
Symmetry for successful interactive systems

Harold Thimbleby
UCLIC, UCL Interaction Centre

26 Bedford Way
LONDON, WC1H 0AP
+44 (0)20 7679 5357

h.thimbleby@ucl.ac.uk

ABSTRACT
HCI has some rich and suggestive ideas, like affordance
and direct manipulation. Abstract (not just geometrical)
symmetry is a powerful explanation of why these concepts
work, and it can be generalised to guide new design for
more effective user interfaces. Symmetry makes user
interfaces easier to learn, easier to use, and easier to
program — and hence more reliable. Symmetry raises in
very clear ways many design trade-offs. In particular,
symmetry can be abused when it used to design only
superficially symmetric systems, which may look good but
are deceptive.

Keywords
Affordance, ambiguity, direct manipulation, illusion,
objects, symmetry, user interface design, virtual reality.

INTRODUCTION
It seems self-evident that interactive systems of all sorts
could be easier to use. Whether we are using consumer
products such as photocopiers or mobile phones, or walk up
and use systems, or bespoke products such as aircraft flight
management systems…, there are always sources of user
problem. Many problems seem, in hindsight, to be
avoidable. The problems that, further, seem correctable are
the ones we most regret and are perhaps the most
motivating parts of the field of HCI.

Apart from the simplest of systems (such as light switches),
interactive systems are far more complex than their user
interfaces can directly reveal. Users’ models of systems
have to be simpler than the systems themselves. An
inevitable consequence is that user interfaces are
ambiguous. Users find out how to use ambiguous systems
by interacting with them: the interaction provides the
missing information. If this interaction is to provide useful
knowledge, the system and the interface must be structured
in such a way that the user gains insight. Conversely,
humans are enormously complex (and situated in the
world), and computers cannot model them without
ambiguity. If interaction is to provide useful knowledge,
the user and the interface must be structured in such a way
that the computer gains insight.

Unfortunately interaction almost always changes the state
of systems in unintended ways, and perhaps in ways that
cause the user further problems. Users become reluctant to

experiment to solve their problems, because experience
shows that experiment may only make things worse.

In the physical world in which we live, things are very
different. We learn that objects have natural ways to be
used, and that rules of interaction once learnt are reliable.
Interacting with objects (except in extreme ways) never
breaks the objects or unintentionally changes them beyond
usefulness.1

THE ROLE OF SYMMETRY IN DESIGN
Formal ideas of symmetry can be used directly in user
interface design. Humans are very well adapted to detecting
and exploiting particular sorts of symmetry (generally, ones
relevant to the physical world): when these are used in
interactive systems, users are enormously empowered.
Many user interfaces that are “easier to use” map the
fundamentally complex state space of the computer system
onto simpler spaces that behave in simpler ways by
embodying familiar physical symmetries.

The core role of symmetry can be expressed as design
recommendations:

• When designing a new interactive system, find out
what the symmetries of the user task and activity are.

• How can these symmetries be represented in the user
interface?

• How can the user interface support the user interacting
with objects without changing them, so that they can
eliminate ambiguities and illusions?

• and so on, as this paper will elaborate.

Symmetry is also aesthetic, and it is tempting to make user
interfaces look symmetric — regardless of their underlying
structure. As a design recommendation, therefore, it is
important to separate task symmetries from aesthetic
presentation decisions. For example, it might look nice and
symmetrical to have a row of identical looking buttons, but
if the underlying system does not have the same
symmetries, the visual symmetry is superficial and
misleading. Users will succumb to capture errors [12] —

1 Such operations typically generate a group. Although

group theory is implicit in much of this paper, it has been
written to be intelligible without recourse to abstract
algebra, but see [10,21,22,23].

and in safety critical systems, users (and designers) would
be well-advised to put different labels or markers or other
symmetry-breaking features over the switches to reduce
confusion. (See the section below, on ambiguity.)

BACKGROUND CONCEPTS
Affordance was introduced by James Gibson [7] to describe
invariant properties objects have that encourage particular
use. His ideas were part of a larger ecological psychology
programme, but were picked up by Don Norman in his
Psychology of Everyday Things [13] and applied to the
design of physical artefacts, such as switches. In turn Bill
Gaver [5] extended the ideas to user interfaces, and raised
issues such as the affordances of buttons. In this form, the
concept of affordance entered HCI lore, though it raises
certain issues: a picture of a button on a screen can’t
successfully be pressed (unless it is a touch screen), so in
what sense does it have an affordance to be pressed? What
is important is that an observer readily perceives the
affordances, and therefore believes that certain actions can
be undertaken with the object. In the real world, typical
affordances are represented by concepts such as ‘graspable’
and ‘throwable.’ In most user interfaces, objects look like
they have affordances, and the user has to rely on many
learned conventions. The affordances of an object are
invariant over a wide range of observation conditions, and
this is what interested Gibson. Even when objects are at
strange angles, partly occluded, moving, and so forth,
humans are very good at recognising their affordances.

Norman later revisited affordance and made some finer
distinctions that had been glossed by practitioners [14].
Affordance is a controversial and sophisticated concept in
psychology; here we are interested in it as an abstract
concept. Whether Gibson had the right psychological
explanation is irrelevant here; we need concepts that work
for design.

Symmetry is a well-known concept [23], and often applied
to visual pictures and patterns. An object or picture having
mirror symmetry, for instance, means it looks the same if it
is reflected in a mirror. Most generally, symmetry is an

algebraic concept: objects have symmetries if they can be
transformed and yet preserve certain properties. A simple
example is a symmetric function f, where f(x) = f(–x). Here
the transformation of reflecting the coordinate system (x
goes to –x) leaves the property f unchanged. If we draw the
graph of such a function (e.g., the square function) it looks
symmetrical: see Figure 1; however, in general symmetries
need not have simple visual forms. In particular, in this
paper we are interested in symmetries that apply to
interaction, the transformation is therefore something the
user does through interaction over time, and the preserved
property or properties is something the user wants out of
the interaction.

We will use the term natural computation to refer to
whatever the brain and body (perceptual, motor, cognitive
functions) do most effectively. Humans are clearly very
flexible and powerful computers, but some things we do
effortlessly — particularly in problems involving
perception, visual recognition [4], spatial location — and
affordance. For example, our perceptual system readily
identifies pictures of buttons in large screens of other
information, particularly if the pictures have depth features
such as shading.

Natural computation is technically the term used for
computation “in the world” [1] — such as the computation
soap bubbles do in finding shapes of minimum energy. This
use of the term is consistent with ours, although we are
obviously more interested in how humans interact with
computers than how soap bubbles might. So, in this paper,
by natural computation we mean computation as is
achieved by humans, and we are not committed to whether
the computation occurs in brains, retinas, or anatomy or
otherwise.

Natural computation does not make all things equally easy.
Human natural computation is very specialised, and this
must be borne in mind if design is to be effective. Friedhoff
and Peercy [4] give some persuasive examples both of the
power of natural computation and the ease with which
apparently trivial changes in representation can defeat it.
Reeves and Nass [16] gives some examples of how natural
computation applies also to certain social situations; see
also [6]. Byrne [3] gives an excellent account of cognitive
models applied to conventional HCI.

SYMMETRY, AFFORDANCE AND INTERACTION
Elsewhere I pointed out [21,22] that symmetry captures a
key concept in affordance. Specifically, humans recognise
symmetries in objects (in the general algebraic sense, not
just simple mirror and rotational symmetries), and
particular symmetries define affordances.

A simple example will illustrate these ideas: a knob that has
an affordance for turning has rotational symmetry. Indeed,
if the knob had no rotational symmetry it would be
impossible to turn (though it might be attached to an axle

-3 -2 -1 1 2 3

2

4

6

8

10

Figure 1. Squaring, a simple symmetric function
about x = 0.

which had hidden rotational symmetry that enabled it to
turn). Humans may learn that pointer knobs, which have no
externally obvious rotational symmetry, can indeed be
rotated. When such a knob is rotated, it does not break — it
is still the same knob. Its ‘knobness’ property is unchanged
through rotation.

Symmetry, then, formalises at least part of affordance.
Affordance works because humans learn to (and have
evolved to) associate symmetries with perceptions. Since
symmetry is a very general concept, we need natural
computation to filter the symmetries that are salient (i.e.,
ones which a user might detect easily, preferably
‘automatically’) from ones that are technical symmetries
that are present but which would take a user too much, or
distracting, effort to detect. If a user has to get into formal
reasoning to understand a design, then they are not using
natural computation directly — they are using it to create a
virtual machine to do (typically conscious) reasoning.
Inefficiency cannot lead to an affordance. Such inefficiency
is also the source of the user pursuing conscious goals — of
course, that is an essential part of interaction [11] — but it
can only happen reliably when the user interface works the
right way, at the level we are focussing on in this paper.

Symmetry in design
Symmetry allows affordance to be used constructively in
design. An ordinary pencil has various affordances, and if
we allow that people learn, it has affordances for gripping
and writing. Furthermore, a pencil has various symmetries.
Since pencils are cylinders (typically circular or hexagonal)
they have two major symmetries:

• Rotational symmetry about their long axis. This
symmetry allows a pencil to be grasped at any angle,
and it will work just as well. The flexibility endowed by
the symmetry makes a pencil easier to use than, say, a
fountain pen.

• Mirror symmetry end-to-end. This is a partial symmetry
for most pencils, since only one end is sharp. This near
symmetry makes a pencil harder to use: a user might
mistakenly pick it up with the wrong orientation. This
near symmetry is motivated more by aesthetics than the
needs of writing.

• A child’s pencil may further break symmetry, for
instance having a strangely shaped writing end. The
intention is to train the child to hold pencils properly.
Here, the goal is not to have an easy-to-use writing
instrument, but to train the user. As with any design
principle, use of symmetry has to be traded-off against
other priorities.

From this small example, the relations of symmetry,
usability and affordance are clear. Exact symmetries make
objects easier to use, whereas partial symmetries tend to
make objects misleading and harder to use. A poignant

example of this was a death caused by a partially
symmetric X-ray [2].

Consider, next, a clock. Time has cyclic symmetries. Today
at 12.30 is the same as tomorrow at 12.30 (on a clock,
maybe not on a calendar). The only physical way to
represent general cyclic symmetries is in rotational
symmetry: hence analogue clock faces. Reference [21]
develops this example to alarm clocks and to digital alarm
clocks, both interactive forms of clock.

The problem with these initial examples is that they are
simple; indeed they are hindsight. This paper now turns to
providing more substantial examples, interleaved with
developing the rationalisations.

Direct manipulation
Prior to the invention of direct manipulation (DM), general
purpose user interfaces were textual and command based.
Command languages have various usability problems,
particularly in how they handle user errors. DM removes
problems of textual command based interfaces and
provides something far more natural and easy to use.

Direct manipulation user interfaces have been very
successful, and this is obviously because objects are
represented on the screen so that they seem to have
affordances that suit their manipulation directly by moving
the pointer (typically, a mouse).

DM is part of a larger complex that has many other features
[8,9,17], such as requiring rapid response to interaction.
Symmetry is relevant in several ways:

• When objects are dragged around the screen, they are
still “the same” objects. The standard DM operations —
selecting, dragging — are transformations that preserve
properties: in other words, symmetries.

• The 2D symmetries that a user can experience on the
screen (and with the mouse) are familiar, indeed
natural, to users because these symmetries apply in the
real world.

• Some essential features of DM (such as reversible and
incremental actions) relate to the formal ideas of
symmetry (i.e., group actions).

In short DM works because the complicated and generally
arbitrary state space of the program is projected into a
space with natural symmetries, namely a 2D Euclidean
space. Another important feature is that DM factors the
projection into objects. Each object is projected in to the
2D space independently. This orthogonality is crucial to
DM’s ability to scale up gracefully (useful for file system
interfaces): user tasks involving multiple objects only
become linearly more complex at the user interface,
whereas in conventional user interfaces there would be a
combinatorial explosion that the user had to deal with.

The human perceptual system is naturally attuned to
recognising the visual representation of objects. In DM, it

takes essentially no effort to perceive objects and to
transform them. This is very different from, say, text-based
interfaces, where a user has to consciously ‘work out’ what
is what.

Conceptually, DM is hard to implement, but fortunately it
lends itself to object oriented programming. Programmers
can deal with representations of first class objects
explicitly, and the programming paradigm hides how to
project those objects onto the user interface. DM systems
tend to be more reliable than other approaches because of
this hidden support — bad programmers cannot easily get
the crucial user interface code wrong!

AMBIGUITY
Systems may be unusable because they are slow, because
they do not support the design requirements, because they
are designed in a way that seems to encourage errors… and
for very many other reasons. A large class of fixable
problems occurs where the user does or starts some action
other than the optimal action at that point in an interaction.
A special case of an action is of course where the user does
nothing, perhaps believing that this is the best that can be
done, when in fact the system has various relevant options
that the user has not tried.

In this particular sense of unusability, an unusable system is
one that is ambiguous. Ambiguity allows the user to do
various things, but somehow or sometimes the user does
the ‘wrong thing’ (which can include doing nothing).

Ambiguity has been heavily studied. From a user-centric
perspective, it is important to distinguish between slips and
mistakes [15]: different sorts of error arising through either
wrong actions or wrong intentions. From a system-centric
perspective, two quite separate ideas have been conflated as
mode. In one view, a mode is an interpretation of the user’s
actions: if the system is in the wrong mode, the correct
actions will have undesirable effects. A simple example is
the modes that windows create: a user may ‘type into’ the
wrong window thus with unintended effects [19] —
whether this error occurs because of a ‘slip of the mouse’
or some deeper intentional error is irrelevant to the
classification. The other meaning of mode is a context that
forbids alternative action: hence the phrase, “don’t mode
me in” [18] — dialog boxes that have to be attended to are
examples of modes in this sense. Modes in the former sense
are examples of ambiguity; modes in the latter sense are
where the user wants control over ambiguity!

Optical illusions
It is very hard to be abstract in HCI, since any illustrative
example is so interesting in its own right that the abstract
ideas easily get lost in the detailed possibilities that relate to
the concrete example. To take a step back, then, we will
briefly consider another source of ambiguity: optical
illusions.

The familiar 3D world does not offer many clear examples
of ambiguity;2 but we are very familiar with 2D
representations of 3D, which do. When 3D objects are
projected onto 2D, information is thrown away, and
inevitably some images can be interpreted in more ways.
Our 3D “perceptual instruction set” makes errors when
only provided with 2D information. Many optical illusions
follow.

Illusions (of any sort) are perceived discrepancies from the
truth, and — by definition — very rarely do we notice
illusions except when they are pointed out to us. A wide
range of two dimensional optical illusions have been
devised, and we have become quite familiar with many —
so much so that we often identify illusions because we have
seen them before, not because we fall again for the
perceptual confusion.

Briefly, optical illusions are perceptions about figures that
can be changed by viewing the figure differently. In
particular, using a straight edge or a measuring ruler can
often provide persuasive evidence that the appearance of
the figure is deceptive. Since we know straight edges are
always straight and rulers always of the same length, if they
give unexpected measurements in different parts of a figure
then our perceptions must be at variance.

In some illusions, the ambiguity is essentially artificial
(e.g., the Muller-Lyer illusion; see Figure 2). The image is
objectively unambiguous, as it were, but it appears different
to what it ‘really’ is, as revealed by interaction with more
reliable instruments such as rulers. Other illusions are
deliberately ambiguous (e.g., the duck-rabbit) — in 3D
reality, one could easily tell the difference by going up to
the supposed duck-rabbit and offering it a lettuce. (The
psychological processes relevant in each case are very
different, but that is beyond the scope of this paper.)

We circumvent the impasse of illusion by interacting with
the illusion. On future encounters with the illusion, we no
longer unwittingly experience the ambiguity. We say the
lines are the same length, despite appearances, or the figure
is “a duck-rabbit,” or whatever. Perhaps there are too many
perceptual effects called illusion to generalise too easily,
but the key lesson is:

Ambiguity is resolved by interaction

Gibson stressed this: if a user is forced to sit passively,
almost any image will be ambiguous; if the user is free to
move and interact, changes in sensations will be tied to the
movement. In the Muller-Lyer case, interaction is a trivial
matter of using a ruler. There is an important caveat, which
applies to HCI too: ambiguity can be resolved by learning
as well as or instead of by doing. There may be other ways

2 Unless you are trying to explain 4D or more complex

objects — er, like computer programs.

of establishing what is going on than by direct interaction,
such as imagining what is happening, reading a good user
manual, and so on.

To summarise: very many illusions can be explained by
arguing the human visual system is designed for three
dimensions. Two dimensional figures create illusions when
they trigger ambiguous recognition of fragments of three
dimensional images. In the 3D world, we can walk up to an
object and check it: our embodied visual system is not
fooled. In the 2D illusion, we have to decide whether the
image is a projection from 3D or an abstract 2D image.
Crucially, as we change our point of view, we get different
perspectives, but neither in 2 or 3D does the object itself
change. Hence, to disambiguate visual images, we rely on
symmetry.

ABSTRACT SPACE
We live and interact with objects in a 3D Euclidean space.3

Evolution has endowed us with impressive perceptual,
cognitive and other skills to cope with and manipulate 3D
objects and events. Optical illusions give us one example of
how presenting a 3D world in a lower dimensional form
creates ambiguity (either directly or because perceptual
systems evolved in 3D are confused), which can only be
resolved — if at all — by some sort of interaction, such as
employing a ruler or moving in 3D. In either case, we rely
on the object not changing as we change our point of view:
we rely on symmetry.

Computer systems operate in enormously complex discrete
spaces, and we see them through user interfaces of much
lower dimensionality. The 2D screen of most computer
systems has far fewer dimensions than the dimensions of
the space it represents. Inevitably “optical illusions” follow:
images on the screen have multiple meanings and users
may misinterpret them. (cf. Modes arise when the same
appearance can mean several things.)

3 We are in space-time too with information spaces, such as

sound and other modalities, but this is not a paper on
physics.

As with optical illusions, to reduce ambiguity, we need to
interact. Unfortunately, most times when we interact with
computers the interaction changes something else. Far from
resolving ambiguity, we suffer from side-effects of our
interaction.

Ambiguity can only be resolved by interaction that
preserves the invariants that were represented ambiguously.

One of the key reasons why computer systems are hard to
use is that they do not provide natural ways of interaction
that allow users to resolve ambiguities without side effects.
Whereas a typical perceptual illusion can be resolved by
walking around it, or getting out a ruler, interacting in even
quite trivial ways with a computer makes the original
confusing state of affairs unreachable before we even know
what it was.

Direct manipulation revisited
In DM, the complex multidimensional space of a running
computer program is projected onto two 2-dimensional
spaces: the screen and the mouse surface. Once the user has
become accustomed to the translation of the mouse space
into the screen space — which is peculiar particularly at its
boundaries when the mouse runs into things and cannot
move further — there is an almost natural 2D space to
interact in.

Direct manipulation is very successful for implementing
office and bureaucratic tasks, because these tasks are
familiar to users in 2D spaces — namely as bits of paper.
Folders or directories are more problematic because they do
not have traditional 2D representations: the representations
of folders are typically ambiguous.

(i) We expect illusions. Unless the program is running a 2D
(or less) model, it cannot be projected into two dimensions
without ambiguity. (All sorts of visual conventions are
created to help reduce ambiguities; scrollbars being an
example — we cannot project the entire text of a document
onto a small screen and still be legible, so scrollbars are
used to at least indicate where in the document the
projection is coming from.)

(ii) We expect ambiguity to be resolved by interaction. The
user may be unsure whether an icon represents a file or a
folder. A disambiguating interaction is to first try dragging
something onto the icon. If the icon highlights, it is a folder
(and if released the other object would relocate within it),
otherwise it is a file. There are typically other
disambiguating interactions, such as invoking a ‘get info’
command on it. Conversely, just looking at the screen
without interaction is not going to disambiguate the icon;
interaction is essential.

(iii) We expect the user to detect 2D invariants easily,
because the user has evolved in the natural 2D/3D world.
For example, when objects are moved or rotated in 2D
space they are ‘the same thing’ (an invariant), and this is
easily recognised. DM exploits such invariants, both

Figure 2. The Muller-Lyer illusion. Notice how one
vertical line looks longer than the other;
measurement will reveal they are the same length.

directly and subtly. Directly, when an icon is moved the
perceptual system does some tricky visual computing and
recognises it is the same object as it is moved around the
screen space. More subtly, when the user tries to move a
complex object the computer may have been programmed
to move only an outline, since this is more efficient. Now
there are two objects corresponding to what the user has
selected, but the user is not confused because this invariant
(single things stay single things) is so rarely broken in the
real world, it is easy to ignore.

(iv) We expect some application and tasks to map cleanly
onto 2D. Thus drawing and painting programs were some
of the early and most persuasive applications of DM. Office
applications are typically based on pieces of paper: paper is
a natural 2D medium, and once scrolling is sorted out, it
maps cleanly to the 2D screen. Desktops, too, are 2D.

Overlapping in 2D is sometimes called 2.5D, and this could
be discussed further— for instance, elaborating the way
natural computation can detect occlusion and overlapping
easily. The key point is that 2.5D is still a lower
dimensionality that most applications require, and the
discussion about DM (which was restricted to 2D) applies.

Unresolvable ambiguity requires redesign
Suppose we are using a video recorder to record a favourite
programme, and we are watching it on the TV. My video
recorder does not say what channel it is recording, nor does
the TV. One way to check whether the TV is ‘watching’ the
channel the VCR is recording is to stop the VCR recording
and try changing the channel: if nothing seems to happen
on the TV, then the TV is tuned to another channel. There
is an ambiguity, but the interaction to disambiguate the
state has the unfortunate side-effect of guaranteeing the
VCR would not be recording what we want!

You might think that we can change the TV channel to
confirm what the VCR is recording. However, without the
remote control, we can only increment or decrement the
channel — it cannot be set to a particular channel directly
(in this case, we’d like to be certain it is set to watch the
VCR channel). If you try changing the channel, you just get
another programme — which is what happens regardless of
whether or what the VCR is recording. In this case, we can
interact, and the interaction has no unintended side-effect
on recording, but it does not tell us anything that helps
disambiguate the problem.

The solution, of course, is to redesign the VCR user
interface. It should display the channel number it is
recording. Or the TV display the channel number (perhaps
on demand); or the TV should have buttons that select
specific channels…there are many solutions. Another
problem, again clearly expressed as a failure of symmetry
in the design, is that the user interface on the TV is
different from the user interface on the remote control. The
laws of interaction on the remote should apply on the TV

too: if they did, the TV would not just have had incremental
channel change buttons, and the problem would go away.

The value of symmetry is that it has provided a concise,
analytic description of a problem (here necessarily
hindsight, but with some sense that it might have
anticipated the problem during the design process), with
hints of solutions.

• the user interface is ambiguous;

• it does not have symmetries for the user to resolve the
ambiguities conservatively (without side effects).

How a designer chooses to proceed is another matter; that
they do proceed because they know there is a problem to fix
is what is important for improving the user interface.

Digital alarm clocks
Setting an alarm clock requires checking (or believing) that
the clock is correctly set. In many alarm clocks, it is very
difficult to be certain.

There is no simple experiment that can be undertaken to
check how to set an alarm, or to check what time (e.g., AM
or PM) the alarm has been set to. One way to check might
be to set the alarm (hopefully), then change the time of the
clock to a few minutes before the alarm time.
Unfortunately, many alarm clocks reset themselves after
ringing, so this process may have to be done more than
once so that the user can learn the correct procedure — to
use it one final time that is not checked (until the alarm
rings or fails to ring the next morning).

The main problem is that most digital alarm clocks project
the time and alarm state spaces, that is, two times, onto a
single time display. Only four digits are used, when eight
are needed to be unambiguous.

If enough digits cannot be used (for cost or space reasons)
then the solution is to make it very clear to users which
number is being displayed.

Small screen browsing
DM (or graphical user interfaces more generally) was a key
reason for the popular uptake of the world wide web.
Window-based browsers made interaction with the internet
more natural. For example, multiple connections — which
would be very confusing using text based interfaces — map
nicely to separate windows. Even though windows may
overlap, the human visual system is adept at recognising
the ‘top’ and therefore active window. (We are very
familiar with the style of interaction, and it does not need
spelling out further here.)

The success of browsers encouraged moving the interface
to the small screen, and the design of a new protocol WAP.
However, WAP was a usability failure, particularly in
comparison to the phenomenal success of SMS and
conventional browsing. One major reason for the failure
was that the small screen eliminated natural visual concepts
like overlapping windows. Natural computation was no

longer used to support complexity; simultaneously the user
had additional burdens, such as increased demands on
scrolling.

In short, WAP tried to retain the sophistication of desktop
browsing but through a smaller screen, eliminating
windows and DM, while making the user interface even
less able to exploit natural computation. (Most WAP
devices also eliminated the mouse and its 2D plane.)

The design solution would either have been to make the
business and social use models much more attractive to
compensate; to reduce the ambiguity in the user interface;
or to increase symmetries, and hence increase ways in
which the user can safely interact to disambiguate.
Unfortunately, the network model of WAP ensured that all
interaction was at direct cost to the user, a further
disincentive to use.

Microsoft Word
This paper was written using Microsoft Word. The paper
has two figures, and as the text of the paper was edited in
Word, the figures jumped around unpredictably, moving
horizontally and vertically, even partially off the page on
some occasions. As the user interacted with Word, the
transformations to the text did not leave properties of the
figures (their position or relative position) unchanged. A
symmetry that would have made Word easier to use has not
been implemented.

Word is an example of a so-called WYSIWYG editor: what
is on the screen is what is printed [19]. Actually, no. What
should have been a simple symmetry (transform the space
from screen to paper, leave layout unchanged) fails in
numerous ways. Also the 2D Euclidean symmetries of
paper are not present in the text editor: cursor keys do not
move in a 2D space, as one might have expected [19].

When text fields are edited in Word (e.g., in forms), the
details of interaction are very different than when editing
other types of text. For example, it is not possible to select
continuous fragments of text using the mouse, as one can
do elsewhere. The obvious symmetry, namely, “rules of
editing are the same in all contexts,” has not been
implemented. Curiously, Word must be a larger program
because of the ad hoc ways in which it has been
implemented: more symmetries in its user interface would
have made the program smaller and easier to manage.

Unfortunately the user manual for Word does not describe
these differences in text editing in various contexts (body
text, fields, tables, equations, footnotes, bulleted lists,
dialogue boxes, and so on, as well as the various side-
effects of autoformatting affecting editing rules — all of
which are subtly different). The documentation gives a
misleading impression of Word’s symmetries. As we saw
with the pencil example, this appearance of symmetry
inevitably encourages errors and makes Word harder to use
than it need have been.

Virtual reality
Virtual reality (VR) is, more or less, a 3D version of DM.
The extra dimension has considerable advantages:
primarily VR represents the very space we live in, and
therefore there is no unusual ambiguity in VR. VR exploits
natural computation directly; it is therefore ‘immersive’
and this in itself distracts users from noticing problems
with interaction. After all, reality does not have problems;
3D is reality!

SYMMETRY FOR COMPLEX SYSTEMS
When complex systems can be projected onto familiar
structures (e.g., with Euclidean symmetries), all well and
good. Such user interfaces, particularly using DM and VR,
will seem natural. But it is not always possible to do this; in
fact it is often misleading to use the success of DM or VR
to justify merely simulating existing physical objects (such
as on-screen calculators mimicking handheld calculators
[20]; or mobile phones mimicking desktop browsers) rather
than to trying to do better.

If users are constructing new models and are less able,
therefore, to exploit natural computation, then these models
should be small and powerful. The smaller and more
powerful, the less effort the user will have to expend in
constructing the model.

Symmetry helps here too. If a user interface has a complex
state space, the user’s model (if adequate) will also be
complex. But suppose the state space has abstract
symmetries — not necessarily ones with any physical
realisation: then interaction with the system will leave some
properties of the system unchanged. Now these properties
do not need to be learnt everywhere, and the user can make
savings.

Here is a simple (non-interactive) example: if a user wanted
to learn a picture, if the picture had mirror symmetry, they
would only need to learn half of it plus the fact of its
symmetry. In general, then, symmetry compresses the
description of systems. Thus the trivial symmetric function
f of Figure 1 can be tabulated knowing only f(x) for x ≥ 0
and that f(x) = f(–x). Explicit details of f(x) for all x are not
needed. One symmetry in this case halves the knowledge
load to learn the relevant facts.

Symmetry not only makes systems easier to use (in
resolving ambiguities, and most effectively when the
symmetries are natural) but it also makes systems easier to
model — easier to learn, easier to understand, easier to
remember — because the complete, correct models are
smaller. Symmetry also makes systems easier to program
and debug, so it helps the user indirectly by making
systems more reliable.

THE COMPUTER IS A USER TOO
The projection from the computer’s internal state space to
the user interface should be done to enforce certain natural
symmetries. But this is only part of the story. The user has

a complex state space in their head (which of course has
access to the rest of the world through the senses, body and
memory). Somehow the interaction in the interface has to
“make sense” in the user’s model. Or, perhaps, if we were
to be less conventional we could invert all the discussion to
this point and wonder how the computer interacts with the
human: the human’s complex state space has to be
projected onto the user interface so that the computer can
interact with and understand the human. Computers suffer
from illusions and mistaken beliefs about users, just as
users do about computers. The solutions are the same in
both cases. Computers need to interact with humans to
disambiguate their illusions — indeed, there is a pleasing
symmetry!

Because symmetry is an abstract mathematical concept, it
transcends the usual computer-based approach versus
human-based approach dichotomy. Any effective symmetry
in the user interface is just as much in the user’s head as in
the computer’s program. If in the interface, it should also
be in the user manual, and — as we have emphasised, it
should also be in the user’s original task.

CONCLUSIONS
It took artists millennia to understand how to draw
representational 3D images in 2D. The discovery of
perspective took a surprisingly long time; it was a
tremendous achievement for the renaissance artist
Brunelleschi, but now is taught in primary schools. For
centuries nobody had thought that pictures could be what
today we call realistic. What today we think of as ‘flat’
would have been what everybody thought pictures were.
Similarly, today’s computer systems have all the naïvity
that early paintings have: they don’t represent reality well
(even when they are trying to). In our terms: they have all
sorts of broken invariants that have not been properly
projected onto the user interface to fit with the reality they
implement. Perhaps there is some future style of interaction
that will be so natural that today’s interfaces will seem
unnecessarily quirky.

Useful computer programs are enormously complex, and
indeed far more complex than 3D scenes. Programs have to
be represented in much lower dimensional spaces to be
usable, and this creates massive problems for user interface
designers — and we do not even yet have concepts like
“perspective” to help.

Necessarily, user interfaces create ambiguities or illusions.
When users misinterpret illusions, things go awry. To
disambiguate, users must be able to interact, and yet the
interaction must not disturb the user’s goals. This
requirement can only be achieved when there are
appropriate symmetries (by definition). If these symmetries
are also natural ones (e.g., ones users are familiar with from
the physical world), then user interfaces become very much
easier to use.

Exploiting affordance, direct manipulation, virtual reality,
and reducing ambiguity are quite general and informal
design heuristics. Symmetry is a deeper concept and one
that can be rigorously used, and has wider application.
However, symmetry can also be abused in design: things
may be made symmetric because it is aesthetic to do so —
but the semantics of the underlying system may not have
the symmetries suggested by appearances. To be
successful, symmetry must be used as a deeper and
consistent algebraic concept: it is not just about the user
interface and its appearance, but applies from the internal
workings of the program through to the workings of the
user’s model and beyond.

Finally, although further work is needed, symmetry can be
formalised, and it can be formalised abstractly — which
makes it a very versatile approach. Different parts of
interactive systems will have different sorts of symmetry,
and the formalisation enables designers to consider explicit
trade-offs rigorously.

ACKNOWLEDGMENTS
Harold Thimbleby is a Royal Society-Wolfson Research
Merit Award Holder, and gratefully acknowledges their
support in this work. The author is grateful for excellent
feedback and ideas from Ann Blandford, George
Buchanan, Michael Harrison, Matt Jones and Prue
Thimbleby.

REFERENCES
1 . Ballard, D. H., An Introduction to Natural

Computation, MIT Press, 1997.

2. de Bruxelles, S., “Kidney Death Surgeon ‘Reversed
X-ray’,” The Times, June 14, p13, 2002.

3 . Byrne, M. D., “ACT-R/PM and Menu Selection:
Applying Cognitive Architecture to HCI,”
International Journal of Human-Computer Studies,
55, pp41–84, 2001.

4. Friedhoff, R. M. & Peercy, M. S., Visual Computing,
Scientific American Library, 2000.

5 . Gaver, W. W., “Technology Affordances,” ACM
CHI’91 Conference, pp79–84, 1991.

6 . Gaver, W. W., “Affordances for Interaction: The
Social is Material for Design,” Ecological
Psychology, 8(2), pp111–129, 1996.

7 . Gibson, J. J., The Ecological Approach to Visual
Perception, Houghton Mifflin, 1979.

8 . Hutchins, E. L., Hollan, J. D. & Norman, D. A.,
“Direct Manipulation Interfaces,” in Norman, D. A. &
Draper, S. W., User Centered System Design,
Lawrence Erlbaum Associates, 1986.

9. Jacob, R. J. K., “A Specification Language for Direct-
Manipulation User Interfaces,” ACM Transactions on
Graphics, 5(4), pp283–317, 1986.

10. Johnson, D. L., Symmetries, Springer, 2001.

11. Nardie, B. A. editor, Context and Consciousness, MIT
Press, 1997.

12. Norman, D. A., “Design Rules Based on Analysis of
Human Error,” Communications of the ACM, 26(4),
pp254–258, 1983.

13. Norman, D. A., The Psychology of Everyday Things,
Basic Books, 1988.

1 4 . Norman, D. A., “Affordance, Conventions, and
Design,” ACM Interactions, 6(3), pp38–43, 1999.

1 5 . Reason, J., Human Error, Cambridge University
Press, 1990.

1 6 . Reeves, C. & Nass, B., The Media Equation,
Cambridge Univesity Press, 1996.

1 7 . Shneiderman, B., “Direct Manipulation: A Step
Beyond Programming Languages,” IEEE Computer,
16(8), pp57–69, 1983.

18. Tesler, L. “The Smalltalk Environment,” BYTE, 6(8),
pp90–147, 1981.

1 9 . Thimbleby, H., User Interface Design, Addison-
Wesley, 1990.

20. Thimbleby, H., “Calculators are Needlessly Bad,”
International Journal of Human-Computer Studies,
52(6), pp1031–1069, 2000.

2 1 . Thimbleby, H., “Affordance and Symmetry,” in
Johnson, C. editor, Interactive Systems: Design,
Specification, and Verification, 8th. International
Workshop, DSV-IS 2001. Lecture Notes in Computer
Science, 2220, pp199–217, Springer Verlag, 2001.

2 2 . Thimbleby, H., “Reflections on Symmetry,”
Proceedings of Advanced Visual Interfaces , AVI2002,
pp28–33, 2002.

2 3 . Weyl, H., Symmetry, Princeton University Press,
1952.

