
COMPUTER ALGEBRA IN USER INTERFACE DESIGN ANALYSIS

Harold Thimbleby
UCLIC, UCL Interaction Centre

LONDON
http://www.uclic.ucl.ac.uk/harold

ABSTRACT

Computer algebra systems can do impressive
mathematics that can help enormously in certain
areas of formal HCI. This paper shows the
ability to generate formal specifications, explore and
generate theorems relevant to HCI needs, and how
to do this automatically and reliably from existing,
straight-forwardly programmed runnable systems.
Conventional iterative design can modify these
implementations, and we can then automatically
redo formal analyses as the design is updated.

Keywords

Formal Methods in HCI, User Interface Design,
Safety Critical Systems, Computer Algebra.

1. INTRODUCTION

Formal methods in HCI started in the late 1980s;
the work to 1990 is summarised by Harrison and
Thimbleby [4]. Formal theories of interaction were
expressed (e.g., in the PIE model [5]), but there
was little connection with actual implementation:
the PIE model was theory, not for implementation.
Most formal approaches did not scale well, and the
discovery that simple properties, such as undo and
modelessness, were inconsistent took further energy
out of the pure formal approach. A good review of
formal methods in HCI is Dix’s 2003 chapter [1].

‘Computer algebra’ (CA) uses computers to do
algebra. CAs now open up new possibilities in
formal methods in HCI: they are fast and extremely
competent, excelling human mathematicians in
speed, accuracy, knowledge, and reproducibility [2].
The motivations of this paper include the following:

• To generate HCI-relevant formal specifications
from ordinary programs. (This contribution
appears to be unique; its relevance to formal
HCI is exciting.)

• To enable user interfaces to be animated,
debugged and iterated using standard and
familiar programming techniques—to generate
new specifications automatically at any time.

• To create abstract formal descriptions from
full specifications, and use these to address
focussed HCI questions.

• and to do all this using a standard, widely
available, well documented notation.

This paper argues that using CA in HCI
research and design is an effective approach for
general analysis and prototyping. This paper
uses Mathematica [11], a particular CA system
with a full-featured programming language, GUI
prototyping features, an outlining word processor
including facilities to work with XML, and an
enormous mathematical knowledgebase. Unlike
many other approaches to formal methods in HCI,
Mathematica is widely used, stable, well defined,
and very well documented—with tutorials and
reference books readily available. Our use of
Mathematica is standard, and needs no special
features. Although Mathematica has been used as
a convenient programming language for simulating
and analysing user interfaces [6, 7, 8], we are not
aware that any CA system’s algebraic facilities as
such have been exploited in HCI. (Our approach
can be directly contrasted with theorem proving and
cognitive modelling, which unfortunately are both
topics beyond the scope of a short paper.)

A claim that is hard to demonstrate in a static,
textual paper is that the analysis can be redone
in seconds with no additional effort if or when a
system design is changed. In areas such as safety
critical systems development—where one might be
interested in the consequences of predictable classes
of user error—formal analysis is essential. In the
future, one can imagine design tools that provide
the same power as a CA system, but without the



off-putting sophistication of a general purpose CA
system. Separate work [3], which we do not describe
here, is making the approach more accessible—
cheaper (open source), and hiding the general
mathematics behind a designer-oriented interface.

2. A FORMAL APPROACH

There are many ways a CA system can help formal
HCI; for brevity we will discuss only one approach.

The state of a human-computer system can be
described as a collection of parameters, where each
action the user or computer does transforms some
or all of those parameters. The user interacts to
achieve their goals, and their goals are said to
be achieved when certain parameters meet desired
criteria. A user action such as “doing f” (e.g.,
moving a finger and pressing a button f ) transforms
the state space of the combined human-computer
system; it can be represented by a mathematical
function, f ∈ Action: State → State. This very
general approach to formalisation is routine [1].

The state space has structure, and functions may
be specified by their transformations on one or
more components of the state space. Turning now
to working with a CA system, and specifically
with Mathematica, a function f can be defined
declaratively or imperatively. In a car we might
formalise actions over a state space State ⊆ Fuel ×
Speed × Position × Attention, and (for example)
define a handbrake action in the form f[{fuel ,
speed , User[leftHandPos , rightHandPos ,
attention ]}] := {fuel, 0, User[Handbrake,
rightHandPos, Low]}—here, to transform the
speed component of a vehicle to zero when it is
applied. Here, the user’s left hand has moved
to the handbrake, and the right hand position is
unchanged.

In this very brief example, we have shown how a
function can be defined over patterns of parameters,
to return some function of those parameters, namely
a new state. Such a specification can be run in a CA
to simulate the device and its interaction.

Once a system is implemented our interest turns to
HCI issues. Given a user task, what should a user do
to achieve this task? This is a task/action mapping
problem [12]. In our formalism, a task/action
mapping is a function how:P ×P ′ → Action∗ where
P and P ′ are classes of states, and the action
sequence gives states in P ′ for any states satisfying
P . In safety critical systems, two important
concerns are whether there is any task/action
mapping that results in unsafe use, and whether
there are ‘simple’ task/action mappings to achieve
safe tasks.

What we need to do now is retrieve a formal
specification from the implementation that can

address these and other sorts of HCI question.
Traditionally, this is considered infeasible: one
normally obtains a program from a specification,
not the other way around.

3. SIMULATION AND ANALYSIS

To proceed, we need a real example, simple enough
for a short paper, but which raises non-trivial issues,
and where results can be reproduced, checked and
extended by the reader. Our case study is a
Casio HS-8V handheld calculator; these are widely
available, simple, standard handheld calculators
which need no detailed discussion here—their user
interface is well known, as is their task domain.
Calculators also raise interesting HCI issues [9].
We have reverse engineered a HS-8V, and then
implemented a simulation in the CA system. Note
that the reverse engineering is not an issue with
our approach: we did it because it gives us a real
user interface based on a real product (i.e., our
results can be checked by others), rather than a
possibly partial interface based on a prototype or
more trivial implementation which might not be
widely available. Similar analyses might be made of
other systems, robot control, navigation equipment,
medical equipment, say. (The fact that calculators
are mathematical in themselves is convenient for
exposition but irrelevant to the approach.)

Our HS-8V device specification can be rendered
by the CA as a fully working interactive
prototype, just as if it had been programmed
in a conventional programming environment—but
because the simulation runs inside the CA system,
we can do empirical usability work with the user
interface design very easily.

The simulation generates a log of the functions
a human or simulated user executes, which can
be analysed or run again at any time, even
concurrently during a user run—it could even be run
in other simulations that start from different initial
conditions (e.g., memory zero, memory non-zero).
We get a composition of functions corresponding to
user actions, for example, CHSIGN ◦ ONE ◦ TWO ◦
DPOINT ◦ FIVE ◦ EIGHT ◦ MPLUS ◦ RT ◦ EIGHT. Here,
◦ is the composition operator, and for example,
CHSIGN is defined by CHSIGN[{d , m , op , arg ,
mrc , opc }] := {-d, m, op, op[arg, d], 0,
0} —which changes the sign of the display (d) and
applies any outstanding operation (op, such as +)
to the internal register and display.

We can obtain compositions with timings and other
information if we wish. Of course, practically any
system can run simulations and make logs. The
analyses we do next—from a fully working
program—are normally impractical.

As a composite function, the user log can be
applied directly to any state to get the resultant



state. In a CA system, the state can be purely
symbolic (representing any state whatsoever),
partly symbolic (representing any state, but with
assumptions), or a ground state (representing a
particular state, such as the initial ‘switch on’
state). For example, we could ask: do the user’s
actions in this log always result in −85.21 being
displayed? (Yes.) Do these actions always result in
2.82843 being in memory? (No.)

We represent any scenario as a function composing
the scenario’s actions with functions or symbolic
values representing assumptions (either as initial
conditions or distributed through it as invariants):
thus we can easily check whether scenarios have
intended outcomes and under what conditions. For
example, the log (used above) composed with a
function that fixes the initial memory to zero always
results in 2.82843 in the memory, with no possible
negative square root error whatever the initial
display value.

How can a user store the currently displayed number
in the memory? To answer this question, we start by
defining this goal by STORE[{display , memory ,
stuff }] := {display, display, stuff}; Of
course, users do not have access to STORE directly on
the HS-8V; instead they have to solve a task/action
mapping.

We define a set of available user actions, funs
= {ADD, EQ, MPLUS, CHSIGN, ...} (which does
not include STORE!), and call a function how (see
web site) to compose functions to find a function
equivalent to STORE. Assumptions can also be
handled by how, to solve task/action mappings such
as “if the user knows u, how can they v?” As a
special case, we might set funs to be the union of
the functions in a scenario and ask how to find an
optimal solution with the same operations the user
is assumed to know.

Users typically set the memory equal to zero prior to
undertaking a task where they anticipate wanting to
save any calculations to memory. The easiest way to
model this behaviour is to define a task zeroMemory
that specifies this. We then ask how what a user
could do on this assumption. The solution for STORE
is now found to be to just press M+ . Separately, we
can find the task/action mapping to do zeroMemory:
press MRC twice, but this loses any number currently
displayed. Thus a user cannot use the easy solution
in the middle of a calculation.

There are some frequent user tasks where the user
cannot avoid storing to a non-zero memory. Since
the HS-8V is a non-algebraic calculator, a scenario
involving solving sums like (1+2)×(3+4)×(5+6) . . .
requires storing intermediate additions repeatedly:
only the first partial sum can be done assuming a
zero memory. Thus in general, the memory may

not be zero, and the task is then very much harder
for users—and impractical for most. The function
how does a non-trivial symbolic search to solve the
problem where almost all users would be stuck: all
solutions for the STORE task on the HS-8V take at
least four button presses (an optimal solution is to
press - MRC M+ MRC ), and there is no solution if the
calculator is not in number ready mode.

Suppose (for concreteness) that M+ is pressed by
accident. Can it be corrected by the user pressing
M-? If so, the function for M- should be the
inverse of M+ . We try funeq[MMINUS ◦ MPLUS,
Identity] to see if the composition of the functions
corresponding to M+ and M- has the same effect as
the identity function. But this does not evaluate to
True for the HS-8V, as we might have hoped. It
turns out that M- will only correct an accidental M+

if the M+ was pressed in the right mode.

4. LARGE SYSTEMS

A designer is rarely interested in the whole system
all at once, and will mostly be wanting to make
useful design decisions on components of the system.
To illustrate, we define new notation 〈f〉 to find
a linear operator over a specified vector space
corresponding to the function f. Effectively 〈f〉
transforms a functional specification into matrices,
which are much easier to analyse. Typically we
will only be interested in components of the space
that are visible to the user. In the case of the
HS-8V calculator, the display and the memory are
candidates—although the memory is invisible, the
MRC key replaces the display with the memory
contents, so users need to be aware of it.

We can transform the implementation of the
calculator’s M+ button to operate over this 2D real
space display ×memory:

(display, memory).〈MPLUS〉

= (display, memory).
(

1 1
0 1

)
= (display, display + memory)

Note that the first CA step, 〈MPLUS〉 ⇒
(

1 1
0 1

)
,

is an impressive simplification, transforming the
complicated implementation of MPLUS (comparable
to CHSIGN which was given above) to a simple
matrix.

The composition of some functions have the same
linear operator as the product of the operators taken
individually (a homomorphism), so we can do much
easier matrix multiplications to analyse the device—
for example we evaluate 〈MMINUS ◦ MPLUS〉 ==
〈MPLUS〉.〈MMINUS〉 and get True. This is a strong
result, as the functional composition (on the left
of ==) is general in all device modes and states,
whereas the matrix multiplication (on the right) is
operating at the user awareness level.



As can be inferred from trying 〈MRC〉 ⇒ No linear
solution, the MRC is modey, so it requires higher
dimensions to represent as a linear operator. Put
another way, if the linear display/memory model
captures all that users model, then MRC has
undesirable usability properties. As designers, we
might want to simplify what MRC does. For example,
by setting the ‘has MRC button been hit’ component
to False we assert that MRC behaves as if pressed
exactly once—and we can then find the 2×2 matrix
for it. Call the restricted function MRC1. Now we can
check the task/action mapping for the store task in
a very different way. We project each user operation
into matrices, then calculate the matrix product of
the matrices taken in order:

〈MMINUS〉.〈MRC1〉.〈MPLUS〉.〈MRC1〉 =
(

1 1
0 0

)
The point is that given the matrices, this calculation
becomes a trivial multiplication. Many such
theorems can be found automatically. The result
is a matrix, which when multiplying an initial
state (display, memory) gives (display, display),
as required (i.e., the memory has become equal to
the initial display value).

5. CONCLUSIONS

It is clear that computer algebra is a valuable
HCI research tool. What seem like simple user
interface design issues have subtleties, which might
be overlooked by conventional techniques.

In this paper we showed that a thorough user
interface implementation can be manipulated to
prove theorems about usability at various levels of
detail; in particular, we showed how task/action
mappings can be explored, and we showed that an
arbitrary implementation can be projected down
to a simple algebraic model, by way of example,
to a linear algebra, which is known to be ideal
for expressing and raising many user interface
issues [10].

Points to emphasise are, first, that a CA
system has generated insights (and can generate
theorems and other properties) relevant to the
user interface design, and, further, these formal
statements can be derived reliably from an actual
implementation. Secondly, it works. If we changed
the implementation of the device, or changed the
device to something different entirely, we could
re-run the examples and get new results with no
further ado.

The CA system, including the HS-8V program and
all results shown in this paper, can be downloaded
and modified in any way and the user interface
analyses redone, developed and verified. See
http://www.uclic.ucl.ac.uk/harold/CA

Acknowledgements Greg Abowd, Ann Blandford,
Paul Cairns and Jeremy Gow made invaluable
comments. Harold Thimbleby is a Royal Society-
Wolfson Research Merit Award Holder.

REFERENCES
[1] Dix, A. J. (2003). “Upside-Down ∀s and

Algorithms—Computational Formalisms and
Theory,” HCI Models, Theories and
Frameworks, 381–429, ed. Carroll, J. M.,
Morgan Kaufmann Pub.

[2] von zur Gathen, J. & Gerhard, J. (2003).
Modern Computer Algebra, Cambridge
University Press.

[3] Gow, J. & Thimbleby, H. (2004). “MAUI: An
Interface Design Tool Based on Matrix
Algebra,” ACM Conference on Computer
Aided Design of User Interfaces, CADUI IV,
pp81–94.

[4] Harrison, M. D. & Thimbleby, H. (1990).
Formal Methods in Human Computer
Interaction, Cambridge University Press. (PB
edition 1994.)

[5] Thimbleby, H. (1990). User Interface Design,
Addison Wesley.

[6] Thimbleby, H. (1999). “Specification-led
design for interface simulation, collecting
use-data, interactive help, writing manuals,
analysis, comparing alternative designs, etc,”
Personal Technologies, 4(2):pp241–254.

[7] Thimbleby, H. (2000). “Analysis and
simulation of user interfaces,” Human
Computer Interaction 2000, BCS Conference
on Human-Computer Interaction, XIV,
pp221–237.

[8] Thimbleby, H., Cairns, P. & Jones, M. (2001).
“Usability analysis with Markov Models,”
ACM Transactions on Computer Human
Interaction, 8(2):pp99–132.

[9] Thimbleby, H. (2000). “Calculators are
needlessly bad,” International Journal of
Human-Computer Studies,
52(6):pp1031–1069.

[10] Thimbleby, H. (2004). “User interface design
with matrix algebra,” ACM Transactions on
Computer Human Interaction, 11(2):181–236.

[11] Wolfram, S. (1999). The Mathematica Book,
4ed. Cambridge University Press.

[12] Young, R. M. (1983). “Surrogates and
Mappings: Two Kinds of Conceptual Models
for Interactive Devices,” Gentner, D. &
Stevens, A. L. (eds.), Mental models, pp35–52,
Hillsdale, NJ: Lawrence Erlbaum Assoc.


