
in
te

ra
c

ti
o

n
s  

S

e
p

te
m

b
e

r
+

 O
c

to
b

e
r

2
0

0
8

52

Factors to No Longer Overlook

Almost a century ago, the April
9, 1929, issue of the International
Herald Tribune reported the death
of three young brothers. All of
them had been given a dose of
thallium acetate 10 times what
was intended, because of a deci-
mal-point error.

Decimal-point errors occur
regularly. For instance, on
October 7, 1998, The New York
Times reported the death of a
10-month-old from a decimal-
point error. In May 2001, the
Canadian Institute of Safe
Medication Practice (ISMP)
reported two deaths caused by
decimal-point errors: In two sep-
arate cases, .5 mg of morphine
was misread as 5 mg. The ISMP
report mentioned that decimal-
point errors were among the first
safety issues the Institute had
dealt with when it was founded
almost 10 years ago. We are still
risking such errors every day.

What Is Interaction
Programming?
The title of this article men-
tions “interaction program-
ming,” a term I’ve introduced to
distinguish the programming
aspects of interaction from the
more-often-emphasized human
aspects [1]. Human factors and
design, together with user-cen-
tered processes, are often taken
to be all there is to interaction
design, but the hidden partner
is the details of how things work

when they are used. As they say,
the devil is in the details, and
this is a matter of programming.

This article shows that the
programming matters a great
deal. A crucial point is that good
interaction programming has
to be engineered into a device’s
design by good programmers; it
cannot be established by inspec-
tion after it is working.

A very simple example is the
Cardinal Health Alaris GP infu-
sion pump, a new model intro-
duced in 2006. I have one, and its
firmware failed, so the manufac-
turers replaced it. The replace-
ment has a new user interface
quite different from the old, but
of course the physical ergonom-
ics are identical. Although there
are some obvious differences
between the old and new user
interfaces, the exact differences
(all of which affect users) cannot
be established by inspecting the
device. Interactive programs are
too complex for unaided human
comprehension; instead, good
user-interface-design require-
ments must be engineered into
programs by rigorous, formal
processes.

User-centered methods and
processes are essential, and,
quite rightly, are emphasized
by the usability community, but
they are not sufficient to assure
safe interaction. For too long
user-centered methods and pro-
gramming have lived in different

worlds—programmers discount
human factors, and usability
people discount programming.
Users do not understand design;
neither they nor interface design-
ers can articulate the full intrica-
cies of computerized problems.
Yet programmers think their
own programs, so intuitive, so
easy to demonstrate, need no
hard work to become usable. But
all of us need to work together.

These ideas will become clear-
er by exploring interactive medi-
cal devices.

Details Matter
National agencies make detailed
recommendations on how to
write drug dosages: Always
write fractions like 0.2 mg with a
leading zero, never have a trail-
ing zero, as in 1.0 mg (it might
be read as 10, not 1), and so on.
There are rules for not confusing
micrograms and milligrams (μg
badly written could be confused
with mg, causing a factor of 1,000
error). Write milliliters as mL,
not as ml, which might be con-
fused for m1. Write slash in full
as “per,” that is, write “mL per
hr,” not mL/hr, so the / won’t be
confused. Don’t use unnecessary
decimal precision: 20.4 mg might
be read as 204 mg. And so on.
Unfortunately, little if any of this
basic life-saving advice seems to
have been picked up by manu-
facturers of interactive medical
devices.

[1] Thimbleby, H.
Press On: Principles of
Interaction Programming.
Cambridge: MIT Press,
2007.

Ignorance of Interaction
Programming Is Killing People

Harold Thimbleby
Future Interaction Technology Lab (FIT Lab), Swansea University | harold@thimbleby.net

1_IAXV5.indb 52 8/20/08 4:04:49 PM

in
te

ra
c

ti
o

n
s  

S

e
p

te
m

b
e

r
+

 O
c

to
b

e
r

2
0

0
8

53

1_IAXV5.indb 53 8/20/08 4:04:52 PM

in
te

ra
c

ti
o

n
s  

S

e
p

te
m

b
e

r
+

 O
c

to
b

e
r

2
0

0
8

54

Factors to No Longer Overlook

A typical interactive medi-
cal device allows users to enter
numbers in almost any format,
with or without decimals, mis-
leading zeros, and all without
any warnings whatsoever. A
human factors study of one
pump [2] found that three out of
five registered nurses were “par-
tially or completely confused”
over using the decimal-point key
(the user interface doubles up the
decimal point with an arrow key
that is used for menu selection).
A paper on another pump noted
that its user manual says that
it works like a calculator when
in fact it does not [3]. If a user
enters 0.0.5 on the pump, it is
taken as 0.5, whereas on a typi-
cal calculator, the same button
presses would be taken as 0.05, a
very different value. This differ-
ence could clearly lead to serious
problems. Neither pump nor cal-
culator reports any error when
more than one decimal point is
entered.

The Alaris pump mentioned in
the introduction has no numeric
keys, so it cannot suffer from
decimal-point errors as such.
Instead, it has four buttons
to increase and decrease the
current number by 1 or by 10.
Unfortunately, the close proxim-
ity of the buttons might mean a
nurse presses the 10 instead of
the 1. Here, what is intended as
a user-interface accelerator has
created a hazard analogous to
the decimal-point problems of
conventional numeric keypad
user interfaces. Overall, this may
be better or worse—one would
have to do experiments to find
out. A potentially worse prob-
lem is that different approaches
(increment/decrement versus
numeric keypad) create their
own problems: Most hospitals

have many types of devices, and
correct operation of one may be
deadly if transferred to another.
In short, we need very detailed
standards for user interfaces
so that there are no unneces-
sary proliferations of interaction
styles.

Decimal-point errors are one
of the simplest drug-calculation
errors to understand, one of the
longest consistently recognized
problems in the area, and, argu-
ably, the easiest to do something
about. Yet nothing seems to be
happening. Well, one might then
ask, is it a significant problem?

Medical errors in hospitals in a
given year cause about as many
deaths as AIDS, car accidents,
and breast cancer combined
[4]. Clinicians accept as routine
using workarounds, such as
switching a device off and on to
recover from errors—often los-
ing data (e.g., drug dose to date)
in doing so. Indeed, many near
misses are not reported because
they do not lead to adverse clini-
cal incidents. Often hospital pro-
cedures or training are blamed
for not accommodating device
design, rather than the other way
around. If a device “operates as
designed,” it is often assumed to
be designed correctly, even if (to
more perceptive eyes) the inci-
dent is a symptom of bad design,
a “system-induced user error.”

A Fatal Overdose
In 2006 a patient received a
fatal overdose of fluorouracil,
a chemotherapy drug. Here’s a
summary of how it happened,
based on the investigation [2].
The nurse went to the hospital
pharmacy with the drug order
and returned with a labeled bag
of diluted fluorouracil and a
printout of the dose details. The

nurse’s task was then to calcu-
late how to program an infusion
pump to deliver the drug at the
appropriate rate. The relevant
numbers and units are 5,250 mg
of fluorouracil diluted to 45.57
mg per mL, to be delivered over
four days. This is not an easy
problem for anybody to work out,
even without the many simulta-
neous jobs that nurses have to
juggle.

The nurse had to calculate the
rate to be delivered, 5,250/45.57
mL over 24×4 hours; he or she
should have done this calculation:

5,250
45.57

(4 × 24)

The nurse attempted the cal-
culation using a calculator, and a
second nurse double-checked the
work as a routine precaution. It’s
a simple calculation, as things
go—for instance, a calculation
for a dose of gentamicin (an anti-
biotic) is based on patient weight,
gender, and height, and involves
powers, as well as many con-
stants and conditionals.

It is easy to take the design of
calculators for granted, but we
already know that calculators
ignore many errors. So let’s look
more closely at how one was used
(though the report does not give
details, presumably because it
assumes calculators “just work”).

Calculators Are Mad, Bad,
and Dangerous
The nurse would have pressed a
sequence of buttons to perform
the calculation. For example, the
keystrokes AC AC 5250 ÷ 45.57
÷ (4 × 24) = will obtain the cor-
rect result, 1.2. However, it is
likely that the nurse did not have
a calculator with brackets, and
instead had to do AC AC 5250
÷ 45.57 ÷ 4 ÷ 24 =. What nurse

[2] Canada. Institute
for Safe Medication
Practices. Fluorouracil
Incident Root Cause
Analysis. www.ismp-
canada.org. 2007.

[3] Thimbleby, H.
“Interaction Walkthrough:
Evaluation of Safety
Critical Interactive
Systems,” DSVIS 2006,
The XIII International
Workshop on Design,
Specification and
Verification of Interactive
Systems, Springer Lecture
Notes in Computer
Science, edited by G.
Doherty and A. Blandford,
4323:52–66, 2007.

[4] Kohn, L. T., J. M.
Corrigan, and M. S.
Donaldson eds., To
Err is Human, National
Academy of Sciences,
2000.

1_IAXV5.indb 54 8/20/08 4:04:52 PM

in
te

ra
c

ti
o

n
s  

S

e
p

te
m

b
e

r
+

 O
c

to
b

e
r

2
0

0
8

55

FEATURE

trained as nurses rather than as
computer scientists. We do not
know from the incident inves-
tigation whether the nurses got
the compiling wrong, were using
the wrong numbers, or “simply”
missed a step in their calcula-
tion. But requiring nurses to do
such a complex operation as
compiling for such badly speci-
fied devices as handheld calcula-
tors is manifestly risky. The cog-
nitive load on the user will not
have helped their vigilance and
ability to detect errors. Whatever
the causes, we do know they
made an unfortunate calculation
error they did not detect.

Although compiling on a
calculator is very complex, it is
still generally easier than doing
the calculation with pencil and
paper. One of the main reasons
compiling is so complex is that
calculators are designed to do
any calculation—they are more
powerful than any nurse or doc-
tor needs. If the nurse makes
a mistake, perhaps pressing –
instead of ÷, no calculator will
complain; it has no idea what
calculation the nurse is trying to
do. It will just provide the wrong
answer.

If the design of calculators is
inappropriate for medical calcu-
lations, it is even more remark-
able that the infusion pump did
not help, as it—unlike a calcula-
tor—was specialized to medical
problems. Its design should have
been based on a task analysis
and potential user errors. An
infusion pump contains micro-
processors, and one could easily
be designed to take concentra-
tion, duration, and so on from
the nurse and do the sum itself.
Some are, of course, but not this
one (the ones that do, so-called
“smart pumps,” cost much more

knows that repeated division
is equivalent to dividing by a
product? Far more likely, then,
the nurse would have calculated
4×24 on paper or used the cal-
culator to store the result in the
calculator’s memory. He or she
would then need to do AC AC
5250 ÷ 45.57 ÷ MRC = to get the
answer.

How can one work out 4×24
and store it in the memory? A
basic calculator has a memory,
but many calculators do not have
a “store in memory” key; instead,
they have an “add to memory”
key, M+. To store a number to
memory, then, the memory must
already be zero, otherwise the
number stored will be wrong. If
the nurse starts to calculate 4×24
before zeroing the memory, it is
almost impossible to store the
result correctly.

To get the drug calculation
right, the nurse must do the fol-
lowing: AC AC MRC MRC 4 × 24
M+ 5250 ÷ 45.57 ÷ MRC =. The
buttons AC and MRC must both
be pressed at least twice at the
start, otherwise the nurse risks
the wrong answer being calcu-
lated.

In computer science terms,
what the nurse has just done is
called “compiling”; the nurse has
converted, that is, compiled, a
calculation into a sequence of
“machine code operations”— but-
ton presses—to do it. To compile
correctly, which is crucial to get
the right answer, the semantics
of the target machine (the cal-
culator) must be defined; but
we know many calculators are
very different (and, worse, math-
ematically wrong) despite even
looking alike [5]. Clearly, compil-
ing is a difficult task for any user,
and indeed one can imagine it
is especially difficult for people

despite differing only in their
programming).

Interactive Medical Devices
Are Bad Too
In the 2006 fatality, both nurses
failed to divide by 24 hours per
day, so they agreed the dose rate
was 28.8 mL per hour instead of
the correct 1.2 mL per hour. The
pump could have told the nurse
that at that rate the drug supply
(which the pump knows) would
take about four hours to be used.
This would not have been the
four days the nurse expected.
Instead, the infusion pump
merely asked the nurse to con-
firm what they had entered. They
had entered 28.8 in error, so the
pump asked if they had meant
to enter 28.8. Unfortunately,
having made the error, that was
what they thought they wanted
to enter.

Since the pump was in use
exclusively on a chemotherapy

[5] Thimbleby, H.
“Calculators are
Needlessly Bad,”
International Journal of
Human-Computer Studies
52, no. 6 (2000):1031–
1069.

 �Figure 1. The infusion pump used in the
fluorouracil incident. The pump is small
and gives the patient full mobility during
the treatment. Here, the nurse needs to
enter mL per hour but has to use Option
3, which is apparently asking for mL!
Note that the up arrow key doubles as
the decimal point.

1_IAXV5.indb 55 8/20/08 4:05:03 PM

in
te

ra
c

ti
o

n
s  

S

e
p

te
m

b
e

r
+

 O
c

to
b

e
r

2
0

0
8

56

Factors to No Longer Overlook

ward, it could have checked that
dose rates were appropriate for
standard drugs; more than 30
grams per day for fluorouracil
should have raised warnings (1
gram a day is a high adult dose
for fluorouracil). Unfortunately
the pump provided no such
checking.

The infusion pump was an
Abbott AIM Plus. In the mode
where the nurse should enter
mL per hour, the display option
is “mL” without the “per hour,”
which is incorrect (see Figure
1). Moreover, the HELP button
provides information on only two
of the three options and does
not give help for the incorrectly
labeled option!

The pharmacy computer print-
ed the label on the fluorouracil
bag, which the nurse used to get
the numbers for the calculation.
The label confusingly included
many numbers, 1.2mL/hr,
28.8mL/24h, 1312.5mg/24h … 15
numbers in all, not counting the
date and patient-identification
details. The numbers on the label
break many recommendations:
1.2mL/hr rather than the correct
1.2 mL per hr (the space before
mL is required to help avoid the
m being misread as 00), and
showing a number pointlessly
to five significant figures, and
so on. Worse, in my opinion, the
numbers were not organized
in any way that related to the
pump’s requirements. The bag
label appears not to have been
designed to help the nurse who
has to use it.

Both nurses incorrectly cal-
culated 28.8, yet this incorrect
number had also been printed
on the label, which would have
provided confirmation bias for
the nurses and distracted their
attention from relevant detail;

indeed, the cognitive load of
compiling a complex calculation
would have reduced their error-
detecting vigilance in general.

The ISMP report commissioned
a small human factors study of
the Abbott pump: It identified
numerous problems [2]. Why
aren’t devices made consistent
with best clinical practice, so
that operator training becomes
simpler, rather than the other
way around? Why does the
report say in its recommenda-
tion 10A that nurses should be
trained that “mL” on an infusion
pump means “mL per hour”[2]?
Why does recommendation 10B
ask purchasers (hospitals) to do
human factors studies of pumps?
The same answer to both ques-
tions is that for the time being
manufacturers—and national
regulatory processes—can’t be
relied on, and hospitals therefore
have to train nurses to cope with
bad design. That also means that
when things go wrong, as they
do, that the nurses or the train-
ing has failed: It’s then a very
short step to blame the nurses or
their management for the conse-
quences.

Alternatives Are Possible
I spent a day programming an
Apple iPhone to explore ways of
improving things (see Figure 2).
With my prototype you can hold
in your hands a working system
that avoids some of the problems
described above. It can be down-
loaded from harold.thimbleby.
net/health.

The iPhone stimulates many
ideas, For example, it has a cam-
era and could photograph the
drug barcode and check that it
was what was expected; it could
require a second nurse to check
the calculation; and so on. On

 �Figure 2. The proto-
type dose calcula-
tor running on the
iPhone (it also works
on desktop Web
browsers). The open-
ing screen is red and
shows that a dose
and drug concentra-
tion have not yet
been provided. The
tabs at the bottom of
the screen allow the
user to choose which
numbers to enter;
they allow users to
enter numbers in
any order, unlike an
ordinary calculator,
where changing
order would create
errors.

 �Figure 3. Entering
the drug concen-
tration, using the
keypad. The screen
scrolls up, and the
numeric keyboard
appears when a
number field is
tapped. The “Rate”
tab is red, indicating
outstanding errors;
at this point one of
the errors is that the
user has not finished
entering the concen-
tration.

 �Figure 4. Once all
numbers are entered
correctly, the main
screen goes green
and summarizes
the dose details. It
also confirms how
long standard sizes
of drug will last
and what the daily
dose is.

1_IAXV5.indb 56 8/20/08 4:05:04 PM

in
te

ra
c

ti
o

n
s  

S

e
p

te
m

b
e

r
+

 O
c

to
b

e
r

2
0

0
8

57

FEATURE

If the calculator communicated
with the electronic patient record,
all numbers could be automati-
cally provided—hence, correct—
or they could be confirmed by
the nurse rather than entered
manually. This would avoid
transcription errors. If protocol
requires nurses to be responsible
for calculations, the iPhone could
show a checksum for the correct
answer: The bag label would say
something like “if you don’t get
X5Q [the checksum], you’ve got
the wrong answer.”

Conclusions
It is astonishing that a life-
threatening problem that has
been recognized for a century
has had such little impact on
interaction design. Why are basic
errors ignored by interactive
medical devices? As the iPhone
showed, better interaction pro-
gramming is easy to explore.

We could save many lives
if we made people aware that
poor interaction programming
is a significant factor in medi-
cation incidents. Lawyers who
represent patients and clinicians
need to know more. We already
have many good recommenda-
tions to improve design [6]; this
article has argued that these
recommendations should also be
applied to the details of interac-
tive design.

Investigatory bodies, analyzing
incidents, must include people
trained in HCI. This has already
started, and the role of ergonom-
ics and human factors is increas-
ing, but expertise in interaction
programming is essential too. It
should be normal for manufac-
turers to employ programmers
with appropriate postdoctoral
specialist qualifications—just as
pharmaceutical companies do.

the other hand, the iPhone is a
new approach, so it might not
work as well as expected without
further development.

Using a conventional calcula-
tor, a dose calculation would
report very few errors—perhaps
an accidental division by zero.
It would just display “E” (and a
wrong number) when there is an
error. Unlike conventional calcu-
lators, the iPhone provides a clear
explanation and, importantly,
no number that could be misin-
terpreted is displayed. Using the
iPhone for the calculation above,
potentially 52 errors can be
detected, and some are detected
during incomplete steps, such as
when the nurse is entering 45.57
but has not yet entered the deci-
mal portion of 57.

On the iPhone, a nurse cannot
easily do the wrong calculation,
whereas on a conventional cal-
culator, it is easy to hit + instead
of ÷ and never notice. The iPhone
has no operators, and therefore
the user cannot employ the
wrong ones. The iPhone also uses
correct units (mg and so on) and
checks that they are used con-
sistently; a conventional calcula-
tor has no idea about units and
cannot help the user avoid errors
related to them (say, mixing up
milligrams and micrograms).

To make numbers easier to
read, the iPhone shows a clear
decimal point with the decimal
part smaller, as in 45•57 (see
Figures 3 and 4), and large num-
bers are shown with commas
(another recommendation the
fluorouracil bag ignored), as this
reduces confusion between num-
bers like 100000 and 1000000. (I
don’t currently require users to
enter commas; it would be an
interesting study to see if their
use would reduce errors.)

Regulatory bodies should
also be vigilant in preventing
problematic designs from being
approved. Interaction is com-
plex: Program specifications and
source code must be checked
using formal tools, otherwise
inconsistencies and other prob-
lems will not be detected (this
is a fundamental theorem of
computer science). This article
addressed “simple” problems
with numbers, but no usabil-
ity study can ensure that all
numbers, both well-formed and
erroneous, are handled correctly.
(And number entry isn’t the only
design feature that needs check-
ing.) In short a usability study
can help check that a design is
appropriate for users and their
tasks, but the entire design must
also be checked by formal meth-
ods. Quality assurance has to be
done in the beginning using rig-
orous manufacturing processes,
not later by regulatory bodies or
by hospitals—or by users finding
the bugs.

There are many more ideas;
changing culture is never
easy, and it will require many
approaches. Lives depend on us.

For more information, I’ve
begun to put some resources
together at http://harold.thimble-
by.net/health.

About the Author 
Harold Thimbleby wrote
Press On: Principles of
Interaction Programming,
which won the American
Publishers Association best

book award in Computer and Information
Sciences in 2007. Press On has more
design recommendations for interactive
devices, not just medical devices. Harold is
a Royal Society-Leverhulme Trust Senior
Research Fellow, and the work here was
also supported by EPSRC Grant EP/
F020031. See harold.thimbleby.net.

DOI  10.1145/1390085.1390098

Permission to make digital
or hard copies of all or part
of this work for personal or
classroom use is granted
without the fee, provided
that copies are not made
or distributed for profit or
commercial advantage,
and that copies bear this
notice and the full citation
on the first page. To copy
otherwise, to republish,
to post on services or to
redistribute to lists, requires
prior specific permission
and/or a fee. © ACM
1072-5220/08/0900 $5.00

[6] United Kingdom
Department of Health.
Design for Patient Safety,
2003.

1_IAXV5.indb 57 8/20/08 4:05:14 PM

