Safer “5-key” number entry user interfaces
using Differential Formal Analysis

Abigail Cauchi
Future Interaction Technology Lab
Swansea University
csabi@swansea.ac.uk

Andy Gimblett
Future Interaction Technology Lab
Swansea University
a.m.gimblett@swansea.ac.uk

Harold Thimbleby
Future Interaction Technology Lab
Swansea University
harold@thimbleby.net

Paolo Masci
School of Electronic Engineering and Computer Science
Queen Mary University of London
paolo.masci@eecs.qmul.ac.uk

Paul Curzon
School of Electronic Engineering and Computer Science
Queen Mary University of London
paul.curzon@eecs.qmul.ac.uk

Differential formal analysis is a new user interface analytic evaluation method based on stochastic user
simulation. The method is particularly valuable for evaluating safety critical user interfaces, which often have
subtle programming issues. The approach starts with the identification of operational design features that
define the design space to be explored. Two or more analysts are required to analyse all combinations of
design features by simulating keystroke sequences containing keying slip errors. Each simulation produces
numerical values that rank the design combinations on the basis of their sensitivity to keying slip errors. A
systematic discussion of the simulation results is performed for assessing the causes of any discrepancy,
either in numerical values or rankings. The process is iterated until outcomes are agreed upon. In short, the
approach combines rigorous simulation of user slip errors with diversity in modelling and analysis methods.

Although the method can be applied to other types of user interface, it is demonstrated through a case study
of 5-key number entry systems, which are a common safety critical user interface style found in many medical
infusion pumps and elsewhere. The results uncover critical design issues, and are an important contribution
of this paper since the results provide device manufacturers guidelines to update their device firmware to
make their devices safer.

Number entry, stochastic simulation, medical devices, interactive systems, blocking errors.

1. INTRODUCTION

Best practice for designing effective and safe inter-
active systems uses methodologies that were de-
veloped primarily in office and consumer domains:
iterative design, user evaluation (using both labora-
tory and field experiments), and so forth; international
standards, e.g., ISO 9241, summarise current best
practice. However, safety critical and dependable
applications should be designed not just to be usable,
but to be safe; design should reduce risk to be As
Low As Reasonably Practical, ALARP, which is a
legal requirement under the UK Health & Safety At
Work Act (1974) and under similar legislation in other
countries.

Dependable interactive applications, we argue in
this paper, require different methodologies than
conventional usability approaches. For example, a
standard laboratory experiment may find that users
prefer one system to another, or that they make
fewer errors or are faster. This is certainly useful

© The Authors. Published by BISL.
Proceedings of the 26th Annual BCS HCI Conference

information, but (except for very simple systems) a
lab study cannot cover all features (let alone all states
and transitions) of a system. If the interaction design
has bugs — actual software bugs or poor boundary
cases in the user interface — then human participant-
based evaluation may not help enough. For complex
systems, and for critical applications, reliance on user
testing alone may not be good enough to assure a
system has as few design defects as possible.

A common approach to assessing human factors
is via empirical studies. With any method, its
validity is an important issue. In a typical usability
experiment researchers try to achieve validity by
managing participant variability. For example, if
the only participant was a university student, the
results would not be representative of a typical
consumer population; in general the smaller (and
less representative) the population of participants the
less reliable it is to estimate the significance of any
results. In addition, running large trials is prohibitively
expensive.

Safer “5-key” number entry user interfaces using Differential Formal Analysis
Cauchi, Gimblett, Thimbleby, Curzon & Masci

In our approach, we replace variability among
participants with variability among implementations:
any detectable variability has an explicit traceable
cause, and any lack of variability is a consequence
of precise requirements. In our analyses we
used stochastic simulation, a very fast way of
generating data; comparably diverse empirical
experiments using human participants would have
taken excessively long. These differences between
conventional approaches to usability evaluation and
our approach create new opportunities, particularly
relevant to dependable design.

1.1. Case study and its importance

For a case study we use numerical formal methods,
in particular stochastic methods. We will use “out
by ten error” (defined below) as a measure of error
(or dependability), particularly relevant to the chosen
application of number entry.

As a concrete example, this paper considers the
task of interactive number entry. Incorrect drug
doses and incorrect drug dose calculations are
a significant contributory factor in unnecessary
fatalities in healthcare. There are many papers on
the prevalence of prescribing errors (e.g., Dean et
al. 2002), but very few on user interaction errors,
since interaction errors are harder to measure as
they generally do not leave a paper record that can
be easily analysed. Vicente et al. (2003) estimate
the probability of fatal number-entry errors on PCA
pumps (ones controlling pain, typically delivering
opiates) as between 1 in 33,000 to 1 in 338,800
(the large uncertainty is due to estimating reporting
rates — many errors are not reported); or in absolute
terms approximately 65-667 per year in the US or
(scaling by population) 155—1587 per year in Europe.
Vicente et al. warn that these are low estimates as
they are based on fatalities in the US but the PCA
pump is used worldwide, and hence the denominator
used, the number of pumps sold, would have been
too high.) By way of comparison, the probability of
death from general anaesthesia is approximately 1 in
200,000-300,000.

This work is motivated by the vast interaction
differences between implementations of number
entry systems in popular, commercial medical
infusion pumps. The 5-key number entry system (see
figure 1) is gaining popularity in infusion pumps from
leading manufacturers such as BBraun and Zimed
and by studying these pumps we found that the same
keying sequences in apparently identical number
entry interfaces result in very different outcomes.

Consider the case where the starting screen displays
M and our goal is to input a dose of 950 mL;

on one commercial pump the key sequence (<)(a)

000:00 @@

Figure 1: An example of 5-key user interface layout. Here
the cursor is shown in the left-most position, and the display
format is suitable for entering times, 0 minutes to 999:59
hours. Some 5-key interfaces omit the button as its
use can be implied by the user performing any action with
any non-arrow button.

] Design choice Press Display \
Arithmetic s B-
Independent dial s B- m
Wrap » -
No wrap » -
Left start 09|
Right start 09]
Block underflow v -
Underflow & arithmetic v -
Underflow & independent dial v [—)

Figure 2: Examples of design choices. Note how
underflow/blocking and dial/arithmetic interact. Different
interpretations of these and other feature interactions affect
the sensitivity of the user interface to user error.

()@« results in a display of 0

but keying in the same sequence starting from the
same state on a different commercial pump results
n NN A detailed and formal description of why
this happens may be found in Masci et al. (2011).
We recognise that different interaction design choices
lead to different values on the display (see figure 2
for some examples, and section 3); we are therefore
concerned about finding the best combination of
choices (along with their rigorous specifications) to
make the design more resilient to human error.

In differential formal analysis, a formal analysis is
performed multiple times in parallel by a group of
investigators, using a variety of implementations,
preferably across a variety of implementation plat-
forms. Differences between platforms, the implemen-
tation techniques they admit, and individual team
members’ understanding of the task at hand all lead
naturally to differences between implementations and
results obtained. These differences provide points
of discussion and further investigation, highlighting
ambiguities and areas of underspecification in the
problem description against which the team is work-
ing. The aim is not necessarily to eliminate all such
differences — leading to “one true” well-specified
problem description, implementation and set of re-
sults (whose cost may outweigh its benefit) — but

Safer “5-key” number entry user interfaces using Differential Formal Analysis
Cauchi, Gimblett, Thimbleby, Curzon & Masci

rather to expose issues which might otherwise easily
be missed, to deepen understanding of the situation,
and to direct further investigation.

Differential formal analysis raises specific design
issues that would have been very easy to ignore after
doing conventional usability studies. In conventional
usability studies, individual differences are a strong
source of experimental variability, so differences
are expected and need no further explanation. In
contrast, the proposed quantitative analysis, being
systematic, eliminates variability due to individual
differences or other sources, such as experimenter
effects, and thus makes it much easier to spot
and hence consider the impact of design features.
More precisely, if the proposed analysis uncovers
variability, this is due to misunderstandings in
requirements that can then be uncovered and
resolved — it uncovers specific design issues
rather than generic psychological issues that, even
when statistically significant, design cannot readily
address.

1.2. Related work

KLM and GOMS and their variants (Card, Moran
& Newell 1983, etc) are well-established evaluation
methods that are useful for obtaining a measure of
time to perform a specified goal. These techniques
generally assume no user errors, and evaluate unit
tasks (CogTool is a recent tool that partly automates
this process). In contrast, in our approach, we are
specifically concerned with user error and how to
design to manage it better, and we do not consider
tasks like “enter a number” as a unit task — the
user may make errors within the task that need to be
carefully analysed. We are not so much interested in
time as in error rates; if we can make a user safer
that is more important than making them faster. More
accurately, finding out how to make them safer is
more important than making them faster: we want to
compare designs on safety. Conventional evaluation
methods do not help here. Furthermore, as this paper
makes clear, not only must we consider user error,
but also designer/analyst interpretations of “enter a
number” — it turns out to be a much richer and more
complex design problem than expected; in a sense,
we have to account not just for user error but designer
error as well!

In the design of safety critical number entry systems,
the “best” design is not necessarily the fastest or most
appealing to users. In safety critical domains, having
a design that reduces errors is desirable, however,
we highlight that design is a trade-off — in general,
we aim at achieving an appropriate balance between
speed and safety. In the KLM-GOMS paradigm
approaches, errors are not taken into consideration
and it is assumed that users do not make errors. On

the other hand, in our approach, human error (both
user and designer) has an integral role, making the
approach suitable for helping evaluate safety critical
designs.

Oladimeji, Thimbleby & Cox (2011) empirically
compare so-called serial and incremental number
entry interface styles. They used eye tracking, and
uncovered important design principles (including
an explanation of why incremental interfaces are
more dependable than numeric keypad interfaces for
number entry). Our current work compares 5 different
design features in up to 28 combinations: this scale of
comparison complements Oladimeji et al.’s empirical
work by targeting subtle variations in interface layouts
which previously were all classed under a single
“incremental” heading.

Fields (2001) explores the consequences of different
kinds of error being made, based on a similar
classification to ours. He developed a finite state
transition notation for describing task models that
can be combined with a device model. Combined
models were then analysed using off-the-shelf
model checking technology to analyse the effect
of executing tasks on the device. He also defined
patterns of user error that could be introduced
into the model based on a similar classification
to ours (e.g., omission or repetition of action).
The consequences of the introduced errors could
then be investigated via model checking. Fields
considers exploring underlying cognitive causes, an
approach further considered by, for example, Curzon,
Ruk$énas & Blandford (2007). Our work here offers
a different solution — to consider sensitivity analysis.

This work complements Masci et al. (2011), which
defined predictability in higher order logic, and
explored how such a property can be verified on
real systems through automated reasoning tools. The
predictability property tests whether an expert user
can tell what state the device is in from the perceptible
output of the system, and hence accurately predict
the consequences of an action from that state
— normal human users can do no better. The
analysis was performed on the formalisation of
two real devices, and showed that devices, when
closely examined, have many boundary cases where
interactive functionality seems awkward. Here we
explore the impact of errors, and assess in a
systematic way if variations in the design of the
numeric entry system can reduce harm when errors
are made.

Following Thimbleby (2006), we performed our
work retrospectively by initially reverse-engineering
commercial products. Had we worked in the
development teams, we could have proceeded
exactly as described here, except we would

Safer “5-key” number entry user interfaces using Differential Formal Analysis
Cauchi, Gimblett, Thimbleby, Curzon & Masci

have been implementing devices directly from
requirements or perhaps from prototypes, rather
than by reverse engineering. An important aspect
of our research is that it is deliberately handling
design issues on a realistic scale, with realistic
quirks and issues. The faithful reverse engineering
ensures our systems are the same complexity
as commercial product features. In other words,
our methodology can be applied to commercial
development of dependable interactive products.
In fact, as anticipated by Thimbleby (2006), the
discipline of reverse engineering itself uncovered
numerous design questions that are important to
consider in safety critical systems.

2. DIFFERENTIAL FORMAL ANALYSIS

The Differential Formal Analysis (DFA) process is
illustrated in figure 3; it starts by determining optional
design features which are either implemented or not.
A design is a combination of features, and all the
combinations make up the design space. Two or more
researchers then use Stochastic Key Slip Simulation
(SKSS) detailed in section 2.1, to rank the designs.

SKSS entails generating a large number of key
sequences that take us from one number to another
and inserting a keying error (substitution, deletion,
repetition, or transposition) with probability p per
keystroke. If the actual and intended result values
differ by more than a certain magnitude & (say, 10),
we count the error; we then rank according to the
proportion of “out by &” errors.

SKSS reveals further design and evaluation issues
when performed by independent researchers. In our
case study we found that the features were not
initially described formally enough and numerical
disagreements raised clear questions about how
people enter numbers which we would not have
noticed otherwise. After discussing disagreements,
then (if any), the features are refined, SKSS
implementations are modified to reflect this, and
ranks are determined again. This iteration happens
as many times as necessary for the researchers to
converge on results.

The DFA process thus enforces rigorous science by
ensuring that results are repeatable (4 researchers
independently repeated the case study analysis), and
thoroughly discussed. In effect, the important safety
critical issues are well thought out and we can have
more confidence in our results.

2.1. Stochastic key slip simulation (SKSS)

Here we introduce the analytical technique at the core
of the DFA process: a stochastic simulation where
slips are introduced into sequences of key presses in

interactive number entry systems, in order to explore
the trade-offs arising from various choices in the
design of such systems, as previously developed in
Thimbleby & Cairns (2010) for numeric keypad user
interfaces.

The basic approach here simulates a human
changing the display from one value to another,
but allowing for — and analysing the sensitivity of
the design to — human error. The user will make
keying slips: repetition (or key bounce); transposition
(switching two keys in the sequence); deletion
(accidentally not pressing a key, or the device not
registering a key press); substitution (pressing a
different key than intended). These slips are modelled
with some probability p per keystroke (which of
course may depend on environmental factors), and
the proposed designs need to be evaluated for the
consequences of those slips. Some design features
will make a design more sensitive to such slips: the
more sensitive a design, the more likely it is that slips
will lead to uncorrected unintended consequences;
such sensitivity is best avoided.

It is routine in several safety-critical domains, such as
healthcare, to consider “out by ten errors,” where the
number used is a factor of ten out from the number
intended. This suggests a clear measure of design
error sensitivity: run simulations to determine the
dependency of out by ten errors on p.

2.2. Setters, solvers and slip models

A simulation is implemented in terms of solvers,
setters, and slip models. Solvers and setters occur
in matched pairs for each design. A solver generates
user key sequences that solve the task in question; a
slip model inserts slips into key sequences; a setter
executes key sequences.

For number entry analysis, we take the task to be
to change the display from showing some number
m to displaying n and entering it to the underlying
application (hence, the fifth key, (0K)). Thus, each
design’s solver is a function that takes two numbers
m,n and generates a sequence of key presses
to change the display from showing m to show n
within the constraints of the chosen design, and then
submits it by pressing (0K). In the special case m = n,
the solver just generates (0K).

Different approaches to user modelling are possible:
the simplest (conceptually, if not in terms of
implementation) is to compute the optimal sequence
for the given task. In reality, users tend to find
satisfactory rather than optimal solutions, and
some truly optimal sequences may be cognitively
too hard to determine (Simon 1996). Therefore,
the approach as used in this work finds the

Safer “5-key” number entry user interfaces using Differential Formal Analysis
Cauchi, Gimblett, Thimbleby, Curzon & Masci

v

| Determine/Refine Design Features |

Researcher 1 Researcher 2 Researcher N

Stochastic Key Slip Stochastic Key Slip
Simulation Simulation Simulation
¥ ¥
| Rank & Score ‘ | Rank & Score ‘ Rank & Score

| Discuss Results & Potential Discrepancies |

Stochastic Key Slip

Do Results
Converge?

| Successful Differential Formal Analysis |

Figure 3: The Differential Formal Analysis Process

sequence with either monotonic left-to-right or right-
to-left cursor motion, a realistic satisficing strategy.
Complementary empirical studies would give us a
better insight into how users enter numbers, however
our satisficing solver (which the authors agreed on)
is sufficient for the purpose of demonstrating the
process.

In contrast, each design’s setter takes an initial value
m and a sequence of keystrokes o, and returns a
triple, » = (ry, rn,re), the result of applying o to the
system from the starting point m. r, is the actual
final value reached, r, is the intended/target value,
and r. is true if an error occurred and was blocked
— see section 3 for details of blocking as a design
choice. Some setters do not block errors under any
circumstances (e.g., this is how some 5-key designs
work). No blocked error does not imply r, = n, since
—r. means no error was blocked by the setter, not that
no error occurred — for example, slips could occur
such that a different number was entered ‘correctly’
without triggering a blocked error.

A slip model generates a sequence of keystrokes
with keying slips; specifically, given a key sequence
o and a probability p, slips(o, p) inserts slips at each
keystroke of o, each with independent probability p.
The slip model is the way the analysis models human
error. Then, for some device design d,

sety(m, slips(solve (m,n),p))

“tries” to set the display to n given that it initially shows
m. As p increases, this becomes increasingly unlikely.
By using different setters, the idea is to find out which
combinations of design features make the setter
robust against errors introduced as a consequence
of the slips the slip model introduces.

The keystroke slip model simulates human keying
slips. As described above, in our experiments

we explored uniform distributions of several forms
of keystroke slip, namely: substitution, repetition,
omission, and transposition. Wiseman, Cairns & Cox
(2011) present a taxonomy of number entry errors.
The slip model used here is able to take into account
all error types described in that taxonomy, and it could
be generalised to arbitrary error distributions.

2.3. Error sensitivity

Given a design d, a set of probabilities P, and a
set T of task pairs (m, n), an experiment calculates
for each p € P the set Syr(p) of results of running
the appropriate solver, slip model and setter on the
various (m,n) pairs:

Sar(p) = {setq(m, slips(solve (m,n),p)): (m,n) € T'}
The error sensitivity e¢,(p) for a design d at p is then:

{r € Sar(p): —re A (ry > krp, Vi, <rp/k)}
H{r € Sar(p): —re}|

We take & = 10. That is, from each set of samples,
we count the number of non-blocking paths which
resulted in an out-by-ten error, and divide it by the
total number of non-blocking paths. Note that we also
require valid random values of m and n (which may
depend on the application).

The error sensitivity of a design may then be
investigated, and compared with other designs. A
better design is less sensitive to error, but since the
error sensitivity depends (as defined) on p, a simpler
measure is the mean gradient dey(p)/dp around
typical p values (e.g., p =~ 0.001); in fact, for our case
studies, for typical p, sensitivity is nearly linear, and
hence effectively independent of p. A lower gradient
is better.

Because of linearity, the best design decisions do not
depend on the actual value of p; it is not necessary to

Safer “5-key” number entry user interfaces using Differential Formal Analysis
Cauchi, Gimblett, Thimbleby, Curzon & Masci

1.6 Block Errors

/‘\ 14
Left Start Cursor :

= 2 Wraparound Arithmetic _ Vertical
5} Wraparound
=) 1
£
o 038
-
o
g 06
-
o
= 04
=
<
o 02
&~

0

Ignore Errors Right Start No Cursor No No Vertical

Wraparound Arithmetic Wraparound

Figure 4: Summary of C# analysis findings. Features
mentioned at the top of the bars are better, by the factor
shown. Specifically, over all design choices, blocking errors
reduces the mean sensitivity of the 5-key interface by a
factor of 1.41, start at left is better than start at right by a
factor of 0.98, cursor wraparound is better than no cursor
wraparound by a factor of 0.91, arithmetic is better than no
arithmetic by a factor of 0.9 and vertical wraparound gives
us an improvement over no vertical wraparound by a factor
of 0.88.

perform empirical experiments to determine p. In an
important sense the resulting design is more robust
— as it does not depend on specific assumptions of
user performance (as measured by p). Similarly, if we
establish that the results are broadly independent of
the mix of slip types (transposition, deletion, etc) then
there is no need to model the user more realistically!

3. 5-KEY NUMBER ENTRY DESIGN

As a case study we applied DFA on 5-key number
entry systems to find the system which is least
sensitive to human error. This type of interface
(shown in figure 1) is popular in commercial medical
infusion pumps and it is safety critical since it is the
interface used to enter drug doses. The 5-key system
uses a cursor and arrow keys to change digits and an
key to submit the number.

From reverse engineering infusion pumps from
different manufacturers we found that there are
implementation variations on how the cursor works
and how the digits work. These make up our design
features and are described here.

Wraparound — if applied to digits, if the digit is at
the maximum and (4) is pressed, the digit goes to
the minimum value and vice versa for pressing (vJ) on
the minimum value. If wraparound is applied to the
cursor, if (<) is pressed on the leftmost position, the
cursor goes to the rightmost position and vice versa.

Arithmetic — if a display shows] and (&)
is pressed, the display shows . Hence, when
arithmetic is on, simple arithmetic operations are
performed on the display through the (aJand (v Jkeys.

After implementing the four simulations indepen-
dently we found disagreements on how wraparound
and arithmetic interact. One understanding was that
if wraparound and arithmetic are both on at the
same time, then the wraparound function happens
at the minimum and maximum values of the en-
tire displayable value. The other possibility is that
wraparound and arithmetic can not be present to-
gether, and one is the inverse of the other i.e., an
interface either treats the digits independently (i.e., in
a dial style) or does not. This shows that what seem
to be clear design feature requirements are easily
misinterpreted through the details and this process
raises awareness to these issues which are important
for safety critical systems.

Cursor start position — this is the choice of whether
the cursor starts on the left or on the right when the
number entry interface starts.

Block errors — some interfaces alert users when the
user has done something “wrong.” Of course, without
knowing the intended number n, no system can do
this reliably. Certain circumstances, however, might
prompt a warning. For example, attempting to move
a cursor beyond the bounds of its display might result
in such an alert; alternatively, the user’s attempt could
be silently ignored, or even honoured (in some sense)
by wrapping the cursor around to the other end of the
display (a design choice we investigate in section 3).
Many systems assume n = 0 is not a valid number
— for example, an infusion pump is not needed if the
drug dose is zero, so this is a detectable error.

A system that alerts the user to slips might be
seen as less forgiving, but the payoff is (potentially)
greater resilience. If the interface displays an alert,
blocking further interaction until it is cleared, the user
will usually become aware of the problem, and can
recover from it. For example, suppose a user’s task of
“get from m to n” is interrupted because of a detected
error, with the display in state m/; it is then reasonable
to suppose that the user effectively abandons their
old task, and adopts a new one, namely “get from m’
ton”

3.1. Implementations

Four independent researchers (the authors Cauchi,
Gimblett, Masci and Thimbleby — we advocate
several analysts should be used, but our choice
of four is arbitrary) implemented SKSS to analyse
designs made up of all combinations of features.
The probability of out by 10 error for each design

Safer “5-key” number entry user interfaces using Differential Formal Analysis
Cauchi, Gimblett, Thimbleby, Curzon & Masci

0.0008
—-——-— Left start, wrap, arithmetic, ignore overflow

Right start, wrap, dial, ignore overflow

Right start, wrap, arithmetic, ignore overflow

Right start, n rflow

00006} —— Right start, no wrap, arithmetic, ignore overfiow

ap, dial, ignore ove

- Left start, wrap, dial, ignore overfiow
— Leftstart, no wrap, arithmetic, ignore overflow

0.0004f —-—-—-

Sensitivity

0.0002)

0.0004 0.0006 0.0010

Keystroke slip probability p

Figure 5: Sensitivity against p for various combinations
of design feature (from Mathematica). The lower gradient
lines represent better (less error-sensitive) designs.

was used to determine a rank. Each researcher
carried out slightly different experiments because
of different understandings of the features, and
this raised important issues for discussion. The
implementation platforms used were Mathematica
(Wolfram 2003), C#, Mdbius (Clark et al. 2001) and
JavaScript; implementation details and variations are
described in Thimbleby, et al. (2012).

The main issues raised from implementing SKSS
were about how users key in numbers and how
the features behave at the boundaries. To simulate
number entry, we considered finding the best possible
path from one number to another but we found that
programming solvers for the best path was complex
and it is unlikely that a user enters numbers in
this way. We agreed to implement realistic, simple
solvers which consider shortcuts users are likely to
take; however these raised issues are worth studying
empirically, especially since the domain is safety
critical.

After a few iterations to improve and synchronise the
SKSS implementations, the researchers converged
on the results presented here. Figure 4 shows
an example of dependence of error sensitivity on
whether a feature is on or off. Block errors is the
feature that most improves the design, followed by
left start, cursor wraparound, arithmetic and vertical
wraparound.

Figure 5 shows typical results, plotting sensitivity
against keystroke slip probabilities. Because the
sensitivity/keystroke error probability has an excellent
linear correlation (R? = 0.995 or better) the rank order
— and hence the recommended design decisions
— do not depend on the value of p; in other words,
doing an empirical experiment to determine p does
not seem necessary.

The parallel coordinates plot in figure 6 shows
the relation of how the ranking scores of each

= 4.9
=3 e
= =24

3 T~ P
= 39
) = S
[NS =~
o Jo ~ =z
°)
=} g
o
]
=
E 19
]

0.9

ALL (with equal TRANSPOSITION ~ DELETION REPETITION SUBSTITUTION

probability) (only) (only) (only) (only)

Types of slips in the experiments

Figure 6: Parallel Coordinates visualisation showing the
relation of design rankings depending on slips

different design changes depending on what type
of slips we have in SKSS. The vertical lines in the
diagram represent each slip error type present in the
experiment: all slips with equal probability of being
chosen; transposition errors only; deletion errors
only; repetition errors only; substitution errors only.
Each design is represented by a polyline passing
through each of the vertical lines and the position
of each vertex on the a line corresponds to the
score value of each design. This visualisation shows
that the best designs remain best regardless of the
specific mix of user errors therefore our key design
recommendations do not depend on the mix of slips
users make.

For most of our results we ranked our designs
based on their resilience to out by 10 error. We
ran an experiment to find out what happens if we
consider other magnitudes of error and we can see
the relation of rankings in figure 7. Here we have
a parallel coordinates visualisation that shows how
the probability of error (on the vertical axes) changes
when considering different out by & errors. Each
polyline in the diagram represents a combination of
design features. The lower the polyline across the
vertical axes, the smaller the sensitivity of the design
to keystroke errors (and, thus, the better the design).
The interesting find in this trial is that the best four
designs remain toward the bottom of the visualisation
and we do not have interleaving between the best
designs. There are some interesting interleavings in
the worse designs, however we are not interested
in this since those designs with significantly higher
sensitivity should not be implemented.

3.2. Special case: the BBraun Infusomat Space

We applied our analysis to an existing JavaScript
simulation of the VTBI (Volume To Be Infused)
number entry system of the BBraun Infusomat Space

Safer “5-key” number entry user interfaces using Differential Formal Analysis
Cauchi, Gimblett, Thimbleby, Curzon & Masci

Designs by sensitivity

2x 3x 4x 5x 6x 7x 8x 9x 10x
Out by k error

Figure 7: Out by k errors for different design types.

infusion pump (also analysed in Masci et al. 2011).
This simulation predates the analytical approach
described in this paper, and was initially produced
for other purposes; it is particularly interesting
as its behaviour is less “regular’ than the other
simulations we performed. Its basic behaviour is
arithmetical, without cursor wraparound; it admits
entry of numbers over a range of magnitudes (see
below); it has a simple memory facility around its
maximum values (apparently in order to allow users
to easily undo accidentally hitting the maximum
value under some circumstances); and it has range-
dependent non-zero minimum values, which can
prevent entry of certain syntactically valid values
(again, see below). The simulation thus reflects
that real number entry systems frequently exhibit
irregular behaviours arising from domain-specific
design decisions. A set of 138 unit tests provides
evidence that it is a usefully faithful simulation of the
actual device behaviour: while there may be corner
cases which we missed, we are confident that the
simulation is faithful enough that our analysis is well-
founded; in particular, the key non-regular behaviours
described above are well explored by these tests.

We performed four experiments on this simulation:
switching error blocking on and off, and exploring
both left-to-right and right-to-left strategies in each
case. The results of the analysis agree with the other
analyses described above, in particular that the left-
to-right strategy admits less out-by-ten errors than
right-to-left, and that activating error blocking reduces
the number of errors dramatically (see figure 8). Note
that the actual device does beep and displays an error
message under the conditions where we block errors,
effectively drawing them to the user’s attention.
Users can adopt whichever directional strategy they
prefer, though right-to-left is the natural strategy when
starting from 0, as is usually the case. There are
two particular aspects of the device’s design which
have interesting implications both for the design of
the experiment, and for actual users:

0.35

0.30

0.25

0.20 R-L, no block
===| -R, no block
R-L, block

0.10 ===_-R, block

0.15

Sensitivity (out by ten rate)

0.05

0.00
0.00 0.05 0.10 0.15 0.20

Per-keystroke error probability p

Figure 8: Results for BBraun experiments: entry left-to-
right admits less out-by-10 errors than right-to-left, and
blocking errors reduces out-by-10 errors still further.

First, it admits number entry over a range of
magnitudes: while the display can show up to five
digits, the range displayed is a sliding window
between thousandths and ten-thousands; a non-
zero digit in some (high-magnitude) positions can
prevent access to other (low-magnitude) positions
accordingly. However, the window does not slide
uniformly, and there are in fact three possible ranges:
hundrediths to tens (e.g., EEREY), tenths to hundreds
(e.g.. EEEIE)), and units to ten-thousands (e.g.,
EEEER)); note that the first two ranges are four digits
wide, whereas the third is five wide. Itis not possible to
enter [EXEEIE), for example. This irregularity slightly
complicates random number generation, but the
main complication arises in the solver. Consider the
path from to FEIEE] A left-to-right strategy
will have no problem here because it starts by
zeroing high-magnitude columns; however, a right-to-
left strategy should begin by setting the hundredths
column, but the cursor won’t move right past the
units column while any column above hundreds is
non-zero. The solution is to do what a human would
do: clear columns whose content is blocking access
to other required columns, before proceeding with
either directional strategy as desired. (The reverse
path, to [EEEER], is not problematic, however:
low-magnitude columns do not block access to high-
magnitude ones.)

Second, in the hundredths to tens range, the lowest
non-zero value the device allows to be displayed is
Y. which is not the lowest value in that range (i.e.,
EXH); no value smaller than can be displayed,
in fact. Again, this irregularity complicates random
test generation, and rather complicates the solver (for
the right-to-left strategy, at least). Consider the path
from to [[RJN: here, the right-to-left strategy
starts by zeroing the units column, which results
in a jump to the minimum value [XIERY; a “blind”

Safer “5-key” number entry user interfaces using Differential Formal Analysis
Cauchi, Gimblett, Thimbleby, Curzon & Masci

subsequent adjustment of the tens column gives a
final display of [FXER, which is incorrect. In order
to find a correct path, then, the solver detects such
cases and simply repeats the right-to-left strategy —
in this case successfully setting the hundredths and
tenths columns in that order to give I} Again,
we speculate that this is how a human would deal with
such a situation — indeed we see no simpler way to
do so.

4. DISCUSSION

Stochastic simulations have the advantage that they
can be run relatively briefly to get a “quick and
dirty” set of results, and then (if desired) run for
longer in order to get increasingly accurate results.
By comparison, methods such as model checking
(Clarke 1999) tend to be (or aim to be) exhaustive
by default, and they generally do not give numerical
results, so comparisons between different design
choices are much harder. Indeed, the concept of
“user error” is a research question in itself, that
needs solving before model checkers can be used
effectively for differential design comparisons.

Although the analysis can tell us which design is
theoretically least sensitive to human error, we cannot
assume that this design is easily understandable
by users. Thus, user ftrials retain an important
role and they are essential support for results
from differential formal analysis. Ultimately, design
is an act of balancing competing concerns; while
differential formal analysis can highlight and prioritise
particular trade-offs, it is of course simply another
tool, not a magic bullet.

Another potentially problematic issue for users of the
technique is its cost in terms of human expertise
and time. We recommend employing a team of
several programmers, ideally skilled across multiple
platforms in order to maximise diversity — and
you need the time for them to iterate the process,
including the time spent discussing their results and
refining their designs and their understanding of the
domain they are working within. In this respect, DFA
has much in common with many formal methods!

4.1. Use in procurement

Procurement is a dual of design: you evaluate
alternative designs to choose which ones to
purchase, whereas in design, evaluation informs
which features to implement or improve. Like our
research, procurement is generally in the position
of being offered finished products to evaluate, so
it would be natural to reverse engineer them and
apply the proposed methodology to search for critical
features that may distinguish the products on offer.
However, because the companies selling the devices

offered for procurement would then have a financial
stake in the outcome, it is likely that an extra step
would be feasible: the manufacturers could either
provide models for evaluation (though this may
accidentally leak proprietary information), or they
could help procurement check the validity of their
models (this better controls access to proprietary
information). The approach proposed in this paper
could give procurers a way to evaluate which interface
design works best towards reducing number entry
error rates.

4.2. Empirical questions raised

Starting at the left is less sensitive to error than
starting at the right. A possible explanation for this is
that if, as a user performs a sequence of keystrokes
that move from right (least significant) to left (most
significant), then as errors accumulate the overall
numerical effect gets larger and larger; from left to
right, the opposite is true. On the other hand, perhaps
in reality, starting on the far left raises the risk of
confusion about which column the user is modifying
— so in practice, it might turn out that right-to-left is
the best strategy overall. Thus the empirical question:
what do users do, and do they make slips we are not
yet modelling when they start on the left or right?

We devised suitable and (we think) realistic strategies
for our solvers, but we have no evidence that they
accurately reflect how users find paths between
numbers in 5-key interfaces. In particular, when
wraparound and arithmetic are available, do users
take advantage of them to reduce path length? Can
they reliably find the shortest path, or is this strategy
too complex to employ in reality?

We found that a feature which we call “block errors” is
important to implement. A related empirical question,
then, is how should “block errors” be implemented to
best alert the user of a possible keying error? Do we
stop interaction and ask the user to start over? Do we
alert (through sounds, vibration, flashing etc.) and let
the user continue entering the number? There are
probably other ways of doing this: it is worth finding
out and getting it right.

5. CONCLUSIONS AND FUTURE WORK

Even skilled users make slips, and so far as possible
the interactive systems they use should be designed
to detect and help users manage as many of their
slips as possible, to help them avoid the slips turning
into errors that lead to adverse situations. In the
medical domain, where 5-key user interfaces are
common, we wish to reduce the number of drug over
and under doses. This paper has shown that even
such “simple” user interfaces have a variety of subtle
design choices that can be used in combination to

Safer “5-key” number entry user interfaces using Differential Formal Analysis
Cauchi, Gimblett, Thimbleby, Curzon & Masci

make a significant difference to their sensitivity to
user error. In particular, we recommend that user
interfaces attempt to block user error (e.g., beeping
or otherwise reporting detectable errors to the user,
rather than ignoring them — as is common practice).
This and our other recommendations are based on a
very diverse set of formal simulations, and thus are
independent of the usual implicit design assumptions.
These are significant results that can lead to practical
applications in real, safety critical environments.

Differential formal analysis is a new methodology
which should be used to complement user trials for
more rigorous evaluation of safety critical number
entry systems. Subtle interaction design choices in
number entry lead to drastically different outcomes;
it is crucial that we explore these choices and
implement a design which is resilient to human
error. More broadly, we found that the numerical
disagreements between formal simulations led to
very useful debate and insight into the details of
design choices that we had previously failed to
appreciate. What we now call differential formal
analysis is clearly a promising design methodology
to add to the toolbox.

The issues and process presented are globally
important and it is critical that we, as a community, get
it right. Although these are clearly human-computer
interaction issues, differential formal analysis, which
focusses on safe design, is not conventional
and further work is necessary to bridge the
gap between human-computer interaction and safe
human-computer interaction.

ACKNOWLEDGMENTS

Funded by CHI+MED: Multidisciplinary Computer-
Human Interaction research for the design and
safe use of interactive medical devices project,
www.chi-med.ac.uk, UK EPSRC Grant Number
EP/G059063/1.

REFERENCES

S. K. Card, T. P. Moran and A. Newell. The Psychol-
ogy of Human-Computer Interaction. L. Erlbaum
Associates Inc., Hillsdale, NJ, USA, 1983.

G. Clark, T. Courtney, D. Daly, D. Deavours,
S. Derisavi, J. M. Doyle, W. H. Sanders,
and P. Webster. The Mobius modeling tool. In
Proceedings of the 9th international Workshop on
Petri Nets and Performance Models (PNPM01),
pages 241-251, Washington, DC, USA, 2001.
IEEE Computer Society.

P. Curzon, R. Ruk$énas, and A. Blandford. An
approach to formal verification of human-computer

interaction. Formal Aspects of Computing,
4(19):512-550, 2007.

B. Dean, M. Schachter, C. Vincent, and N. Barber.
Prescribing errors in hospital inpatients: their
incidence and clinical significance. Quality and
Safety in Health Care, 11(4):340-344, 2002.

R. E Fields. Analysis of erroneous actions in the
design of critical systems. DPhil thesis, University
of York, 2001.

E. M. Clarke Jr., O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, Boston, NJ, USA, 1999.

P. Masci, R. RukSénas, P. Oladimeji, A. Cauchi,
A. Gimblett, Y. Li, P. Curzon, and H. Thimbleby.
On formalising interactive number entry on infusion
pumps. In FMIS2011, 4th International Workshop
on Formal Methods for Interactive Systems, 2011.

P. Oladimeji, H. Thimbleby, and A. Cox. Number
entry interfaces and their effects on error
detection. In Proceedings of the 13th IFIP TC
13 international conference on Human-computer
interaction, Volume IV, INTERACT'11, pages 178—
185, Berlin, Heidelberg, 2011. Springer-Verlag.

H. A. Simon. The Sciences of the Artificial. 3rd
edition, The MIT Press, Boston, MA, USA, 1996.

H. Thimbleby. Interaction walkthrough: Evaluation of
safety critical interactive systems. In G. Doherty
and A. Blandford, editors, Proceedings The XlII
International Workshop on Design, Specification
and Verification of Interactive Systems — DSVIS
2006, Lecture Notes in Computer Science,
4323:52—66. Springer Verlag, 2007.

H. Thimbleby and P. Cairns. Reducing number entry
errors: Solving a widespread, serious problem.
Journal Royal Society Interface, 7(51):1429—-1439,
2010.

H. Thimbleby, A. Cauchi, A. Gimblett, P. Masci, and P.
Curzon. Evaluating safer 5-key number entry user
interface designs using differential formal analysis.
Technical report, Swansea University, 2012.

K. J. Vicente, K. Kada-Bekhaled, G. Hillel, A. Cas-
sano, and B. A. Orser. Programming errors con-
tribute to death from patient-controlled analgesia:
case report and estimate of probability. Canadian
Journal of Anesthesia, 50(4):328-332, 2003.

S. Wiseman, P. Cairns, and A. Cox. A taxonomy of
number entry error. In British Computer Society
HCI Conference, 187—196, 2011.

S. Wolfram. The Mathematica Book. Wolfram Media,
5th edition, 2003.

