Symbolic and Monte Carlo number keying

error analysis

Harold Thimbleby
harold@thimbleby.net
Swansea University
United Kingdom

In[1086]:=

Thinking of a random number is done as follows. Generate four decimal digits (from a uniform distribution), and convert to
the form XX.XX. Remove leading and trailing zeros. This is now a number between 0.01 and 99.99 and in a valid form.

This Mathematica notebook also provides symbolic analyses. These are slower, and typically you won't want to wait around
for a symbolic analysis of 0.01 to 99.99. The advantage is that the analysis is exact; here is how it is done.

Instead of choosing a single random number, for every valid number in a given format (e.g., 0.1 to 9.9), consider every way
of keying it (rather than just one way, chosen probabalistically). For each way of keying it, work out the probability that the
user would have keyed it that way. We know the underlying probability rate, e, and this calculation is purely symbolic. As
with the Monte Carlo approach, it ends up with polynomials in e, but this time they are exact.

Assumptions

It could take forever if we model the user keying anything. Instead, when analyzing how the user keys a number, we only
consider the user keying the correct number of keystrokes. We allow for the user prematurely terminating the number,
however (because we treat termination as a keystroke with a certain probability), but we do not analyze if the user keys too
much. In fact, if the user keys too much the digits they key will generally have less and less significance, if they follow a
decimal point, and it's clear that if a keyed number is out by ten, keying more digits isn't going to stop it being out by ten.
However, this assumption in our models means that we will miss some out by ten errors. Similarly, we do not define a
number with too many keys as an invalid number. Perhaps ideally, we should have done both, but it would just make the
analysis more complex without any obvious argument as to the benefits of better understanding what's going on.

Defining probabilities

Probability of hitting [0123456789.] in error is p; probability of hitting $ (representing the termination key, perhaps called
ENTER) in error is g. We assume all digits/dot equiprobable.

We define k=p/q (k would be 2 for example if the user is twice as likely to press the wrong numeric key than end the number
prematurely), and then for an overall error probability e=p+q, e=[0,1], we get:

Cl ear [e, p, 0, kI;
Solve[e=p+Qq&&kk=p/q, {q, p}]1/. (a_->b_) = (a=Db);
Gid[{{Defer [p]l, "=", p}, {}, {DPefer[ql, "=", q}}]1 //
Tradi ti onal Form

Qut[1088]//TraditionalForm=

In[1098]:=

ek
P = i1
_ e
cI_|<+1

For my iPhone calculator, there are 11 digit keys and 4 ways to end a number, so we estimate k=7/4; on the Abbott aimplus
pump, there are 11 digit keys and only 1 key ends a number, called [YES/ENTER] on the Abbott aimplus, so we estimate
k=(11-1)/1:

wer- o error [list_1:=
Modul e[{n, dots},
n = TakeWi l e[l ist, # # dol | ar &];
I f [Length[n] == 0, Return[True]l;
dot s = Count [n, dot];
dots>1 || If[dots =0, First[n] =0,
First [n] ==dot || Last [n] ==dot || Last [n] = 0]

For example, here's a table of various numbers:

n@ep= O d@NB.p [
{asString[#], "=", value[#], If [error [#], " invalid", "ok"]} &
{{1, dot, 2}, {1, dot, 2, dot, 3},
{1, dot, 2, dollar, 9, dot}, {dot, 2}, {0, dot, 1},
{6, 0, dot, 03}, {1, 2, 03}, {0, 1, 23}, {1, dot, dollar}}]

1.2 = 1.2 ok
1.2.3 = 1.2 invalid
1.2$9. = 1.2 ok
.2 = 0.2 invalid
Out[38]= 0.1 = 0.1 ok
60.0 = 60. invalid
120 = 120. ok
012 = 12. invalid
1.% = 1. invalid

The dose error is the ratio of the intended and actual keyed doses. Call the ratio t; we need to track the probability of each
event t, which reprsents an out by t error. To program that we keep an array b with scale bins, such that bJ[i] will accummu-
late the probability of out by t events where Round[scale*t]=i. Since Mathematica arrays have upper bounds, any t
huge/scale is mapped to huge. For all our graph plotting, we're only really interested in plots to t=10, so huge is set to
12scale. (For our purposes we just need a large enough value of scale to make the graphs look smooth.)

In[1082]:= scal e = 100;
huge = 12 scal e;
makeArray[] : = makeArray[0];
makeArray[n_] : = Tabl e[n, {huge}];

With a scale of 100, the bins will be 1/scale=0.01 wide.

Having got the bins, we may want to find values in them! Given lists of unsorted {x,y} data, interpolate to find the point
closest to a given x or y. Naff algorithm, but it works reliably with few assumptions.

naz- Xintercept [n_, list_]:=Mdule[{lo, hi},
| 0o = Last @Sort [Cases[list, {_, _?2(#H=<n&)}], #1[2] < #2[2] &];
hi =First@eSort [Cases[list, {_, _?2(#=2=2n&)}], #1[2] < #2[2] &];
I f[lo[2] ==n, {lo[l], n},
{lof[l] + (hi [17 -1 o[1]) (n-10o[2]) / (hi [2] -1 0[2]), n}]

{3, 4}

AppendTo[dat a,
Modul e[{g, b, i, j, dj, prob, val, entries =0},
g = makeArray[]; (= generate enpty bins =x)
b = makeArray[];
Pri nt @Pr ogr essl ndi cat or [Dynam c[i /10]];
For[i =1, i <10, i ++, (* generate correct nunbers 1 to 9 x)
val =1i;
(» the value of a single digit is easy: it's itself =)
entries++;
For[j =0, j <12, | ++,
(» all possible ways j of keying it =)
(» calculate the probability of keying this version =)
prob =
I f[
j ==dollar, q, (x dollar is always incorrect =)
If[j #1, poverten,
(» there are 10 ways of being unlike j apart from$ =)
ok (» the digit keyed is correct,
with probability ok =)
1
1
d =4{ };, (+ for consistency, convert j to {j} which
is the format we use everywhere el se bel ow &)
update[dj, b, g, val, prob] (» update
the good and bad bins x)
1
1
{"good" -» g, "bad" - b,
"description' "1 digit with no deciml point, 1-9",
"size" »entries, "type" - "Partial"}
]
1

AppendTo [dat a,
Modul e[{g, b, i, di, j, dj, prob, k, t, val, entries =0},
g = makeArray[1];
b = makeArray[1];
Print @Progressl ndi cat or [Dynam c[i /1000]7;
For [i =101, i <1000, i ++,
di =IntegerDigits[i]; (* what user should key =x)
| f [di [3] ==0, Continue[]];
di = {di [1], di [2], dot, di [31};
val =val ue[di];
entries ++;
For[j =0, j <1273, | ++,
dj = PadLeft [IntegerDigits[j, 121, 3];
(* what they do key =)
(* what is prob of typing dj? =)
prob =1;
For[k =1, k<3, K++,
prob x=
I
dj [k ==dol lar, g, (* dollar is always unlike dj [k],
as thereis no$init x)
| f [dj [k] # di [k], poverten,
ok
1
]
1
update[dj, b, g, val, prob]
1
1
{"good" - g, "bad" - b, "description" »
"3 digits with a decimal point after second digit,
10.1-99.9", "size" »entries, "type" »"Partial"}

This code, below, is disabled because it is so slow: it's going to take much longer than all of the other bits of code put
together. With the False in the If, you can thus safely execute everything in this file, and it will work in a reasonable time
(like, 10 minutes) — provided you answer the ChoiceDialog box question!

| f [Choi ceDi al og[
"Handl i ng 0.01-99.99 synbolically is very slow. \n\nDo you

10

really want to do it (and wait days perhaps)?",
{"No" - Fal se, "Yes" » True}],
AppendTo[dat a,
Modul e[{g, b, i, di, j, dj, k,
prob, val, entries =0, cases, keyPresses},
g = nekeArray[];
b = makeArray[1];
Pri nt @Pr ogressl ndi cat or [Dynam c[i /10000]];
For[i =1, i <10000, i ++,
di = PadLeft [IntegerDigits[i], 4];
(» renove trailing zeros after decimal point;
and renove decimal point if two trailing zeros =)

| f [di [4] # O,
di = {di [1], di 2], dot, di 3], di [41},
I f [di [3] # O,
di = {di 17, di 2], dot, di 3]},
| f [di [1] # O,
di = {di 17, di [21},
di = {di [2]}
1
1
1

I f [di [1] ==0, di =Rest [di]]; (* delete any | eading zero =x)
(* di is now a list of what user should key =)
keyPresses = Lengt h[di];
cases = 12" keyPr esses;
val =val ue[di];
entries++;
For [j] =0, j <cases, | ++,
dj = PadLeft [IntegerDigits[j, 12], keyPresses];
(» what is actually keyed =)
(* what is prob of typing dj? =)
prob =1;
For [k =1, k < keyPresses, K++,
prob =
I f[
dj [k] ==dol Il ar, q,
I f [dj [k] # di [k], poverten,
ok
1
]
1
update[dj, b, g, val, prob]
]
1
{"good" » g, "bad" -» b, "description" -»
"upto 4 digits with or without a deci mal point,
0.01-99.99", "size" »entries, "type" -"Al"}

11

All the methods above systematically generate all possible numbers in the given range and format, then try all possible ways
of keying them. This is slow! An alternative method is to use a Monte Carlo approach. Rather than generate all numbers, we
generate numbers randomly, and we try keying them, but making random keying errors with the probabilities p and g. The
longer the program is allowed to run, the more accurate its results. To generate numbers, there has to be a known e; it
cannot be done symbolically. So we generate data for particular values of e, then use Mathematica to generate interpolation
functions in terms of e; this gets us back to the exact same format of data we have for the purely symbolic approaches —
except, instead of an expression in e, we have a expression like F[e], where F is some Mathematica function that fits the
data.

mse- KeyError [kK_] =
RandontChoi ce[Del eteCases[{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, dot}, k]I;

noze - AppendTo[dat a,
Modul e[{g, b, di, dj, steps =100, eval =0, prob,
i, val, keyPresses, nonte, t, experinents =2000},

Print @eProgressl ndi cator [
Dynam c [nont e / (experinents xsteps) +eval /steps]];

Print ["Generate ", experiments,
" random nunbers, repeating with e = 0 to 1 in steps of ",
N[l /steps]];

g = makeArray [Tabl e[0, {steps +1}]1;
b = makeArray[Tabl e[0, {steps +1}]1];

For [eval =0, eval <steps, eval ++,
Bl ock[{e = eval /steps},
For [nonte =1, nonte < experiments, nonte++,
(* generate random nunmber 0-99.9, with 0-1 decimal digits
di =
PadLeft [I nt eger Di gi t s[10xRandom nt eger [{1, 1000}]1, 41;
*)

(* generate random nunmber 0-
99.99 with 0-2 decimal digits =)
di = PadLeft [I ntegerDi gits[10 * Random nt eger [{1, 1000}]],
41,

(* remove trailing zeros after deci mal point;
and renove decimal point if two trailing zeros =)

| f [di [4] # O,
di = {di 17, di 21, dot, di 31, di [41},
| f [di [3] # O,
di = {di [17, di 21, dot, di [31},
| f [di 1] # O,
di = {di (11, di 1213,
di = {di [2]}

12

1

1
1
I f [di [1] =0, di = Rest [di]];
(» del ete any | eadi ng zero =)

(* di is now a list of what user should key;
try keying it to nmake dj =)
keyPresses = Lengt h[di];
val =val ue[di];
(* now try keying di =)
dj =1f[e=0, di,
If[e<l1,
Tabl e [RandonChoi ce[{p, q, Ok} -
{keyError [di [i J], dollar, di[iQ}], {i, keyPresses}],
Tabl e [RandontThoi ce[{p, q} » {keyError [di [i J], dol |l ar}],
{i, keyPresses}],
11;
t =value[dj]; (» t is the device'
s idea of the value of the keyed nunber =)

(» set t to the scaled out by t ratio so it

can be used directly as an index into the bins;

if the scaled t is out of range, make it huge x)

t =1f[t=0]| (t =scalexMax[val /t, t /val]) 2 huge,
huge, Round[t]];

(» if the keyed nunber is invalid,
add to bad bin, else add to good bin =)
I f[error [dj], bt, eval +1] +=1, g[t, eval +1] +=1]
]
]
1
{"good" -» g, "bad" - b,
"description” »"Mnte Carlo experinments,
generating randomy upto 4 digits with or without a
deci mal point, 0.01-99.99",
"size" »experinents, "type" ->"Al"}
]
1

Generate 2000 random nunbers, repeating with e = 0 to 1 in steps of 0.01

Save any data that has been worked out.

13

Modul e [
{dg, db, i, j, k, intj, intk, validData =0, steps, types = {}},
Scan[AppendTo[types, "type" /. #] & data];
I f [types == {},
MessageDi al og["No data has been generated yet!"];
Return[]
1.
| f [Menber Q[types, "All"],
(*» choose one of them if any =)
(*Print ["You have ",
Count [types,"All"]," conplete data sets"]; %)
i = {"OQher data" -» {}};
Scan[lf ["AIl" = ("type" /. #),
AppendTo[i, ("description" /. #) »#]] & data]j;
i =Choi ceDi al og["You have sone conpl ete data sets.\n\nWich

conpl ete sets do you want to analyze, if any?", i];
LE[io# {3,
val i dData = "si ze" /. i;
{dg, db} = {"good" /. i, "bad" /. i} /validDat a;

1
1.
I f [val i dDat a == 0 && Menber Q[t ypes, "Partial "],

Print ["You have ", Count [types, "Partial "],

partial data sets, which will be conbi ned"];

(*» conbi ne what defined data there are =x)

Scan [
[f["Partial" = ("type" /. #),
Print ["Using ", "description" /. #,
' values covering ", "size" /. #, " sanples"];

t = {"good" /. #, "bad" /. #};
| f [validData >0, {dg, db} +=t, {dg, db} =t 1];
val i dDat a += "si ze" /. #;

1 &,
dat aJ;
{dg, db} /=val i dDat a;
1
| f [val i dDat a == 0,
MessageDi al og[" You haven't selected any data to anal yze!"],
Print [validData, " val ues conbined..."];

prevent ed = makeArray [];

not Prevent ed = makeArray[];

j =k =0.0;

For [i =huge, i 21, i --,

j +=db[i I;

K +=db[i] +dg[i I;

{intj, intk} =
(x if the Monte Carl o net hod was used,
j and k will be vectors =)
| f [Head[j] === Li st

15

(* values nmust be interpolated =x)
steps = Length[j] -1;
(* MapThread[f [{#H#}][e]& =)
I nterpol ati on[##, I nterpolati onOrder »2][e] &/@
Map [Mapl ndexed [Function[{X, Y},
{N[(y@[1D -1) /steps], x}], #]1 & {j, K}1,

{j, k}1;

prevented[i] = {Nei /scale, intj};

not Prevent ed[i] = {Nei /scale, intk};

1

1

(» the first few entries correspond to out by factors <
1 (and will be zero) so they are deleted x)

prevented = Drop[prevented, scale-1];

not Prevent ed = Drop [not Prevent ed, scal e -17;

(» sinplification makes

everything later nuch faster l|ater...
prevented = Si nplifyeprevented,
not Prevent ed = Si npl i fye@not Prevent ed;

]

*)

You have 4 partial data sets,

which will

be conbi ned

Using 1 digit with no decinal point,

Using 2 digit integer,

Using 2 digits with a deci mal point,

1-9 val ues covering 9 sanples

10-99 val ues covering 90 sanpl es

0.1-9.9 val ues covering 90 sanpl es

Using 3 digits with a decinal point after second digit, 10.1-99.9

val ues covering 810 sanpl es

999 val ues conbi ned. ..

This is what the data looks like; you can see it is symbolic, using expressions in e. We now want to study out by 10 errors in
particular.

good =yi ntercept [10, prevent ed] [2];
bad = yi ntercept [10, not Prevent ed] [2];
{good, bad} // Col unmmFor m

5672 e

147741
86128
147741

673 e?
4477
5014 e?
13431

397e
1221
349 e
407

0. +

0. +

16

Red lines in graphs below represent conventional devices; green lines are error-blocking devices (and therefore have better
out by 10 performance).

How do we want to visualize results? The ImageSize—»1000 parameter in Plot (if not commented out) is useful if you want to
cut-and-paste the graphics to (say) PowerPoint, as it makes it bigger and of a consistent size. For presentations, we
probably want to provide axes labels in the presentation tool rather than in Mathematica. Hence there is a flag Presentation.
Set it to False if you want to live in Mathematica and get axes labels; set it to True if you want to cut-and-paste plots to other
applications.

nose- Presentation = Choi ceDi al og[
"Do you want to have | abel ed graphs, or to have plain
graphs at a |arge, standard size for presentations?",
{"Axes | abel ed" -» Fal se, "No axes, standard size" -» True}];
Print ["Graphs formatted ", If [Presentati on,
"l arge, no axes |abels", "with | abelled axes"], "."]

G aphs formatted with | abel | ed axes.

meo= Pl ot [

{good, bad}, {e, O, 1},

AxesOrigin- {0, 0},

PlotStyle -

{Di rective[Darker [Geen], Dashing[{.01, .01}]], Red},

Pl ot Range » {{0, 1}, Autonatic},

BaseStyl e - {Thi ckness[. 005], 14},

Eval uat e@Sequence[l f [Presentation, | mageSi ze - 1000,

AxeslLabel -» {"Keystroke error\nprobability, e",

"Qut by 10\ nprobability"}]]

Out by 10
probability

0.5:

0.4:

Out[991]= 03 E
0.2:

0.1:

0.0&=

‘ ‘ | | ~ Keystroke error
02 04 0.6 08 1.0 probability,e

17

neoz- Bl ock[{e =.01},
Li st Pl ot [{prevent ed, not Prevent ed},
AxesOrigin- {0, 0}, Joi ned - True,
Eval uat e@Sequence([l f [Presentati on,
| mageSi ze - 1000, AxesLabel -» {"Ratio r",
"Probability out by r\nfor e=" <>ToString[e]}]1]]
]

Probability out by r
for e=0.01

0.025 -
0.020 -
Out[992]= 0.015L
0.010+

0.005

e w1 Ratior
12

Note. Mathematica does not plot the Monte Carlo model well, as the randomness doesn't handle e—0 very well.

What effective improvement does it give? The graph below shows the saving as e tends to zero; it doesn't work well with
Monte Carlo data because of randomness.

nosz - Modul e[{r =good/bad /. e » 0. 001, xpos =. 3},
Pl ot [good / bad, {e, 0, 1},

AxesOrigin- {0, 0},

Pl ot Styl e » {Darker [G een], Red},

Pl ot Range » {{0, 1}, Automatic},

BaseStyl e » {Thi ckness[. 005], 14},

Epi | og » {Thi ckness[. 001], Arrow[{{Xxpos, r -.2}, {0, r}}1,

Text [" " <>ToString[Round[100r, 1]1] <>"%",

{Xp051 r _'2}’ {_1’ 0}]}’

Eval uat e@Sequence[l f [Presentati on, | nageSi ze » 1000,
AxeslLabel - {"Keystroke error\nprobability, e",

"Drop in out by 10 errors\nfor given e"}

11
]
]
Dropinout by 10 errors
for givene
0.4,
3
Out[1043]=

0.2t 38%
0.1¢ ——
0.0 eystroke error

02 04 0.6 08 1.0 probability, e

18

For a given value of b (say 0.01) we want to find the e such that bad[e]=good[b], so we can draw a nice graph. Although
Mathematica has a Solve function, it doesn't work well on InterpolationFunctions, which result from the Monte Carlo
analysis. Here, we use a simple binary search — it's just run often enough to be accurate enough.

moos- BinarySearch[f _, val _]:=

Modul e[{lo =0, hi =1, h, n},

Do [
h=((f /. es>lo)+ (f /. eshi)) /2
Iffh<val, lo=(lo+hi)/2, hi = (o+hi) /2],
{10} 1;

Nel o

1

neos- Modul e[{b =0.1, bb},
bb = Bi narySear ch[bad, good /. e » b];
Pl ot [{good, bad}, {e, 0, 2b},
AxesOrigin- {0, 0},
PlotStyle -
{Di rective[Darker [Geen], Dashing[{.01, .01}]], Red},
Pl ot Range » {{0, 2b}, Automatic},
BaseStyl e - {Thi ckness[. 005], 14},
Epi | og » {
Thi ckness[. 002],
Line[{{b, 0}, {b, bad /. e 5 b}}1,
Arrow[{{b, bad /. e - b}, {b, good /. e -b}}],
Arrow[{{b, good /. e » b}, {bb, bad /. e »bb}}],
Li ne[{{bb, 0}, {bb, bad /. e - bb}}]
}
Eval uat e@Sequence[l f [Presentation, | mageSi ze » 1000,
AxeslLabel -» {"Keystroke error\nprobability, e"
"Qut by 10\ nprobability"}

11
1
]

Out by 10
probability

0.15}
Out[995]= 010 = /

0.05¢

Keystroke error

0.00 = ‘ : ‘ .
0.05 0.10 015 0.20probability, e

19

nioas - Saving = 1 - good / bad,
nonteCarl o[] : = Menber Q[i npr ovenent Dat a,
I nt er pol ati ngFunction, Infinity, Heads -» True]

For the Monte Carlo data, this will give a bumpy plot!

mose - Pl ot [saving, {e, 0.001, 1},
AxesOrigin- {0, 0},
Eval uat e@Sequence[l f [Presentati on, | mageSi ze » 1000,

AxeslLabel - {"Keystroke error\nprobability, e",
"I nmpr ovenent \ nbl ocki ng errors"}

111

Improvement
blocking errors

0.6
05F
041
Out[1046]=
0.3}
0.2}

0.1F

‘ ‘ ‘ ‘ ‘ Keystroke error
0.2 0.4 0.6 0.8 1.0 probability, e

This smooths the plot — useful for Monte Carlo data:

noar- LI st Pl ot [Movi ngAver age [Tabl e[savi ng, {e, 0.001, 1, 0.013}], 10],
Joi ned » True, AxesOrigin- {0, 0}, DataRange » {0, 1},
Eval uat e@Sequence[l f [Presentati on, | mageSi ze » 1000,
AxeslLabel -» {"Keystroke error\nprobability, e",
"I nmpr ovenent \ nbl ocking errors"}

111

Improvement
blocking errors

0.6F
05F
04F
Out[1047]=
0.3}
0.2}

0.1f

‘ ‘ ‘ ‘ _ Keystrokeerror
0.2 0.4 0.6 08 1.0 probability, e

20

21

italicize[n_List]:=Mp[italicize, n];
italicize[n_]:=I1f[StringQ[n], Style[n, Italic], nl;
enbol den[n_Li st] : = Map[enbol den, n];
enbol den[n_] : =
I f [StringQ[n], Style[n, Bold, 20, FontFam |y -» "Hel vetica"], nJ;
display[d_, title_]:=
PrinteText eGid[{
{enbol denetitle, SpanFromnLeft, SpanFronieft,
SpanFronLeft, SpanFronieft, SpanFronlLeft},

italicizee{"", "", "Estimates of true incidence", |,
"Estimates of prob", SpanFronieft},
italicizee{"", "Reported deat hs", "Low",

“Hi gh", "Low', "Hi gh"},
Prepend[d[1], italicizee"Mn"],
Prepend[d[2], italicizee"Max"1]},
Al'i gnnment -
{{Center, Right, Right, Right, Ri ght, Ri ght}, Baseline},
Dividers » {All, {1->True, 3->True, -1-True}}];
vicente =
{
{5, 65, 417, 2.95x10"-6, 1.89x10" -5},
{8, 104, 667, 4.72x10"-16, 3.03x10" -5}
B
di spl ay[vicente, "Vicente original data 12 year, USA"];
di spl ay [vi cent ePA =
Map [Round[#=* {c, ¢, ¢, 1, 1} /. ¢ » (1/12) /303.824640, .001] &,
vi cent e],
"Fatalities: scaled per 1M popul ati on pa for one PCA"];
di spl ay [Map [Round [# = {t ypi cal Savi ng, typi cal Savi ng,
typi cal Saving, 0, 0}, .0001] & vVicentePA],
"Prevented fatalities per 1M pa for one PCA device"]; display]
Map [Round [# = {t ypi cal Savi ng, typi cal Savi ng, typi cal Savi ng, 0, 0},
.0001] &, 60.943912 xvi cent ePA],
"Prevented fatalities UK pa for one PCA device"];

22

23

expl ai nPl ot [detail _]: =
Modul e[{rati o =10, icpt, nppt, fig, explain, saving},
fig[n_]:=ToString[Round[n, 0.001]1;
explain[t _, xy_]:=
Modul e[{dh = 1},
{Text [t, xy + {-0.1, -0.00075}, {1, 131,
Arrow[{xy, {0, xy[21}}1}
1
icpt =yintercept [rati o, preventedate];
nppt =yi ntercept [rati o, not prevent edat e];
savi ng = (nppt [2] -i cpt [2]) / nppt [21;
Print eLi stPl ot [zapNul | Opti onse
{{{1, 0}, {1, 1}},
detail >1- {{ratio, 0}, {ratio, 1}},
detail > 2 - prevent edat e,
not pr event edat e
}
AxeslLabel -» {"Qut by x", "Probability of out by x"},
Joi ned - True,
Pl ot Styl e » zapNul | Opti onse
{{Thi ckness[.0025], Dashing[{.01, .01}], G ay},
detail >1 -
{Thi ckness[. 0025], Dashing[{. 01, .01}], G ay},
detail > 2 - Darker [Geen],
Red},
| mageSi ze » 1000,
Pl ot Range » {{0, 11}, {0, 0.022}},
BaseStyl e - {Thi ckness[. 005], 14},
AxesOrigin- {0.00, 0},
Ti cks » {Range[10], Automati c},
Aspect Rati 0 - . 5,
Epi | og » zapNul | Opti onse
{Thi ckness[.002], Arrowheads[.02],
detail >3-
expl ain["Saf er device, " <>fig[icpt[2]], icpt],
detail >1-sexplain["Odinary device, " <>fig[nppt[2]] <>
" (%" <>fig[ratio] <>" overdose)", nppt]
L
CellPrint [Cell [
"Wth prob " <>fig[nppt [21] <>
" a nornmal device is out by " <>ToString[ratio] <>
"; With prevention it is probability " <>
figlicpt2]1<>" it is =2 " <>fig[ratio] <>
" out. That is, for aratio = " <>fig[ratio] <>
", It is " <>fig[l00saving] <>"% safer.", "Text"]]
1
expl ai nPl ot /@ Range[4];

24

References

28

