

User-centered methods are insufficient
for safety critical systems

Harold Thimbleby
Director, Future Interaction Technology Laboratory

Swansea University, Wales, SA2 8PP

Abstract. The traditional approaches of HCI are essential, but they are unable
to cope with the complexity of typical modern interactive devices in the safety
critical context of medical devices. We outline some technical approaches,
based on simple and “easy to use” formal methods, to improve usability and
safety, and show how they scale to typical devices. Specifically: (i) it is easy to
visualize behavioral properties; (ii) it is easy to formalize and check properties
rigorously; (iii) the scale of typical devices means that conventional user-
centered approaches, while still necessary, are insufficient to contribute reliably
to safety related interaction issues.

Keywords: Human–Computer Interaction, Interaction Programming, Usability
Engineering, Safety Critical Interactive Devices

Cite as: H. Thimbleby, “User-centered Methods are Insufficient for Safety Critical
Systems,” in USAB’07—Usability & HCI for Medicine and Health Care, edited by A.
Holzinger, Springer Lecture Notes in Computer Science, 4799, pp1–20, 2007.

1. Introduction

It is a commonplace observation that interactive devices are not easy to use, nor even
always safe — cars and the use of entertainment electronics in cars being a familiar
example. While we all like mobile phones, it is probably true that nobody fully
understands their phone. Users may not know everything about a phone, but it is
sufficient that phones do enough for their users. Although there is no reason why
every user needs to be able to do everything, even with the subset of features each
user knows and feels comfortable with there are still usability issues.

The regular experience of usability problems stimulates the user into coveting the
latest model, which promises to solve various problems, and anyway provides many
new tempting features. Evidently, the successful business model and user experience
of consumer devices is different to what is appropriate for the design of safety critical
and medical devices. To contrast it explicitly: it is no use a nurse having problems
with a defibrillator and therefore wishing to buy a new one! In this case, the nurse has
a very limited time to work out how to use the device; its incorrect use may be fatal.

Of course, the nurse should be well-trained, another difference between medical and
consumer device design.

Devices have to work and hence, necessarily, they have to be specified and
programmed. Some evidence, unfortunately, suggests that medical device designers
apply consumer device practices rather than safety critical practices. Medical devices
are complex. They are not just more complex than their users can handle but they are
also more complex than the manufacturers can handle. User manuals for medical
devices often contain errors, suggesting weaknesses in the design process — and also
bringing into question the reliability of user training, since it is based on the
manufacturer’s accurate models of the systems. For some concrete examples see [17].

The traditional HCI response to these well-recognized usability problems is to
concentrate on the problems as they face the user. Working with users, we get insight
into training, user misconceptions, user error, recovery from error, and so on. This is a
sufficient challenge for research in HCI, but in industrial development the insights
from evaluation need feeding back into the design process to improve designs: this is
iterative design. Iterative design properly informed by the user experience is called
user-centered design (UCD).

The arguments for UCD and iterative design have been widely made; outstanding
references being Landauer [10] and Gould & Lewis [5]. Gould & Lewis is now a
classic paper, proposing the importance of three key ideas: (i) early and continual
focus on users; (ii) empirical measurement of usage; (iii) iterative design whereby the
system (simulated, prototype, and real) is modified, tested, modified again, tested
again, and the cycle is repeated again and again (i.e., iterative design). More recent
work [3] emphasizes the important role of design in medical device design, though
this is essentially ergonomics and industrial design.

The continued problems with usability has led to an explosion in alternative UCD
methods: task analysis, contextual design, activity theory, cognitive walkthrough,
heuristic evaluation, questions-options-criteria, ecological methods; more
theoretically-motivated methods such as information foraging; and numerous
concepts, from scenarios and diary techniques to grounded theory. Methods may be
theoretical (e.g., any of the numerous extensions and variations of GOMS-like
approaches), done by experts without users (inspection methods), or involve users
(test methods). All HCI textbooks cover a representative range of such techniques; [8]
is a convenient review.

The hurdles in the way of the adoption of UCD methods in industry has led to
much work in the politics of usability: how does an industry that is driven by
technology come to terms with UCD methods? How can usability experts have the
political power in order to ensure their empirically-informed insights are adopted?
According to some commentators, just providing technical designers with actual
observations of use (such as videos) is enough to make them “squirm” sic [20] and
hence will motivate them to adopt or support UCD methods within their company.
Indeed, words like “squirm” are indicative of the problems usability professionals
perceive: technologists seem to be the problem; they need to understand the value of
usability work; and they need to be told what to do by the people who understand
users [10].

1.1 Overview of this paper

In this paper we review the role of UCD applied to a simple safety critical device.
The device is simple but it is beyond conventional UCD techniques to manage.
Our conclusion is that UCD is necessary but is far from sufficient; indeed the
conventional emphasis on UCD diverts attention from technical problems that must
also be solved. Technologists’ lack of concern for UCD is not the scapegoat. The
bottleneck in design is the failure to use professional programming methodologies.
Ironically, while this skills bottleneck is ignored, emphasizing more UCD — the
standard remedy — will only worsen usability and safety problems because UCD is
not reliable, and because it creates a mistaken stand-off between human factors and
computing people. Programming methodologies that support usability (that is,
interaction programming [18]) have received scant attention; indeed, one view is that
they are suppressed within the broad field of HCI because the majority of people
working in HCI are human-oriented and unwilling and often unable to acknowledge
the effectiveness of technical approaches [19]. This view reinforces the perception [3]
that incidents are caused not by poor design but by users and hence should be blamed
on users. Many incident analyses (such as [9,12]) fail to explore problems in program
design at all.

Some work has been done on developers’ understanding of usability [6], showing
developers had knowledge of 38% of usability issues prior to empirical studies. This
paper was concerned with user interfaces to complex GUI systems, where many
usability problems might be expected to be unique to the systems. In contrast, in this
paper we are concerned with relatively simple, mostly pushbutton style devices,
typical of interactive medical devices. Here, the industry has a long record of
incremental development: the paper [6] probably under-estimates developer
knowledge in this context. On the other hand, merely knowing about usability issues
is quite different from being able and willing to fix them, or even to be able identify
them specifically enough to be able to reprogram them out. Bad programmers resist
UCD, not because UCD issues are unexpected, but because bad programmers have
difficulty accommodating any revision.

Fig 1. The Fluke 114, showing the LCD, five buttons and the knob. Two test leads are plugged
into the bottom of the device. The device is 75×165mm — easily held in one hand.

The present paper provides a case study of a relatively simple interactive device.
The analysis of the case study supports the paper’s argument: better interaction
programming contributes to improving the usability and the safety of interactive
systems. The final section, 6, puts the approach into the broader perspective of the full
design cycle.

2. Choice of a case study

We need a case study that is simple enough to explain and explore in detail, yet
complex enough to be representative of the problems we are trying to exhibit. It
would be convenient to have evidence of actual design problems, yet not such serious
problems that our discussion might raise legal issues. Since we want to demonstrate
that the methods proposed are plausible and can scale up to real systems, we need a
case study that is fully-defined, and clearly a real device rather than an abstraction (or
an inappropriate abstraction) or simplification of a real device, which while making
the paper easier would compromise the grounds of the argument that appropriate
methods are being discussed. Furthermore, we want to choose a representative device.
If we chose, say, a ventilator, would the insights generalize to other medical devices?

For scientific reasons, we wish to do work that is rigorous and replicable. This is
particularly important in work that claims to be safety related: readers of this paper
should be able to try and test the ideas proposed against the actual case study device.
The device chosen must therefore be a current product and readily available. The
Appendix to this paper provides an overview of the device definition; the complete
source code of everything demonstrated in this paper is available from a web site. The
point is that the results presented are rigorously obtained from the actual model.

The Fluke 114 digital handheld multimeter meets these requirements nicely. It is
representative because it is not a specific medical device, but it has comparable
complexity to basic medical devices, and it has a range of features that are broadly
similar.

The Fluke 114 is a mid-range device in a collection of similar multimeters, the 111
to the 117. It is a current 2007 model and costs around $100 (much cheaper than
medical devices!). We can assume the typical user is trained and conversant with
relevant electrical theory and good practice, analogous to the medical situation, where
the clinicians are assumed to be trained in theory and good practice.

Its user interface has a beeper, a knob, five buttons, and a LCD screen (see figure
1). The purpose of the meter is to measure voltage and resistance (the higher-end
models also measure current and frequency, etc), which it does with two probes. The
multimeter is safety critical in that erroneous or misleading measurements can
contribute to adverse incidents involving the user as well as other people. For
example, if we set the multimeter to VAC and measure the UK domestic mains
voltage, we get a reading around 240V. This is hazardous, and the meter shows a
small (5mm high) -like symbol as a warning. If, however, we set the meter to
measure millivolts, the reading should in principle be 240000mV. Set to mVAC the
meter flashes OL (i.e., overload) and shows . In mVDC it shows around 40mV, a
safe external voltage, and it does not show . The ranges mVDC and mVAC are just

one button press apart; perhaps a user could mistake them? Interestingly, the
multimeter has a fully automatic range (called AUTO V) where the meter chooses the
measurement range itself — in this case, it would choose VAC — and one wonders if
the technology can do that, why it does not also at least warn that the user’s chosen
range is potentially inappropriate? One also wonders why the  symbol is so small,
and why the beeper is not also used to make the user more aware of the hazard.

For the purposes of this paper, we shall assume the device probes are shorted: that
is, all readings the device makes are zero. This is analogous to discussing, say, a
syringe pump without starting an infusion. This decision means all further insights of
this paper have nothing per se to do with electrical measurement, but are general
insights equally applicable to the medical field. We shall also ignore “start up”
options in our discussion (for example, it is possible to disable the beeper on start up).
This is analogous to ignoring technician settings on medical devices. Finally, we
ignore the battery and energy-saving features (the device normally silently auto-
powers off after a period of user inactivity) and assume it is always working or able to
work.

There is evidence that the manufacturers do not fully understand the device. The
user manual has separately printed addenda, suggesting it went to print before the
technical authors had fully understood it. The Fluke web site has a demonstration of
the device (actually the top-end 117) [4] which has errors. The web site behaves as if
the LCD backlight will stay on when the device is set to Off. The real device does not
work like this (the battery would go flat). Of course, the web site is merely to market
the device and in itself it is not safety critical, but this error implies the designers of
the web site simulation did not understand the device. Put another way, the Fluke 114
seems to be of sufficient complexity to be a challenge to understand even for the
manufacturers — who in principle have full information about the design. Technical
authors, trainers and users have opportunities to be misled too.

2.1 Defining the device

We need a formal model of the Fluke 114. As it happens, we obtain this by reverse
engineering whereas the manufacturer obviously has the program code in order to
manufacture the device.

s = S[[1]];
b[r_]:=Button[#,
Print[s=action[#,s]]]
&/@actions[[r]];
b/@{{1,2},{3,4,5,6},
{8,9,10},{7}}

{ac→False,hold→True,knob→5,
 light→True,minmax→1,range→0}

2a 2b
Fig. 2. A simulation (fig 2a) representing all user actions as button presses and the display as a
textual representation of the state (fig 2b). The very little code required (6 lines, including 2 to
define button layout) shows the simplicity of creating working simulations from
specifications.

We assume the device can be represented by a finite state machine (FSM) and that
the LCD panel tells us everything we need to know to identify the state of the device.
For example, when the LCD is blank, the device is in the state Off.

For concreteness, we use Mathematica; Java or C# would be fine, as would other
systems like MathCad. However, an interactive system with a library of resources
(e.g., to draw graphs) is helpful, and Mathematica also has the advantage of being a
stable standard: everything this paper shows works as shown.

The full code needed only runs to 12 statements (see Appendix). The definitions
define a small FSM with 425 states and 4250 transitions (425 states, 10 user actions).

In reality there is no reason to suppose Fluke themselves programmed the 114 as
an explicit FSM. In fact, an FSM can be built automatically by systematic state-space
exploration from a program implementing the device, provided the program is able to
“see” the state. In other words, however Fluke programmed the device, it should be
trivial to proceed with the sorts of analysis discussed in this paper. Ideally, the
program should also be able to set the state, as this makes the state space search much
more efficient (here, by a factor of about 4), but it is not necessary to be able to do so.
If a manufacturer develops a device in such a way that this is not possible, then it
would be fair to ask how they can achieve adequate quality control.

The first property we test to sanity-check the device is that action defines a
strongly connected FSM. If a device is strongly connected, then every state can be
reached by the user from any state. (In a device that is not strongly connected, some
states may be impossible to reach at all, or some states may not be reachable if others
are visited first — for example, once an infusion is started, it is not possible to reach
any state where the patient has not started the infusion.) The Fluke 114, however, is
expected to be strongly connected, and a single line of Mathematica confirms it (or
rather its model) is. Other very basic properties to check are that every user action
(e.g., every possible button press) is well-defined in every state (see [18] for more
properties). It is worth pointing out that a Cardinal Health Alaris GP infusion pump is
sold with 3 out of 14 of its front panel buttons not working — even though the

Fig. 3. Transition diagram of the Fluke 114 FSM. The picture is essentially useless and making
it larger won’t help: contrast this with figures 4, 5 and 7, which are examples of projecting the
same device into simpler components, and are easy to interpret. All diagrams, in this and other
figures, are exactly as Mathematica generates them. For reasons of space, they are too small to
read some details that, while important for analysts, are not relevant for the purposes of this
paper, such as specific action and state names.

manufacturers claim to use best human factors design principles [2] in design, and
that the infusion pump has the same user interface as another device [1] where all
buttons work. Cardinal Health apparently failed to notice the buttons not working as
they claimed. Had they used formal methods it would have been easy to ensure the
product worked as claimed (or that the claims were modified).

In a full design process (which this brief paper cannot hope to emulate), one would
also consider models of the user, error recovery and other properties of the design
[18]. We shall see what can be done without user models…

2.2 The bigger picture

Our case study defines a finite state machine. Most real devices are not finite state,
but have time dependent features, numbers, and (often in medical devices) continuous
calculation. Actually, our approach generalizes easily to handle such issues, but it
would make this paper more complex to consider them in depth.

Another sort of bigger issue to consider is the relation of this work to HCI more
generally. We return to these issues particularly in section 3 (next) and section 6.
(Due to space limitations, the purpose of this paper is not to review the significant
literature of formal methods in HCI; see, for example, the Design, Specification and
Verification of Interactive Systems (DSVIS) series of conferences.) DSVIS covers
many formal methods, such as theorem proving, model checking, process algebras;
other alternatives include the lesser-known scenario-based programming [7], and
many proprietary methods. FSMs, however, are free, simple and easy to use: the
examples given in this paper are readily achieved with no more programming skill
than required for building a device—and they make the point of this paper more
forcefully.

3. The insufficiency of UCD

 Suppose we take a working device and analyze it with a user or a group of users. Can
they tell us anything useful? Of course, users will notice obvious features of the
design such as the YELLOW button that only works in four states: why is it needed
when mostly it does nothing? Indeed, YELLOW changes the mV range to AC and
DC, but the knob is otherwise used for VAC and VDC. This is a trivial
incompatibility a user evaluation might easily spot. This analysis then implies
considering design tradeoffs: does this design decision have safety implications or
does it have offsetting advantages? Possibly the YELLOW button has advantages for
the manufacturer — it is not labeled and can be used to extend any feature without
additional manufacturing costs. The higher-end meters use the YELLOW button for
adding numerous other features that are irrelevant to the 114. Arguably the 114
considered alone would be better without the YELLOW button.

The requirement that a device be strongly connected (see previous section) makes a
focused illustration of this section’s central claim: UCD (while necessary) is
insufficient. It is essential that the strongly connected is confirmed; for the Fluke 114

it is essential that the property is true — and in general, a designer would need to
know the strongly connected components match the design’s requirements. Checking
strong connectivity by hand, e.g., in a usability lab, requires getting users to visit
every state and to ensure that from each state it is possible to reach all others. Since
there are 425 states for the Fluke, that requires exploring up to 4252=180625 pairs of
states — and every pair needs the user to work out a sequence of actions to get from
one to the other; that is an implausible workload for a human. Contrast that amount of
work with the effort of typing a single command to Mathematica and getting a
reliable answer in just seconds!

For safety critical evaluation it is arguable that a user study should explore the
entire device. There may be hazards in its design anywhere in the state space, or some
states may be problematic in some way. The question arises: how long would a user
study take to adequately explore a device?

Mode States Edges
AUTO V 4 32

OFF 1 8
V AC 100 800
V DC 100 800
mV 40 320

Ohm 160 1280
Cont 20 160

Fig. 4. Transition diagram of the Fluke 114 FSM, projected to ignore self-loops and all
left/right knob turn transitions. Note that there is a single state (the dot at the bottom middle of
the diagram) with no transitions: this is Off.

This question can easily be answered. If the user is systematic and makes no
errors,1 a full exploration may take 10390 user actions, though the exact number
depends on the user’s strategy — for example, turning the knob tends to change to
another “mode” and therefore makes systematic exploration of the state space harder.
Requiring a user to follow 104 steps systematically is unreasonable. If the user is
somewhat random in their exploration, then the exploration effort increases though
the cognitive load decreases. If we estimate that 1 state is defective, then the
probability of a sample test of one state finding no problem is 1–1/425=0.998. If the
user tests 100 random states in a laboratory study, the probability of finding no
problem is 0.8; in other words usability testing is unlikely to find problems.
Worryingly, such simplistic estimates are unrealistically optimistic: there is no way
(unless we build a special test rig that assists the user) that a user can sample
“random” states. Since we have the actual FSM, we can calculate exactly from it, and
doing so we find that if the user does random actions with equal probability then 107
actions are expected to explore only 90% of the state space — spending this
astronomical effort on user testing has a 1 in 10 chance of missing a defective state!
Figure 6 draws a graph of the proportion of states expected to be visited by a random
user after so-many actions. “Hard to access” states do not get much easier to reach as
time goes by, at least on this device. We should conclude: (certainly) some tests
should be done formally rather than by UCD testing, and that (possibly) a redesign of
the device would make states more accessible to user testing than is the case here.

If the user is told what the intended device model is, and so has an accurate model,
and checks it by exactly following an optimal “recipe,” then 10004 actions are
required — if there is an error in the device (or the recipe) then on average the user
will require half that effort; but to confirm there are no errors requires all the actions
to be undertaken by the user without error. Determining an optimal recipe to do the

1 The user being “systematic” isn’t as easy as it sounds. The program that simulates a

systematic user took me a morning to code correctly.

pressHHOLDL

pressH*L

pressHHOLDL
holdHHOLDL

pressH*L

pressHHOLDL

pressH*L

pressHHOLDL
holdHHOLDL

pressH*L

pressHHOLDL

pressHMINMAXLpressHRANGEL

pressHYELLOWL

pressH*L

holdHMINMAXL holdHRANGEL

holdHHOLDL

Fig. 5. Exploring some subspaces in more detail, here the AUTO V mode (figure 4 diagram,
bottom left), and the Off mode (figure 4 diagram, bottom right) but now with self-loop
transitions shown (it is so pretty!) — which visually confirms that in Off nothing (other than
knob actions, which are not shown) does anything.

exploration is a complex problem, even beyond many programmers [15]: in other
words, empirical evaluation of a device is doomed unless it is supported by some
other techniques that guarantee coverage of the design.

4. Visualizing device behavior

There are many alternative ways to explore the state space of a device, rather than the
impossibly laborious manual exploration. First, we consider visualization.

Figure 3 shows a transition diagram of the entire FSM; it is so dense it is clearly
not very informative. Figure 3 makes obvious a reason why FSMs are not popular:
anything more complex than a few states makes a diagram too dense to comprehend.
Instead it is more informative to draw projections of the FSM; thus, if we ignore all
actions that do nothing (i.e., self-loops) and all knob turning, we obtain figure 4.

It is worth emphasizing how easy it is to get the visualization shown in figure 4.
The single instruction:

7a 7b

Fig 7. Visualizations of all states but projected to show only the LIGHT button transitions. In
figure 7a, there is one state (top left, which we can assume is Off) where the LIGHT button
does nothing, otherwise the visualization clearly shows all states grouped into pairs. This
visualization is informative and checks more information than a usability study could
realistically cover. In figure 7b (where what looks in this paper like circles are in fact states
with a self-looping arrow) the visualization additionally merges states that only differ in the
status of the light component; although the state Off is no longer distinguished, we are now
certain that the LIGHT button only changes the state of the light (if at all). Indeed, the
visualizations are exactly what we expect, but (even together) they don’t rigorously convince us
the properties of the LIGHT button are correct. However, together with figure 5 (which shows
LIGHT really does nothing in Off), we can see that pressing LIGHT always flips the state of
the device light, except when the device is Off (when it does nothing), and it has no other side-
effect in any state.

GraphPlot[DeleteCases[fsm,{_,turn[_]}],
 DirectedEdges→True,EdgeLabeling→False,
 SelfLoopStyle→None]

is all that is required. Mathematica then automatically identifies the six strongly
connected components of the FSM and draws them separately.

5. From visualization to formal evaluation

Pictures evidently clarify many features of the design, particularly when appropriate
projections of the device are chosen. Mathematica makes it very easy to select
specified parts of a device to explore any design criterion and visualize them directly,
but for a safety critical device we need to be sure.

The message of this section is that simple programming methods can ensure
reliable device design for a wide and insightful range of criteria. This section gives
many examples, using first year undergraduate level computer science techniques. In
an industrial design environment, the design insights could be generated
automatically, and the designer need have no understanding or access to how those
insights are generated. Readers may prefer to skim to section 6, below.

A FSM can be represented by a transition matrix, and as [16] shows, each user
action can be represented as an individual matrix, as if we are considering the subset
of the FSM that has transitions that are only that action. Hence if A is the transition
matrix for user action A, with elements 0 and 1, and s a vector representing the
current state (i.e., all 0 except 1 at sk representing the device in state k), then sA is the
state following action A. The paper [16] calls such matrices button matrices, but we
note that the matrices correspond to any defined user action on the FSM, which may
be more general than a button press. In particular for the Fluke 114, the 10 actions we

Fig 6. A cost of knowledge graph: the percentage of states a user is expected to visit after a
given number of actions. Here, 107 actions provides about 90% coverage of the state space. The
graph is based on the method of [13].

have defined over the FSM are pressing one of its 5 buttons, holding one of 3 buttons
down for a few seconds (this has no effect on 2 buttons), and turning the knob left or
right (clockwise or anticlockwise).

Because of the associativity of matrix multiplication, if A, B, C are user action
matrices, then M=ABC is a matrix product that represents the sequence of actions A
then B then C, and sM is the state after doing that sequence of actions. Evidently, we
can explore the behavior of a user interface through matrix algebra, and in a system
like Mathematica, the algebra is as simple to do as it looks.

 We can either explore behavior of states individually (as in sM) or we can talk of
user actions in any state. The matrix M defines what the user action M does in every
state, and hence matrix algebra allows us to explore very easily properties of an
interactive device in all states — something empirical work with users would find
problematic with any but the simplest of devices. To give a simple example, is
sAB=sBA then we know that in state s, it does not matter which order the user does
actions A and B. If however we show AB=BA, we then know that it does not matter
which order A and B are done in any state. Notice that two efficient matrix
multiplications and a test for equality are sufficient to verify this fact for all states (we
do not need to check sAB=sBA for every s).

In our discussion, we will show that exploring device properties is straightforward,
and moreover, we also show that finding interesting device properties (that are readily
found using matrix algebra) is infeasible for empirical techniques.

For example, if M is singular (a simple matrix property), then the device cannot
provide an undo for the sequence of actions (or, more precisely, it cannot provide an
undo that always works). For the F114 only the matrices for HOLD, YELLOW and
the STAR button are non-singular, and these all share the property that M2=I, for M
any of the three matrices.

We may think that the STAR button switches the light on and light off. We can
check visually, as in figure 7, that the STAR button pairs all states apart from Off, as
we expect. Figure 7 looks right. Even though we could easily generate many more
visualizations each refining our knowledge of the device design, we should be more
rigorous: if L is the matrix corresponding to the user action of pressing STAR, then

Exact laws Partial laws
HOLD2 = I HOLD LEFT ≈ LEFT
MINMAX LEFT = LEFT HOLD RIGHT ≈ RIGHT
LIGHT2 = I MINMAX RIGHT ≈ RIGHT
MINMAX LEFT = LEFT RANGE ≈ I
MINMAX2 = MINMAX YELLOW9≈ I
HOLD2 = HOLD MINMAX RIGHT ≈ RIGHT
YELLOW2 = I RANGE ≈ I
YELLOW LEFT = LEFT HOLD LEFT ≈ LEFT
YELLOW RIGHT = RIGHT HOLD RIGHT ≈ RIGHT
RANGE RIGHT = RIGHT HOLD MINMAX ≈ MINMAX
Table 1. Exact and partial laws of length up to 2. Matrices ‘crossed out’ represent the matrix
of the corresponding button press but held down continuously for several seconds. You can
see, for example, that holding MINMAX twice is the same as holding it once. Notice that
holding MINMAX behaves differently when followed by a left or right knob turn.

Mathematica confirms that L2=I. In other words, in every state, pressing STAR twice
does nothing: if the light was on initially, it’s still on, and if it was off, it’s still off.

We can manually explore such laws, for instance that if H is the hold action matrix
that HL=LH. (In Mathematica’s notation, we evaluate H.L==L.H, and Mathematica
responds True.) This simple equation confirms that in all states, it does not matter
which order the user sets the hold mode (or unsets it) and sets (or unsets) the light. Of
course, it turns out that some laws we expect to be true fail to hold in all states. For
example, we may imagine the hold action “freezes” the display, so we expect HOLD
followed by pressing the YELLOW button should have no effect, so we expect
HY=H, that is, the Y after H should change nothing. In fact HY≠H.

Mathematica can summarize the exceptions to this putative law; here, the
exception occurs only when the knob is in position 5 and hold is already on. We
overlooked that the HOLD action does not ensure the device is in the hold mode;
actually it flips hold/no hold, and in knob position 5 only does pressing the YELLOW
button change the meter from AC to DC when the hold mode is off.

A partial law such as this is potentially of great interest for safety critical user
interface design. Here, we found a law that holds in 99.7% of device states, but from
their experience a user is likely to believe this law is exactly true. After all, as we can
see from figure 6, even with a history of tens of millions of user actions — a
considerable practical experience of device use — a typical user will have only
explored around 90% of the state space (real users will do particular tasks often, and
their state space coverage would be less). Would they have visited a problematic state
and noticed its problem? Clearly it is important for a designer to identify partial laws
and to decide whether they have safety or usability implications, and, if so, how to
deal with the implications — for instance, by redesign or by user training. It is too
unreliable to leave it to empirical work alone.

0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

12

Fig 8. Graph showing how user testing becomes more efficient assuming we know what issue
is being looked for. Thus, the cost at the left (0 knowledge) represents an initial test, when users
knows nothing to guide their search; and the cost at the right (100% optimal knowledge)
represents a retest performed with the user given optimal instructions to test the issue.

(Although we will not explore it here, it is easy to define projections of the state
space as matrices to explore partial laws that apply within specified subspaces. For
instance we might wish to explore partial laws ignoring Off.)

To spot that the “law” HY=H fails, a user would have to visit one of the states
where the law fails and then confirm that indeed the law breaks: they’d have to press
YELLOW in one of those states. There are four such states: the backlight can be on or
off, and the “yellow” mode can be on or off (the “yellow” mode is whether the meter
is set to AC or DC volts — but the electrical details do not matter for our discussion).
Now we happen to know that the “law” fails and we know where it fails. Suppose as
would be more realistic for a usability study that we are looking for a potential design
problem like this, but of course not knowing in advance what we were looking for.
How long would a user study take to find the same issue?

Imagine a user in a laboratory exploring a device looking for similar issues, but of
course not knowing what or where they are a priori. Such a user would be behaving
essentially randomly. We can therefore set up a Markov model of user behavior and
work out the expected time to get from (say) Off to the any state where a sufficiently
perceptive and observant user would have noticed the issue. Given the matrices for
the device’s user actions — for the Fluke 114, we have ten such matrices Mi each
425×425 — we define a stochastic matrix representing the user doing action i with
probability pi by T=∑piMi. (Equivalently, we can view action matrices Mi obtained
from a given stochastic matrix of user action by setting the probability of the action i
to 1.) Given T then sTn is the expected probability distribution of state occupancy after
n user actions. This is easy to evaluate (one line of Mathematica code) and gives
another indication of the ease and efficiency of analyzing devices in this way.

Given a stochastic matrix standard Markov techniques routinely obtain the
expected number of actions [14]: on average it would be 316 actions. Markov models
also obtain many other properties that we do not have space to explore here.

The more the user knows about how to reach a state, the faster they should be. We
can draw a graph showing how the user gets faster from a state of “uniform
ignorance” (where all actions have equal probabilities) to an expert user (the optimal
action has probability 1). Figure 8 visualizes this.

Ironically, if we know the class of state we want the user to find, we could analyze
the design issue formally and not involve users at all. We need not waste user time if
we can characterize a class of design fault, for instance from previous experience with
similar devices. There should be a list of laws we wish to check hold (or fail, as
appropriate) for all designs of a certain sort.

Rather than thinking of possible laws and testing them, a short program can
systematically search for all laws, say breadth-first in increasing length until some
condition, because laws of sufficient complexity will have little significance for users.

A program was written to find all laws of the form A=I, AB=I, AB=BA, A2=A, A2=I.
Some laws (e.g., AB=I imply others, such as AB=BA) so a list of laws can be reduced
(however, AB≈B and A≈B does not imply AB≈A, etc). Also, we are interested in
approximate laws; for example, we are unlikely to find any user action A that has A=I,
but A≈I suggests the provision of the feature A is probably not necessary, or that the
few things it does must be justified. The program finds 12 exact laws and 18 partial
laws; a sample are shown in Table 1.

The partial law criterion was arbitrarily set at 10% of states. In a thorough analysis,
states need not have equal weight in the definition of partiality: we migth choose to
ignore Off altogether (since a user is presumably aware a device will behave
differently when it is off) and we might weigh states according to how often, or how
long, they are used for a representative suite of tasks.

If we look for laws when the knob is in particular positions, it is apparent that the
structure of the device changes dramatically with knob position — for example
pressing YELLOW only works in one knob position. Perhaps the YELLOW button is
provided on the Fluke 114 not because it is useful or effective, but because the 114 is
one of a range of devices and YELLOW has better use on the other models? An
unlabelled button like YELLOW is obviously useful for providing different features
in different devices, because it works across the entire range without incurring
additional manufacturing costs. Considering the 114 alone, the button appears to be
more confusing than useful: it means that VAC, VDC and mVAC and mVDC work in
uniquely different ways. Either YELLOW should have worked consistently with
VDC/VAC — hence reducing the number of knob positions by one — or the RANGE
feature could have been used so mV was an extended range of V (which is how some
other Fluke meters, such as the model 185, work).

6. Putting the approach into a wider perspective

The received wisdom in HCI can be summarized as UCD, user-centered design. It is
informative to put UCD in perspective by drawing a typical iterative design cycle, as
in figure 9.

For a device to work well, all parts of the cycle must function adequately. Using
Reason’s swiss cheese model [11], we might say that each arrow done properly is a
defense against one or another sort of design or use error, and that all must be done
well and by appropriate methods. The appropriate methods in each case are very
different, and come from different disciplinary backgrounds with different styles of
working.

UCD concentrates on the lefthand side (and often the lower lefthandside), the
“external” or human side of the cycle. The diagram makes it clear that UCD is
necessary, but also that it is not sufficient. This paper has shown that the righthand,
the “internal” or systems side of the cycle has problems being done well in industry,
but that there are techniques (such as those covered in this paper) that can address
some of the righthand side issues.

Industry needs to get both sides right, both external and internal. To date, HCI as a
community has more-or-less ignored the internal, and hoped to fix problems by even
better UCD. Unfortunately the professional skills required for UCD are very different
than the skills required for systems, which exacerbates the isolation of UCD from
technical approaches.

This paper argued not only can the internal be improved, but that it is essential to
address HCI issues rigorously internally because safety critical devices cannot be
handled thoroughly by conventional UCD, and certainly not by UCD uninformed by
formal methods.

6.1 Research versus industry

Industry and research have different goals, and in HCI the different emphases are easy
to confuse, especially as “usability” is a proper part of HCI but which is specifically
concerned with effective products rather than with effective research concepts. In
industry, the iterative cycle of Figure 8 is probably only run around once per product:
once anything is good enough to demonstrate or evaluate, it is probably good enough
to market. Every step of the iterative cycle must be good enough, though it is probably
distributed over a series of products, each cycle around generating a new product, or
an enhancement to an existing product.

From the different perspective of research, improving any part of the iterative cycle
is worthwhile, or finding out how to better conceptualize parts of the cycle — making
contributions to how HCI is done, rather than to any specific product. Yet despite the
clear distinction between research and industrial practice, the HCI community often
wants to have research cover all aspects of the cycle. In this paper, we only addressed
“internal” issues, but we showed how they can contribute to better and safer design.
As the cycle makes clear, improving internal issues will make UCD, which follows

Fig 9. A schematic of the full iterative design cycle. For the device to work, it must have a
program. For the user to understand how to use the device, they must have a model. To perform
the task, the user must have a task model, which depends on the user having the user model to
use the device to achieve the task goals. The task model defines the requirements for the
specification. The specification defines the program. The left side of the diagram, the external
side, is the main concern of UCD, the right side, internal side, is the main concern of software
development.

internalist development, easier and more reliable. And, of course, if the cycle is
pursued, better UCD in turn improves internal approaches. Each follows the other.

6.2 Interactive exploration

A separate aspect of our chosen case study is that we analyzed it using Mathematica,
a popular computer algebra system [21]. Everything described in this paper works in
Mathematica exactly as described; Mathematica makes exploring a device extremely
easy, and because Mathematica is interactive, a team of people can explore a device
testing how it works as they wish. As they discuss the device and what Mathematica
shows about it, they will have further insights into the design.

In product development, a specification of the device will be used and refined to a
program, and designers and users will explore prototypes at various stages of
development. For this paper, we had access to no such specification; instead we took
the device and its user manual to be an expression of the specification. We then built a
model of it, and explored the model. As problems were identified, we either fixed the
model, or revised our mental models of what we thought it was doing. Here, I wish to
acknowledge the help of Michael Harrison (Newcastle University, UK) and José
Campos (University of Minho, Portugal), who sat through demonstrations and helped
with bug fixes. It was they who noted how useful exploration of a device’s design
could be using an interactive tool such as Mathematica.

In a sense, then, our development of the model in this paper is closely analogous to
how a model might be developed in industry using our techniques, differing only in
the starting point: we started with a finished product; industry would start with the
idea (somehow expressed) of the product to be finished.

For research, Mathematica is ideal, as it provides a vast collection of sophisticated
and powerful features. For industrial development, of course Mathematica could still
be used, though this presumes a certain level of familiarity with it. In the future the
appropriate features of Mathematica that are useful to device design and analysis will
be packaged and made as easy to use as typical web site development tools. Indeed,
one would then consider features for managing design, not just exploring it. For
example, in safety critical design it is important to guarantee certain features or
properties are fixed, or once approved are not subsequently changed without due
process.

7. Conclusions

Both industry and the HCI research community struggle with the complexity of
modern interactive devices. This unmanaged complexity is no more apparent and
worrying than in the area of interactive medical devices. This paper provided
evidence that conventional UCD methods are faced with state spaces that are too large
to evaluate empirically, and it also showed that basic technical methods can contribute
to the usability analysis. In particular, the paper showed visualizations and formal
methods based on finite state machines and matrix algebra. In the future, the

techniques could be embedded in programming tools, and designers need have no
special expertise to use the techniques effectively as is currently necessary.

The HCI community has to date emphasized user-centered approaches, including
empirical evaluation, to compensate for the poor state of interactive system usability.
This is important but is not sufficient for ensuring safety critical systems are usable,
safe or effective. For this, analytic techniques such as those presented in this paper are
required. This paper showed how visualization and formal methods work together,
and with a suitable interactive analysis tool they support exploratory dialogue in the
design team. This paper has shown that essentially elementary formal methods can
have a rigorous, considerable and insightful impact on the design process and hence
on the quality of interactive safety critical devices.

Note: The definition of the Fluke 114 used in this paper along with all calculations
and graphs referred to is at www.cs.swansea.ac.uk/~csharold/fluke114.

Acknowledgements: The author thanks the referees for their insightful and helpful
comments.

References

1. Cardinal Health, MX-4501N_20060929_104509.pdf, 2007.
2. Cardinal Health, www.cardinal.com/uk/alaris/solutions/medicationsafety/IVsystems/

downloaded 20 May 2007.
3. Department of Health and The Design Council. Design for Patient Safety. 2003.
4. Fluke 117 Virtual Demo, http://us.fluke.com/VirtualDemos/117_demo.asp, accessed August

2007.
5. Gould, J. D. & Lewis, C.: Designing for Usability: Key Principles and What Designers

Think. Communications of the ACM, 28(3):300–311, 1985.
6. Høegh, R. T.: Usability Problems: Do Software Developers Already Know? Proceedings

ACM OZCHI, pp425–428, 2006.
7. Harel, D. & Marelly, R.: Come, Let’s Play, Springer, 2003.
8. Holzinger, A.: Usability Engineering for Software Developers. Communications of the

ACM, 48(1):71-74, 2005.
9. Institute for Safe Medication Practice Canada: Fluorouracil Incident Root Cause Analysis, 8

May, 2007. www.cancerboard.ab.ca/NR/rdonlyres/D92D86F9-9880-4D8A-819C-
281231CA2A38/0/Incident_Report_UE.pdf

10. Landauer, T.: The Trouble with Computers, MIT Press, 1995.
11. Reason, J.: Human Error: Models and Management, British Medical Journal, 320:768–770,

2000.
12. Scottish Executive: Unintended Overexposure of Patient Lisa Norris During Radiotherapy

Treatment at the Beaston Oncology Centre, Glasgow in January 2006.
www.scotland.gov.uk/Publications/2006/10/27084909/22

13. Thimbleby, H., Analysis and Simulation of User Interfaces. Proceedings BCS Conference
on Human Computer Interaction 2000, XIV:221–237, 2000.

14. Thimbleby, H., Cairns, P. & Jones, M.: Usability Analysis with Markov Models. ACM
Transactions on Computer-Human Interaction, 8(2):99–132, 2001.

15. Thimbleby, H., The Directed Chinese Postman Problem. Software — Practice &
Experience, 33(11):1081–1096, 2003.

16. Thimbleby, H.: User Interface Design with Matrix Algebra. ACM Transactions on
Computer-Human Interaction, 11(2):181–236, 2004.

17. Thimbleby, H.: Interaction Walkthrough: Evaluation of Safety Critical Interactive Systems.
DSVIS 2006, The XIII International Workshop on Design, Specification and Verification of
Interactive Systems, Lecture Notes in Computer Science, 4323:52–66, Springer Verlag,
2007.

18. Thimbleby, H.: Press On, MIT Press, 2007.
19. Thimbleby, H. & Thimbleby, W.: Internalist and Externalist HCI. Proceedings BCS

Conference on Human Computer Interaction, 2:111–114, 2007.
20. Udell, J.: Lights, Camera, Interaction. InfoWorld, 23, June 2004.
21. Wolfram, S.: The Mathematica Book, 3rd ed., Cambridge University Press, 1996.

Appendix: Definition of the Fluke 114 FSM

This appendix demonstrates how concise and flexible a FSM definition is; it provides
details of the definition of the Fluke 114 used in this paper. Programming a FSM in
any other high level language would differ notationally but would require similar
effort to using Mathematica: that is, not much. Documentation and complete code is
provided on this paper’s web site.

A state is represented as a tuple of components, such as {ac→False,
hold→False, knob→2, light→False, minmax→0, range→0},
which in this case means the meter is set to DC (AC is false), the hold feature is off,
the knob is in position 2, the light is off, the minmax feature is disabled (it can take 4
other values) and the range is automatic (it can take 7 other values). This notation
means the state can be easily read by the programmer. Within a program, knob/.s
extracts from s the value of the knob term. Our notion of state can be extended with
more components, such as doserate→2.3, units→"ml/hr",
totaldose→54.7 and so on; then to get exactly the same results as discussed in
this paper, we would then project down to a finite space ignoring such components.

We define the device by writing a function action that maps the user’s action
and the current state to the next state.

In Mathematica, the order of rules matters. First we say that if the device is Off, no
button pressing or continuous holding has any effect:
action[(press|hold)[_],state_]:=state/;(2==knob/.state)
This is to be read as “if the knob is in position 2 (i.e., off) then any press or hold

action leaves the state unchanged.”
If the device is On, then pressing the STAR button changes the state of the LCD

backlight. Here is the rule expressing this:
action[press["*"],state_]:=
 override[light→!(light/.state),state]
This is to be read as “pressing the STAR button when in state inverts the value of

the light component of the state.” Specifically, “!” means logical not, and
override means replace components of the state (here, the light) with new values.
The remaining rules are as follows:

KnobTurned[state_]:= (* any turn resets hold to False, etc *)
override[{hold→False,minmax→0,range→0},
 {ac→(3==knob/.state)},
 {light→(If[2==knob,False,light]/.state)},state]

action[turn["Right"],state_]:=
KnobTurned[override[knob→(knob+1/.state),state]]
 /;(knob!=7/.state)

action[turn["Left"],state_]:=
KnobTurned[override[knob→(knob-1/.state),state]]
 /;(knob!=1/.state)

action[(press|hold)[_],state_]:=state/;(2==knob/.state)
action[press["HOLD"],state_]:=

override[hold→!(hold/.state),state]
action[hold["HOLD"],state_]:=

override[hold→False,state]
action[press["MIN MAX"],state_]:=

override[minmax→
Mod[minmax/.state,4]+1,state]
/;((!hold||minmax!=0)&&1!=knob/.state)

action[hold["MIN MAX"],state_]:=
override[{hold→False,minmax→0},state]
/;((!hold||minmax!=0)&&1!=knob/.state)

action[press["YELLOW"],state_]:=
override[ac→!(ac/.state),state]
/;(minmax==0&&!hold&&5==knob/.state)

action[press["RANGE"],state_]:=
override[range→
(Mod[range,If[6==knob,7,4]]/.state)+1,state]
/;(minmax==0&&!hold&&(3==knob||4==knob||6==knob)/.state)

action[hold["RANGE"],state_]:=
override[range→0,state]/;(!hold&&minmax==0/.state)

action[_,state_]:=state

