
Names and Reference in User Interfaces

Harold Thimbleby
Swansea University

Wales
SA2 8PP

United Kingdom
+44 1792295393

harold@thimbleby.net

Michael Harrison
Informatics Research Institute,

Newcastle University
NE1 7RU,

United Kingdom
+44 191 246 4938

michael.harrison@ncl.ac.uk

ABSTRACT
This short paper argues that references in user interfaces, in
particular names and the values they denote, are often designed
in a way that is incomplete and inconsistent thereby causing
problems for users. This paper explores names and values
through illustrations in order to clear the way for a more
systematic approach to the design of names and reference.

1. INTRODUCTION
People use computers to achieve things with greater ease,
effectiveness, reliability, or enjoyment that they could not do,
or could not do so well, without them. Naming, in particular,
allows an activity, a specific set of features or a routine task to
be exploited or invoked repeatedly with no more effort than it
takes to use its name once. Names can also refer to ideas and
objects that are not present in the “here-and-now”; they
facilitate remembering, planning, explaining, and
communicating. Names are frequently used for distinguishing
objects that are otherwise indistinguishable. In practice, names
are of course ubiquitous in computing: objects like computer
servers are given names so that they can be distinguished by
people and by internet name servers. Clarity, memorability, and
consistency are key principles that apply to naming schemes.

An important aspect of interactive systems is how
reference and naming is designed. Typically interactive systems
are complex and are used in many ways, ways unforeseen from
the early stages of design. This paper will argue that problems
often occur in the use of interactive systems because of a lack
of clarity about the mechanisms for naming and referencing.

Confusions arise for a variety of reasons. Some of these
reasons have been explored relatively thoroughly: for example
the issues associated with mode confusion in interactive
systems. Others are less well understood in the context of
interactive systems, even though they have been studied
relatively thoroughly in other contexts. Naming issues become
more important as mobile devices become more available as a
platform for applications. This diversity leads to a richer set of
mechanisms for referring to items and the requirement for
consistency across a range of different interfaces for the user to
the same device in different locations, different devices in the
same location, and so on.

This paper will discuss how naming in particular and
reference in general are being used in a number of designs and
will reflect upon the problems that these create. The purpose of
the paper is to explore what analysis is most appropriate for the
design. In general it is important is to have theories or
frameworks that can raise key design issues before systems are
built, and, moreover, that raise issues that can be addressed
analytically and systematically. Analytic insight into design is
particularly important for safety- and mission-critical systems,
where certain sorts of use experience may be too rare or too
costly to evaluate by conventional UCD techniques.

Names and their meaning were explored in programming
language design forty years ago [3,5,6], and concepts such as
binding, assignment, environments, scope, encapsulation, and
so forth are established and remain stable. While programming
problems related to names (for example problems with aliasing)
are well understood, similar problems in user interface design
have attracted little attention and continue to be dealt with on
an ad hoc basis. Most research activity has been in relation to
naming schemes (for example [1, 2]), particularly concerned
with psychological issues. This paper, in contrast, argues that
there are also engineering issues relating to the structure and
consistency of naming systems in interfaces that have an
important impact on the usability of a particular design.

Names bind to objects and then refer to those objects.
Hence, for example, “Thinkbridge” is a name bound to an
object that happens to be a laptop computer. This is not the
only name that is bound to this particular object. The computer
is also bound with an IP number, a MAC number, plus other
names that might be used by the software installed in the
system. These different names will be used in different task
contexts for the same object (the laptop); some names are
known by the user, some are hidden. Furthermore, in the case
of “Thinkbridge,” the name binds to a computer with its own
namespaces, which themselves are complex, partly hierarchical
naming structures.

In user interfaces it is possible to refer to objects by name,
as in the case of a programming language, but alternatively the
interface may allow pointing at objects as a means of reference,
or a combination of naming and pointing as in the case of “Put
that there” [1]. Hence names like “that” and “there” are generic
names that are made specific references when combined with
other mechanisms (here, pointing) for reference. In user
interfaces names can be organised hierarchically and systems
can be moded as a result. Consider for example, an example
from unix where invoking the command cd
papers/naming followed by emacs hci07.tex refers to
a file name that is part of a hierarchical naming structure. The
effect of changing the directory using “cd” was to change the
context or mode in which the file name is used.

© Harold Thimbleby, Michael Harrison, 2007
Published by the British Computer Society

Volume 2 Proceedings of the 21st BCS HCI Group
Conference

HCI 2007, 3-7 September 2007, Lancaster University, UK
Devina Ramduny-Ellis & Dorothy Rachovides (Editors)

The systematic analysis of reference and naming in HCI is
a non-trivial, and probably long-term endeavor. This paper

 107

aims to start the process by providing a number of illustrations
to indicate the range of problems. Users can be confused by a
number of aspects of bindings between reference and object.
They can be confused because the extent and nature of the
binding is not clear. They can be confused because actions that
appear to be intuitive cannot be performed in the way that one
would expect using the reference.

We describe four types of issue that are problematic in the
design of interfaces. We do not intend to be complete, rather to
indicate the kind of framework that would be of value in
design. These issues are concerned with:

1. The binding between a name (or other reference) and
its denotation

2. What the interface supports in terms of that binding,
and how it is understood by the user.

3. Transparency of reference, and the extent to which
denoted objects can be replaced by references.

4. Mode transparency and confusion.
Note that the terms “binding” and “transparency” are standard
[5].

2. REFERENCE AND DENOTATION
Mac OS X provides facilities for dealing with the mobility of a
device. OS X allows the user to name the settings required to
access the internet from a variety of locations the computer’s
owner might occupy. A pull-down menu selects a location as
current. It is shown below selecting “Swansea University,”
which denotes a preset location and information for a particular
office.

In other words, “Swansea University” is a name that in

this scope is bound to various internet parameters. If the user
moves to another location, they select it from a menu:

The system provides a menu of different locations so that

the user can choose by name what settings are relevant to the
current location. However, a setting may need changing, and
this provides a simple illustration of a naming confusion.

Selecting “Edit Locations…” from this menu means

editing the names of locations not editing the values of the
names, that is the internet settings of locations, as might be
intuitively expected by the user. Thus a user can duplicate an

existing name; if “Duplicate” is selected, the user can obtain a
new location name, “Home Copy,” for instance, with the same
settings as “Home” currently has. If the user wants to change
“Home Copy” to some other name, such as “Holiday” then they
now need to rename this location. Typically, the user would
then change some or all of the internet settings of “Holiday”;
the advantage being that “Holiday” has been initialized to have
the same settings as “Home” has, and therefore this process is
easier than entering all the holiday settings by hand.

The name “Swansea University” can be changed to be,
say, “My office,” but the IP number associated with it cannot
be changed here. This interpretation of “Edit Locations” cannot
be achieved at this level by deleting the existing location and
then adding a new location with the intended name; IP numbers
(the values of these names) are set or changed at a different
level in the menu hierarchy.

As it happens, Mac OS provides an alternative view of
these bindings, which enables a sophisticated user to shortcut
this user interface. The network names are stored in an XML
file called preferences.plist, which can be edited using
the Property List Editor, so, in this case, the name
UserDefinedName would be associated with Home:

<key>UserDefinedName</key>
<string>Home</string>

The file also defines what settings are associated with that
name, and these settings can be edited directly. Therefore there
is a means by which the intuitive meaning of “Edit locations”
can be achieved, but it isn’t a meaning supported by the normal
interactive user interface. The point of mentioning XML in this
paper is to emphasise that, technically, the user interface could
have been different: the XML can represent “any” changes to
names, bindings and values, so any constraints are purely user
interface design choices.

Given the tasks that are being performed using these
locations, it would seem natural to allow a user to refer to the
names in other contexts, say to send an email to a technician to
get help, or to email it to someone else who wants to edit the
location to their own requirements. Unfortunately, location
names only have meaning in the very restricted context of the
menus described above. Emailing “Home” to anyone else sends
nothing other than the word; the binding is lost (and it doesn’t
even surprise us that this is so). Indeed, the binding is lost even
if the user cuts-and-pastes from any of the location dialog
boxes. Worse, it is actually very tedious to determine what the
name Home is bound to; its value (the IP numbers and so on)
are spread over many windows and dialog boxes.

Eudora (a popular email client) illustrates another issue in
relation to the binding between names and objects. For Eudora,
<Dominant> is the name of the unique, default email
account. Whereas all names can be edited — for instance, if a
user wants to change the spelling of a name — the special name
<Dominant> is fixed and cannot be edited. If a user changes
their lifestyle and wants to change which account is dominant,
they are unable to modify the dominant account, rename it to
another account name, or rename an existing name as
dominant. An obvious solution to this problem is that the
dominant property should not be a property of the name
spelling, but one of its values. Certainly the choice of name
itself should not affect whether the user can change it. For
example, each account name could have a check box
“Dominant?” that the user can set to make it the dominant
account. (Obviously, the program would ensure exactly one
name had the associated dominant property.) In other words,
dominance should not be a property of the name but of the
denotation thereby making it possible to have a more uniform
naming scheme.

 Names and Reference in User Interfaces

108

3. NAMING THE RIGHT OBJECTS IN
DESIGN

Our next example relates to the fact that interfaces may have
concepts within them that are understood in the user’s model,
but which that may not be capable of being referenced directly.
Issues of naming are often resolved using task analysis
techniques (see [2] for a careful summary). Consider the
following example. The Casio HS-8V is a basic calculator with
a single memory. The calculator provides the keys MRC, M–
and M+ to handle its memory. Formally, these are names
denoting operations that have an effect on the memory.
However this set of operations is not complete in terms of the
user’s mental model of how the calculator works. For example
the user is quite likely to want to use the memory explicitly
(why else are there buttons for it?) as a location in which a
value is saved for future use. This cannot be done easily. If by
chance, the memory is already zero, the user can press M+ to
add the number to be saved to memory. If the memory is not
zero, however, there is no obvious way to save any number.

The labeling of functions limits the means of use of the
calculator and should therefore reflect typical mental models of
the device, thereby making it easier to carry out actions that
would seem to be intuitively obvious.

Again we see the use of names in a user interface that
seem to be routine, but which conceal rather obscure issues —
and not just technically obscure issues, but issues that affect
users and the tasks they are able to achieve.

4. REFERENTIAL TRANSPARENCY
A number of issues in the design of interactive systems are
associated with referential transparency and other issues that
relate more specifically to mode confusion.

Key buttons are names that denote calculator functions.
Consider calculating10–π (which should be about 0.00072) on
the Sharp EL-531VHB calculator. Keying 10x–π ± produces
“Error” while 10x 2 ± produces 0.01. So the names π and 2
behave differently.

Storing π in memory A, by pressing π STO A should make
it possible to use A for the value of π: indeed, pressing π or
RCL A both produce the same results. Yet 10x RCL A±
produces 0.00072, even though 10x π ± is an error.

In these examples the key named π (which denotes
3.14159…) is not treated the same way as the key labeled 2 or
A. There is no referential transparency. Different sorts of
names, different sorts of numbers (i.e., Arabic names of
numeric values) are apparently bound to very different things.

Consider now the following further example of a different
lack of referential transparency. If a user enters just =, the last
expression is re-evaluated; if a user enters a binary operator,
ANS (a name representing the value of the last calculation) is
automatically inserted as its left operand. These interface
accelerations increase the power of the calculator: consider,
say, the expression ANS+1 (or equivalently, +1, which gets the
ANS name inserted automatically) which turns the calculator
into a counter where every press of = calculates ANS :=
ANS+1. Unfortunately the abbreviation mechanism creates a
feature interaction with names. If the user enters ANS+RCL A
=, they as anticipated get the last answer added to the value of
A. If they enter RCL A+ANS = different things happen. First,
RCL A is treated as a query to find the value of A: immediately
the calculator shows A’s value. When the user presses the +,
the calculator inserts ANS as its left operand, which in fact will
be equal to the value just displayed, namely A. But when the
user explicitly enters ANS, that ANS will be the last value

displayed which is of course now A, rather than the intended
answer.

The rules by which ANS works is as follows:
1. A missing operand defaults to the last answer. This makes

writing + 2 a shorthand for ANS + 2.
2. Asking the value of a name straight after using =

immediately gets the value. So RCL A immediately gets
A’s value (and hence changes ANS), saving the user
writing RCL A = which would be the obvious way of
finding A’s value.

Each of these features makes some sense in isolation, but they
interact with each other and names with the unfortunate
consequence that they compromise the calculator’s
mathematics — spelt out more abstractly, the example is
equivalent to the surprising a+b ≠ b+a. The meanings of names
such as ANS and A depend on exactly when they are used.

5. MODE CONFUSION
The final issue we explore in this paper is associated with
modes, mode confusion and mode transition. Issues of mode
confusion have been extensively studied (see [8] for review).
The Canon EOS350D digital SLR camera has a mode selection
dial so that the photographer can select how much control they
have over photography or how much the camera performs
automatically. A variety of parameters, such as aperture, shutter
speed, exposure measurement, choice of object to focus on,
whether to use flash, set the ISO speed, white balance, and
others can either be set by the camera automatically or,
depending on mode, different subsets of parameters can be
specified by the photographer (the camera’s computer sorts out
unspecified parameters depending on prevailing conditions). By
design, there are seven basic modes where the photographer
chooses a type of photograph — such as portrait, scenery,
macro or sport — and the camera selects all parameters fully
automatically. There are also five so-called “creative” modes
where the photographer overrides parameters. For example, in
the creative mode named Av, the photographer can control the
aperture, leaving the camera to automatically adjust the shutter
speed to maintain the same exposure. In all creative modes, the
photographer can also control the flash, ISO speed, focus
sensors, exposure sensors, and the white balance.

The icons in the figure above are names that refer to the

sets of photographic parameters, as well as the functions that
are performed on them. The symbols therefore denote camera
functions, in much the same way as the M+ button in the
calculator example represented a calculator function. This time,
however, the automatic processes of the camera use
environmental conditions to fill in the remaining parameters.
This makes sense, as often the user is more interested in
changing or adjusting a value rather than specifying one
outright; that is, instead of setting the aperture to f/5.6 (say) the
user may prefer to set it to be so-many stops larger or smaller
than whatever the camera suggests.

 Names and Reference in User Interfaces

 109

Suppose a photographer uses the basic portrait mode to
photograph somebody’s face. The camera will select all
appropriate photographic settings. Now suppose the
photographer wishes to do a portrait but wants to control the
aperture; they must change to Av creative mode. Unfortunately,
now the camera will use all the previously user-defined settings
— such as ISO speed and white balance — and none of the
automatically determined values that were being used a
moment earlier in the portrait mode. Worse, the many settings
are distributed around the menu hierarchy of the camera, and
are not easy for a user to locate.

Hence in the mode transition, none of the parameters that
were calculated automatically in the previous mode are carried
over. The user is required to fill all the parameters explicitly,
which are tedious to check or change. The more usual issues of
mode confusion that arise because a user is unaware that
controls mean something new because they have not observed
the transition are not of concern here. Instead a new problem of
mode is indicated: in the process of transition the previously-
named state, and therefore potentially time-saving information,
is lost. The underlying name/reference problem is similar to the
internet setting problem we reviewed earlier: the name (an
internet location; a mode of photography) is bound to settings
which are inaccessible to the user.

An obvious solution would be something like the
following. The mode selection knob can be pressed and, in so
doing, the complete set of settings is saved. The creative modes
then adjust with respect to this saved setting. Hence the user
can opt to save the information in the transition. In
conventional terms, pressing the knob performs an assignment
from the current setting to the default setting, to be used in the
creative modes. Of course, assignment is well-known in
computing; one wonders why the interaction designer did not
support this technically trivial solution.

Another solution is to separate modes from what can be
changed. For example, as currently designed it is physically
impossible to be both in portrait mode and to control the flash
manually, because these choices are in different locations on
the same knob. Alternatively, knobs may refer to function
rather than a mode. The knobs themselves may compute
automatically or be user-defined, and this choice could be
selected by the photographer. There are many possibilities.

6. CONCLUSIONS AND AGENDA FOR
FUTURE WORK
Reference and in particular names raise non-trivial user

interface design issues. Designers need better support in
understanding the naming implications of their design.

(1) A framework is required for describing reference

mechanisms (including names and naming structures) so that
designers can use it to consider design options and, in
particular, a framework would enable appropriate schemes for
linking an application to appropriate platforms.

(2) Principles for reference are required that would

enable user interface consistency and ease of use. There are
many in programming language design [5], but they have not
been carried over and validated in the interactive case.

(3) The principles that are adopted should be clear and

easy to explain or interpret to users.

(4) The semantics of names and reference is well-
understood in programming, and this can be a creative (and
consistent) source of user interface features.

In conventional programming, the concepts alias, binding,

environment, scope, inheritance, extent and so on are well
defined, and their combined use and interplay has been worked
out thoroughly. The same concepts are not applied uniformly in
user interfaces, and (at least as implemented) they interact in
complex and non-intuitive ways. Studying these issues and
knowing that corresponding abstract operations are possible in
user interfaces will encourage interactive system implementers
to make more consistent, more powerful, and more reliable
systems — and ones where standard user interface design
principles, such as undo and help, would be implemented
correctly, consistently and generally. Thus a more thorough
understanding of references, names and binding, much has
already been developed and used for many years in relation to
programming languages, will clarify many interaction design
issues in user interfaces. An understanding would provide a
clear and well-defined way to discuss user errors and
confusions in relation to many user interface problems.
However, user interfaces introduce many ideas that go beyond
conventional programming languages, and this will be a
substantial research project.

A further research project would be to determine
appropriate models of reference, naming and scope specifically
relevant to interactive usability that would be valid from the
perspective of usability; this would make it possible for
designers to reason about and conceptualize their user interface
designs. With such a framework, for instance, it would become
possible to redesign a camera and analyze experimentally the
effect that it has had on the user’s model of the system and their
understanding and use of the design.

7. ACKNOWLEDGEMENTS
Tim Bell, Paul Cairns, Peter Mosses, and Will Thimbleby made
many helpful suggestions.

8. REFERENCES
[1] Carroll, J. M., What’s in a Name? An Essay in the

Psychology of Reference, Freeman, 1985.
[2] Johnson, P., “Human Computer Interaction: psychology,

task analysis and software engineering”. McGraw Hill,
1992.

[3] Landin, P. J., “The Next 700 Programming Languages,”
Communications of the ACM, 9(3):157–166, 1966.

[4] Nigay, L. & Coutaz, J., A design space for multimodal
systems: concurrent processing and data fusion.
Proceedings of the SIGCHI conference on Human Factors
in Computing Systems. ACM Press pp. 172–178. 1993

[5] Strachey, C., “Fundamental Concepts in Programming
Languages,” Higher-Order and Symbolic Computation,
13(1/2):11–49, 2000.

[6] Tennent, R. D., Principles of Programming Languages,
Prentice-Hall, 1981.

[7] Gow, J., Thimbleby, H.W. & Cairns, P. “Automatic
critiques of interface modes” In Gilroy, S. W. and
Harrison, M.D. Interactive Systems: Design, specification
and verification (DSVIS 2005). Springer Lecture Notes in
Computer Science. No. 3941. 2006. pp. 201-212

 Names and Reference in User Interfaces

110

