whether a
respectable abstraction mechanism or goto! It behoves
the programmer to name modules appropriately and to
be specific about side-effects on sequencing, free variables
and so on.

Because cweb performs no syntax analysis, it is possible
to make simple slips whereby a programmer is misled by
the seemingly atomic form of a macro invocation. For
example, a macro may expand into a command sequence
(say, ‘A; B’), and execution of only the first command of
which (‘A’) is controlled by a construct guarding the
macro:
if expression then @<m@>

@<m@>= A; B

This problem (of referential opacity) is familiar to users
of macro processors, but is still unfortunate and could be
detected automatically. Indeed, the syntax analysis
necessary to detect it could have been used to advantage
for other features of cweb, such as applying scope rules

where

to identifier fonts. (The current system binds fonts to
names not identifers, (name, scope) pairs.) Incidentally,
full analysis is possible only if the web is well formed,
otherwise the program code is not properly specified.

6. CWEB AS A TRIVIAL INTEGRATED
PROJECT SUPPORT ENVIRONMENT

Cweb combines C program source code and troff
formatter instructions. It is a very simple IPSE. Cweb has
to use a notation which permits its user reasonably
unaffected access to both C and troff and, indeed, to all
the other tools which may be used with these languages.

UNIX gains its success in part from the convenient
integration of a variety of software tools; why then
should a general-purpose operating system be more
successfulasan IPSE than cweb, which is a special-purpose
system which was carefully designed to integrate only a
few specific tools? The common factors in UNix (filestore,
device drivers, pipes) are as featureless and transparent
as possible and (to some well-defined extent) inter-
changeable operands. The common factor in cweb, the
web specification, is highly structured: it has multiple
context-sensitive lexical conventions. Tools which read a
web specification have to be specialised to handle this.
Depending on the intended application, generating code
or formatter source must retain some but not all of the
quoted information: preprocessing cannot be decoupled
from postprocessing. This would not be a serious
problem if the various mechanisms could be hidden from
the user: contrast the ease with which Pascal and
FORTRAN subroutines can be linked on various
systems, principally because representations (such as
stacks) are not made explicit in either language.

A reasonable definition of a software tool is that it does
one thing well and without side-effects. UNix (at least in
its early days, before people started writing big programs
making use of more than sixteen bits of address space)
does one thing well, namely multiplex resources. With
the constraints of a small address space, program features
which survive are really necessary; with address spaces
which exceed our ability to fill them sensibly, ‘software
tools’ tend to accrete gratuitous features. Software
investment can be correspondingly greater (indeed it is
generally impossible to tell when software development
is complete, if ever) and in time it becomes quite
impractical to rationalise a set of tools.

There are tools apart from cweb which may be applied
to C or troff source, and they intrude on ‘original’ C and
troff introducing their own conventions. Some software
toolsuse ‘@’ and * $’ for precisely the same reasons cweb
uses them. . .that ‘they aren’t already used’! Some tools
scan comments for extra-language directives which
control such features as run-time domain checking: such
directives are usually idiosyncratic and rarely portable.
What should cweb do with comments, given that not all
comments are really non-functional commentary? In fact
just the two tools that cweb primarily attempts to
integrate are not even compatible.* Cweb has to use its

* For example, a problem arises with C strings since they may
contain any characters (including end-of-line and quote, both troff
argument delimiters) and there is no general method to pass such strings
as arguments to troff functions, since (a) every troff argument is
evaluated. and one cannot know a priori how many times a string is
going to be passed as an argument in order to quote delimiters in it the

right number of times for a particular context, and (b) there is no
notation at all for embedding a newline character in a troff argument.

206 THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986

0TO0Z ‘2T AINC uo easuems sajepn 1o Alsianiun e 6o sfeulnolpiopxo’juliody/:dny woly papeojumoq

http://comjnl.oxfordjournals.org

‘LITERATE PROGRAMMING’ USING CWEB

own arbitrary conventions. However, users who have
already used certain tools separately or in novel
combinations may have their own additional or
conflicting conventions. Thus cweb conventions have to
be programmable. Again, the result is a hacker’s paradise
and a very obscure collection of rules for special cases,
to ensure correct ireatment of the most common cases by
default.

Cweb source files have to be edited. The standard UNix
editors are general-purpose, but they are less suitable for
editing cweb source files than for other program files.
Cweb permits name abbreviation, and no current editor
permits a similar context-sensitive abbreviation for
searching for occurrences of strings in a file. Ed is a typical
editor: if we neglect the equality of cweb names
irrespective of the disposition of blanks (which cannot be
specified in ed, because there is no provision for matching
embedded newlines), the relevant command for searching
would be ‘/ @< name-prefix , *@> /’. This would locate
the next string of which ‘ @< name-prefix’ was a prefix
and ‘@>’ a suffix. In ed we cannot specify context
constraints, such as ‘not in a C string’, where the
sequence * @< ... @>’ would not denote a cweb name.
So far these difficulties are minor — they just discourage
use of the more relaxed features of cweb. But such a search
will locate the next string in the file of which
‘@< name-prefix’ is a prefix, and this will miss all
abbreviations in the file which are valid but shorter
prefixes of the same target name. Programmers make less
use of the abbreviation mechanism than they perhaps
would do because of this difficulty.

Until a programming language is designed from
scratch anticipating or including web-like ideas, software
tools for literate programming will be doing too many
things (mainly trying to be general in various incompatible
contexts) to be really successful in present software
development environments. A common design principle
is, ‘make the simple easy and the complex possible’.
Sometimes it might be better to forbid the complex in the
interests of making the simple easy and free of exceptions.

7. IDEAS FOR AN INTERACTIVE VERSION

Cweb is implemented as a conventional two-pass batch
processor; that is, it has to examine the entire web source
twice before it produces any results (it can of course
produce diagnostics earlier). In an integrated interactive
system this is not acceptable: cweb must be incremental,
with time to produce results small and constant or
commensurate with the last change made, not the total
size of the specification. At present cweb provides a
hierarchal notation for program code but no corre-
sponding hierarchal constructive method for web specifi-
cations. Web specifications in the current system are linear
character strings (and as such are edited using existing
text editors). Although cweb in its current form is
restricted to a kind of ASCII specification, there is no
reason to retain this if high-resolution or semi-graphic
displays can be used. The symbols ¢ @<’, etc. can be
abstracted out by graphic conventions, such as line
frames around sections. Such a system could have
features tuned to the needs of cweb programmers — such
as searching for abbreviated module names correctly, but
more usefully, facilities for moving and displaying the
bodies of macros at the place of their invocation. The

programmer could draw a box around a fragment of
code, name it ‘increase i under invariance of P1°, hit a
button and the code would be *folded away’, replaced by
a box indicating an invocation to the named code.

A window notation, with macro names as ‘tabs’ on the
frames of code, can be seen to permit easily revocable
display of the body of invoked macros. One of the
disadvantages of literate programming already mentioned
is that the programmer cannot view the code of macro
bodies in situ at the point of invocation. In an interactive
version, the programmer would press a button and an
invocation would unfold into a (name, body) window in
position. Note that free-text macro processing (as used by
a liberal cweb system) would clash with structure editing,
since the bodies of macros need not be syntactically well
formed.

The much-worn phrase ‘ what you see is what you get’
may be applied, but with interesting consequences. In the
web case, ‘what you get...” may be either of two
objects — a program or a literate program document. The
programmer may want to work on either view of the web:
for debugging he would need an unobstructed view of
code, and for writing documentation he might need to
refer to higher-level structures, such as major section
names and sequencing in the web. Some changes the
programmer will want to make permanent, and some will
be transient ‘changes in perspective’ which are not
intended to restructure the hard-copy/documentation
version of the web.

An interactive version would be much easier to make
language-independent, since the user interface could
constrain the user to constructing specifications in a
well-defined subset of the domains of the various
software tools involved. As a very trivial example, the
interface could prohibit lines longer than a certain
(display-related) constant. With cweb as it stands, cweb
itself has no control over the production or form of cweb
specifications and so it must be able to handle any correct
C however it comes.

Feiner, Nagy and van Dam point out that a user might
easily get lost in this sort of uniformly presented but
semantically rich system without the cues over several
sensory modalities that would be expected in a real-life
system of similar complexity3. Thus a paper book can use
colour, pictures, index, running titles, layout, fonts,
bent-over corners, annotation and so on as cues to
orientate the user. Feiner ez al. suggest that an interactive
system of the form considered here should provide the
following.

Annotation: a method so that the user can add
(preferably handwritten, drawn or otherwise distinctive)
notes ‘in the margins’.

Folio: a standard display format which includes
explicit information capturing the progress of the user
dialogue, such as the current time and an iconic
representation of the last folio. All displays will be in
folio.

Timeline: a canonical representation of the user’s
actions, probably shown as miniatures of folios, over a
period of time, ordered left-to-right to show their
sequencing.

Index: various facilities so that the user can locate
folios by abstractions.

Neighbours: the ability to view adjacent folios to the
current folio, either by miniaturisation of all folios or

THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986 207

0TO0Z ‘2T AINC uo easuems sajepn 1o Alsianiun e 6o sfeulnolpiopxo’juliody/:dny woly papeojumoq

http://comjnl.oxfordjournals.org

H. THIMBLEBY

using a ‘bifocal’ method such as that advocated by
Spence and Apperley4.

Colour: as an extra cue, perhaps to indicate the
permanence of changes in perspective or to facilitate
cross-referencing index entries.

An interactive literate programming system would also
borrow ideas as exhibited in such systems as Mentor
(Donzeau-Gouge, Kahn, Lang & Mé¢élese?) and XS-2
(Sugaya, Stelovsky, Nievergelt & Biagioni'®). Work
is in progress at the University of York to define one,
and our particular interest is the behavioural evaluation
and formal definition of a consistent system from first
principles®.

7.1. ‘Literate using’?

Literate programming combines the normally separate
activities of programming and documenting. As we have
seen above, this activity itself may be made interactive,
and indeed it is desirable to do so. But the literate
programming approach is much more general and could
be applied even when the underlying programming
language is interactive in its own right. By analogy with
the term ‘literate programming’, combining documenta-
tion with using could be called ‘literate using’. A literate
using system would document running programs. As it
stands at present, cweb only helps construct and maintain
the internal documentation of programs, and the external
documentation of a program’s use is likely to be as flawed
as ever. There is no reason why similar notions could not
be developed to help write user manuals or other forms
of system exposition.

There are several combinations of possibilities. For
example, the system being documented is fixed (we are
then writing a conventional user manual) or the system
is under development (for example, the programmer is
defining a menu hierarchy). Then the ‘manual’ is either
conventional (intended to be printed on paper) or is itself
interactive, possibly even as an integral part of the system
being documented (e.g. ‘on-line guidance’). With some
imagination, such ‘literate using’ ideas may be developed
in order to provide live demonstrations of interactive
systems — perhaps under user direction. It is entertaining
to construct a matrix of the combinations. For example,
it would be reasonable to have a system which enabled
a programmer to write a book about programs; he will
want to document the code fragments (literate program-
ming) and show example output by running the actual
code included in the book (literate using). Indeed, right
now you are reading a paper about a literate programming
system which includes example input and output
generated by that system.

User manuals typically include examples of the form,
*If i is input when the system is in such-and-such a state,
o will be output’. It is very tedious keeping such examples
up to date. It should be a simple matter to include suitable
checking facilities in a literate using system and facilitate
the task of updating the manual where necessary. Equally
it would be useful to confirm automatically whether a
manual remains correct despite modifications to the
program it documents.

A number of interesting issues have been raised from
preliminary work with my colleague Colin Runciman.
For example, one is immediately faced with a design
choice: should a literate using system facilitate the con-

struction of any expository text, or should it impose a
formal structure on the exposition? We tend to the latter
view. The system constructs expositions in which formal
and informal text are clearly distinguished; thus the
reader can be certain that formal text corresponds exactly
to the behaviour of the documented system. This is
stronger than the current literate programming ap-
proaches but has other advantages: for example, it per-
mits a program reading the same document to verify the
formal parts, perhaps against a new version of the docu-
mented program. No doubt such strictness would lead to
a stylised form of user guide, but it would be premature to
dismiss the approach for a superficial lack of generality.

UNiIx passes Doug Mcllroy’s operating system test for
file system uniformity (Ref. 5, page 47); perhaps it is time
to add the ‘literate using’ test — for, in keeping with the g
experience reported elsewhere in this paper, we have 5
encountered non-trivial problems implementing the idea
under UNix. In fact, a practical literate using software
tool cannot be implemented under UNix without
modifying the operating system kernel —there are a
number of process-synchronisation problems.

8. EXTENSIONS WITHIN THE CURRENT
FRAMEWORK

Cweb is less intrusive in C than WEB is into Pascal, but
there remains a range of ideas which have yet to be
explored. On reflection it seems that those features
provided by cweb are a minimum for its purposes, but any
more would make cweb appear considerably more
daunting. C and Pascal are similar languages in many
respects; literate programming is likely to evolve along
different lines for languages such as Prolog (which has
very little structure but is more sensitive to sequence) and
Ada (which has much more structure). Languages which
permit the definition of operators would probably need
auxiliary definitions for operator formats.

The keywords of cweb have been chosen to be brief and
orthogonal to the base language. Obviously, if I had
wanted to intrude more into C, the notation could have
been much more pleasant and less liable to conflict with
that of other software tools. If macro bodies were
restricted to command sequences (or, better either simple
or compound commands), not only could one of
the problems discussed above (§5) be avoided but the
invocation syntax could be simplified. For example, the
operators* < "and’ > are always binary (on expressions)
in C, so the lead-in ‘@’ could be dropped without
introducing ambiguities. (C provides its own macro 5
system which is more suitable for expression macros, so
this restriction would not be at all serious.)

It is worth noting that C (unlike Pascal) uses
semicolons as command terminators; this allows all
cweb macro bodies to be terminated by a semicolon (or
to be compound commands) irrespective of the context
of their calls.* In Pascal, if a command is followed by else,
it cannot terminate with a semicolon. This is a
non-intuitive (but formally as consistent) since in all other
cases in Pascal a semicolon is either required or is

T AINC uo easuems sajepA Jo Alsiaaiun Te 610 sjeulnolpiojxo’|ulos//:dny wol) papeojum

* However, a C preprocessor macro is not at such liberty: if
*£(x)" is a macro or function invoked in the context * if(x)
f(x); else ... then'f’cannot be defined as a macro with a
compound command body.

208 THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986

http://comjnl.oxfordjournals.org

‘LITERATE PROGRAMMING’ USING CWEB

optional. This feature of Pascal somewhat restrains
restructuring programs.

It is possible to provide a mechanism (which can be
simulated in the current cweb, but is not standard) to
specify the formatting of vertical spanning units: if a
section is too big to fit on a page, the programmer may
want to indicate where the section may be split
conveniently (with varying penalties) to avoid ‘logical’
widows. One could argue that if the spirit of literate
programming is seriously adopted by a programmer then
such long sections would never arise in practice, but
adherence to the first design principle — that previously
valid programs should still be valid (irrespective of the
length of their components) — suggests that an arbitrary
maximum size would be too restrictive, however
generous. Also, of course, the section size includes the
documentary parts and these may be substantial on their
own, posing the usual typographical problems of widows
and orphans at page boundaries. As anyone knows who
has taken typography seriously, there are many typo-
graphical controls which could be provided, and these are
by no means unrealistically complex if high-quality pre-
sentation is required. However, there is a valid school of
thought (exemplified in the philosophy of SCRIBE!2) that
author/programmers need not bother or waste their time
with typography. Professional literate programming
systems must provide an ‘author’ mode without access
to typographical niceties, and without the learning effort
(and temptation).

A more serious problem is how to handle closely
related sections. For example, C and most programming
languages require definition-before-use, but the flexibility
of the cweb notation soon obscures whether definitions
precede or follow applications. To get around this, the
programmer will define a macro to accummulate forward
definitions (by using multiple definitions to append to a
single code body - see §2.1). Since cweb is two-pass it
could in principle provide the necessary topologically
sorted forward definitions itself (or, betier, a separate
software tool could do the job). For the present version
of cweb, however, the problem appears in the choice of
formatting convention to be used for such very closely
related sections. Should a section be able to contain more
than one macro definition?

Note that under the present C language standard, as
the form of identifier bindings in initialised and un-
initialised definitions is different, it is not even possible
to share the same text for both purposes by using a
common macro body. The scheme for permitting macro
bodies to be written to separate files was intended for and
has mainly been used to handle forward (uninitialised)
definitions: it works, but I think it is a clumsy concept.
When definitions have to be manually duplicated because
of such idiosyncrasies in the language the programmer
may make slips and is put in a mild quandary about
which definition to document! Again, a suitable software
tool could perform the purely clerical operations.

Cweb combines a pair, code and documentation, from
which it can extract either. In many applications it would
be useful to enhance code with other attributes which
should also be documented, such as topology, pre- and
post-conditions, invariants, and JCL to process the code
and other such attributes. The update history (version
control and bug fixes) of a program could also be
included. But showing all these attributes with equal

prominence would produce a very cluttered literate
program document, and perhaps they are more appro-
priately combined in a primarily interactive system
where the user can dynamically view those attributes of
immediate concern. It is a feature of Mentor? (op. cit.)
that attributes (and textual language delimiters) are not
normally displayed.

Cweb assumes that the resulting literate program is
self-contained (although the code generated from it may
be separately compiled). It is possible that a web-like
method could be used in writing a book. In that case extra
handles would have to be provided on indexing,
cross-referencing and so on. In fact, these are really
options which should have been provided by quite
separate software tools. Currently cweb provides tagged
integer sequences for numbering sections, but it is
arguable that ‘levels’ of sections, 1.1, 1.2.4,. . ., should be
provided. Certainly they would be necessary for webs
embedded in larger documents (with an existing
numbering system) such as might occur in books on
algorithms. Sophisticated number schemes are awkward
to handle, since troff has all the right features for
generalised counting (even in Roman numerals, with
levels and so on) but cweb needs to know section numbers
(for forward cross-references) before any of the document
can be formatted by troff. This is an example of the
standard feedback problem arising with sequential
processing arrangements for ‘integrated’ software tools.

8.1. A language-independent version

In its current form cweb needs a table which specifies the
programming language lexemes, quoting mechanisms
and comment conventions. These features can generally
be expressed using regular expressions. A format must
also be provided for each lexeme or class of lexemes, for
example that ‘1f’ is a reserved word and should be
formatted in a bold font, or the lexeme * <= should be
formatted ‘ <’ or * < =’ depending on preference. In C,
there are just two context-sensitive quirks due to
operators being overloaded. First the operator ‘*’ may
signify either multiplication or indirection (right value):
in cweb, two default formats are provided — programm-
able, of course —namely ‘x’ and ‘*’ respectively.
Similarly, ‘-’ denotes either a decimal point or a field
selection operator. These could be considered pedantries.
Secondly, there are multiple scopes for identifiers, since
field names need only be unique within their defining
structure; in fact, cweb only distinguishes between
identifiers that are field names and all other identifiers, for
the purposes of distinguishing field names as such in the
index. Cweb enforces the same font for the same name
regardless of how the identifier is used. Since no syntax
analysis is performed we could not distinguish between,
and hence could not format differently (say) x as a
function and x as a field selector. In C it is conceivable
that programmers might want to distinguish between
macro invocations (that is, applications of standard C
* # define’ macros) and function invocations of the same
name. These problems are not insurmountable, but they
have to be addressed in the absence of an existing
publication standard which could have been adopted.
Because troff is not formally defined, ad hoc solutions
had to be found for processing particular features of C
(e.g. to C pass strings as troff macro arguments — see

THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986 209

cpJ 29

0T0Z ‘2T AINC uo Basuems sajepn Jo Alsiaaiun 1e Bio speuinolpioyxo-julwody/:ony woly papeojumod

http://comjnl.oxfordjournals.org

H. THIMBLEBY

footnote on page 206), and language-independent
specifications could be messed up by abstruse formatting
requirements. Certainly, a language-independent system
should not and probably could not use troff.

Language independence of a more limited form is often
required. Under UNIX, several software tools exist which
generate C programs, in particular compiler-compilers
which operate on specifications which may include
considerable fragments of C code (e.g. yacc, lex).
Generally such tools introduce additional lexemes and
quoting mechanisms, and in principle could be handled
by straightforward extensions of cweb. In some cases the
choice of ‘@’ and ‘$> would need to be reviewed.
Currently, cweb provides no useful support for tools of
this kind, and this is definitely an omission. Since cweb
acts on text, there is no reason why its macro mechanism
should be restricted to the target language: it can also be
applied to the metalanguage of the compiler-compilers.
But if the lexemes of the languages overlap (and should
be distinguishably formatted), non-evaluative analysis of
the cweb source will not reveal the correct formatting
conventions for the bodies of macros, since this would be
determined in the context of their invocations. For
example, a macro might be defined as the text ‘A | B’. This
is legitimate C (‘A’, ‘B’ identifiers), and also the
legitimate right-hand side of a yacc production rule (‘A°,
‘B’ symbols). With the current purely lexical font
selection these uses could not be distinguished. Of course
it is possible to require all code to be formatted in a
uniform font, but this restriction would go against one
of the current design principles.

8.2. A formatter-independent version

It seems unlikely that there would be much call for a
dynamically formatter-independent version of cweb, as it
is likely that an installation will have its own preferred
formatter. However, formatter independence is easier to
achieve than programming language independence since
formatter text (documentationand formatterinstructions)
is simply copied to the formatter unchanged by cweb. The
formatter itself should provide device-independence, such
as over ink-jet/laser-printer or details such as paper size.
If porting cweb programs is envisaged across operating
systems, where formatters may vary, it may be worth
developing a minimal set of formatter directives, such as
‘new paragraph’, which can be translated to equivalent
local forms by cweb.

In fact, the current version of cweb does generate a
formatter-independent text stream which is translated
into troff form by a separate co-process. The user can
select alternative processes to manipulate the text stream
for other purposes (although currently no very interesting
one has been implemented): perhaps for producing
quick-and-dirty output to a fast line printer; for
producing hierarchy diagrams; for producing subsets of
the document, such as just the cross-references; for using
other formatters, such as TgX; and so on. Cweb does not
attempt to pretty print C; if this is considered an omission
it could easily be corrected by inserting a pretty-printing
filter in front of the existing troff source co-process —
although it would take two passes per module if the
self-setting alignment tab scheme was retained.

9. IMPLEMENTATION PROBLEMS

Writing a program to drive another program which was
originally intended to have human input was a mistake.
I did not want a cweb user to have to rewrite his program
if troff couldn’t format it well enough! The user interface
of troff is designed for human-written text: certainly few
documents are satisfactorily produced without experi-
menting. If formatting a document goes awry, typically by
widowing a single word, the best way to correct it is to
rewrite the last paragraph more concisely. When troff is
driven by a program, it is not possible for that program
to rewrite text in order to get it to fit on a page or to satisfy
any other of the many reasonable typographical
constraints. In other words, cweb has to generate the
correct troff commands for all input; and this turned out
to be considerably harder than anticipated. About 959
of the development effort of cweb was consumed in
troff-related issues. (The current system object code
devoted to purely troff code generation, excluding
checking and index sorting, totals S0k bytes as compared
with 2k for generating C code.) It is surprising that the
user interface of troff does not come up to even basic
standards for machine-machine communication. It is
amusing, perhaps, that a draft-quality formatter (as one
of the standard co-processes of cweb) which implements
precisely the subset of nroff required by cweb is about the
same size as the code-generator co-process for nroff itself
(and about ? the size of the code generator for troff).
Telling nroff what to do is as difficult as doing it!

I made a strategic mistake thinking I could get away
without syntax analysis, and cweb is somewhat harder to
use because of this decision. Or maybe cweb is easier to
use, since any syntax analysis would be subject to yet
more hedges. The decision to have no syntax analysis was
made originally to make a gain in processing speed, which
was felt important for user acceptability, but in retrospect
this gain is probably offset by the time wasted in
occasionally submitting bad C code to compilers. Half a
dozen ‘@’-keywords for typographical control are
necessary because cweb performs no syntax analysis, but
it is likely that they would be required occasionally even
if cweb did perform sufficient analysis: they provide the
programmer with useful control over indexing and fonts.
Maybe if these features were used explicitly less often
(because a sophisticated cweb system inferred and
defaulted them) for the sake of ‘ease of use’ programmers
would have a prolonged learning period before they
became familiar with all of cweb’s functions.

One further reason for not bothering with syntax
analysis was because it was hoped that there would then
be no need to waste time processing included files, that
is, files whose text is to be inserted at compile time into
the program at various points. Since included files are
used almost exclusively for defining identifiers, they are
also a very natural place to define identifier fonts
centrally. Thus cweb does have to process included files,
and the original reasoning was wrong. Because the text
of included files is included at compile time (by the
standard C preprocessor) and not by cweb, the font
specifications have to be expressed in unadorned C....
This notational extention can only be made in comment.
Since we don’t need font specifications to be explicit in
the formatted literate program (which they would be if
they remained as directives in C comment) there have to

210 THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986

0TO0Z ‘2T AINC uo easuems sajepn 1o Alsianiun e 6o sfeulnolpiopxo’juliody/:dny woly papeojumoq

http://comjnl.oxfordjournals.org

‘LITERATE PROGRAMMING' USING CWEB

be two mechanisms for specifying fonts. Again, the
combination of tools has led to arbitrary complexity in
cweb. Actually, the programmer rarely needs this feature
of cweb explicitly since cweb automatically adds font
information to all the code it generates (using the special
comment notation, in fact), which it can later pick up
again if a generated file is included elsewhere.

Cweb makes an attempt to reduce the size of generated
C code files by eliminating redundant blank space. C, like
many other languages, requires blanks to disambiguate
certain constructs. It obviously requires blanks between
adjacent reserved words and identifiers but there are less
obvious cases. I was aware that * X+ ++y’ (and even
‘X~= ~ ~~Y’) would become either ambiguous or
likely to be parsed incorrectly if cweb removed blanks
too eagerly but I have recently noticed the problems of
‘x/ *y’ (intended to mean division by ‘*y’, not
comment-out ‘Y’) and ‘X& &Y (intended to mean bit-
and with an address, not logical-and).

10. CONCLUSION

Literate programming is promising and successful, but
has a long way to go before it emerges as a mature
discipline. In the meantime, literate programming is likely
to be used more and more frequently in published
programs, and appropriate formatting standards will

REFERENCES

1. R. Baecker and A. Marcus. On enhancing the interface to
the source code of computer programs. Proc. ACM
Conference, CHI 83, Boston: Human Factors in Computing
Systems, pp. 251-255 (1983).

2. V. Donzeau-Gouge, G. Kahn, B. Lang and B. Mélese,
Document structure and modularity in Mentor. In Proc.
ACM SIGSOFT/SIGPLAN Software Engineering Sym-
posium on Practical Software Development Environments,
pp. 141-148. Pittsburgh, Penn. (1984). (ACM SIGPLAN
Notices, 19; ACM Software Engineering Notes, 9.)

3. S. Feiner, S. Nagy and A. van Dam, An experimental
system for creating and presenting interactive graphical
documents, ACM Transactions on Graphics 1, 59-77 (1982).

4. N. Hammond, M. D. Harrison, A. Monk, C. Runciman
and H. W. Thimbleby, Mechanisms for Specification, Imple-
mentation and Evaluation of Interactive Systems. Alvey/
SERC Grant GR/D/02317 (1984).

5. B. W. Kernighan and R. Pike, The UNIX Programming
Environment. Prentice-Hall, London (1984).

6. B. W. Kernighan & D. M. Ritchie, The C Programming
Language. Prentice-Hall, New Jersey (1978).

7. D. E. Knuth, The WEB. System of Structured Documenta-
tion, Department of Computer Science, Stanford University
(1982).

8. D. E. Knuth, Literate programming. The Computer Journal
27, 97-111 (1984).

9. D. E. Knuth (translated by T. Kurokawa), Literate pro-
gramming, bit 17, 426-450 (1985). (Publisher: Kyoritsu
Shuppan, Tokyo.)

10. P. A. de Marneffe and D. Ribbens, Holon programming.

evolve. The current format used by cweb is not sufficient
for all tastes and it is also very disappointing how long
it takes to specify a new style with troff. At some stage
literate programming systems will develop as purely
language-independent notations, interactive structure
editors, or properly integrated into new languages.

It is surprising how badly some software is designed
when itsinputis expected to be human-generated: the text
formatter used by cweb is terribly inconsistent and
extraordinarily difficult to drive by program. Perhaps it
was never formally considered. I believe Knuth is wrong
when he asserts that a WEB system is easy to implement
(Knuth, 1984) —a basic one is easy — but aesthetic
considerations of presentation are not easy to anticipate
nor formalise, and it is difficult to contain the resultant
system complexity.

In restrospect it seems obvious, but ‘integration’
cannot be retrofitted to fixed software tools without
introducing hacky features. The major problem here
has been the interaction and poor specification of lexical
and quoting conventions in the various languages. Less
severe problems arise from overloaded tools whereby a
single software tool provides several unrelated features:
cweb and other integrated systems may need more than
one feature of that same tool concurrently. There is much
more promise in interactive ‘constructive’ integrated
systems, but some functionality must be sacrificed.

International Computing Symposium, edited A. Giinther
et al., pp. 67-71 (1974).

11. D. C. Oppen, Prettyprinting. ACM Transactions on Pro-
gramming Languages and Systems 2, 465-483 (1980).

12. B. K. Reid, Scribe: A Document Specification Language and
its Compiler. Ph.D. Thesis, Carnegie-Mellon University,
Department of Computer Science (1980).

13. S. R. Smith, D. T. Barnard and I. A. Macleod, Holophras-
ted Displays in an Interactive Environment. International
Journal of Man-Machine Studies 20, 343-355 (1984).

14. R. Spence and M. Apperley, Data base navigation: an office
environment for the professional. Behaviour and Information
Technology 1, 43-54 (1982).

15. H. Sugaya, J. Stelovsky, J. Nievergelt and E. S. Biagoni,
XS-2: Anintegratedinteractive system, Report KLR 84-73C,
Brown, Boveri Research Centre, Baden, Switzerland.

16. R. D. Tennent, Principles of Programming Languages.
Prentice-Hall, London (1981).

17. H. W. Thimbleby, Literate Programming in C; Manual and
Small Example. Department of Computer Science Report,
University of York, U.K. (1984).

18. E. Towster, A convention for explicit declaration- of
environments and top-down refinement of data. IEEE
Transactions on Software Engineering, SE-S5, 374-386
(1979).

19. G. M. Weinberg, The Psychology of Computer Program-
ming. Van Nostrand Reinhold, New York (1971).

Note. Further details of the cweb system may be obtained from

Mrs Jenny Turner, Department of Computer Science, Univer-
sity of York, York, YOI 5DD, U.K.

THE COMPUTER JOURNAL, VOL. 29, NO. 3, 1986 211

0TO0Z ‘2T AINC uo easuems sajepn 1o Alsianiun e 6o sfeulnolpiopxo’juliody/:dny woly papeojumoq

http://comjnl.oxfordjournals.org

